细胞外HSP70对类风湿关节炎的抗炎作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(rheumatoid arthritis,RA)是一种以累及周围关节为主要表现的系统性炎症性自身免疫病。其病理特征表现为关节滑膜面的炎症及滑膜组织的增生导致关节腔的损伤和关节的破坏。尽管RA的发病机制迄今仍未完全阐明,但细胞因子网络在RA的滑膜炎症及骨质破坏中起到重要作用,是使RA病变持续存在、迁延进展的关键因素。热休克蛋白(heat shock protein,HSP)是一高度保守的应激蛋白家族,广泛存在于原核细胞和真核细胞中。HSP70是热休克蛋白家族中最重要的成员,其基本功能是参与新生蛋白质的折叠、解聚、移位等,故有“分子伴侣”(molecular chaperone)之称。长期以来,热休克蛋白被认为是细胞内的蛋白质,只能在细胞内发挥功能。近年研究发现,HSP70能被释放到细胞外环境中,称为细胞外HSP70(extracellular HSP70);而且细胞外HSP70可能作为免疫系统的“危险信号”,调节免疫细胞的功能,参与免疫性疾病的病理过程。近年来研究发现,RA患者关节液中HSP70水平明显升高。然而,RA关节液和血清中HSP70与RA活动性之间相关性如何?关节液中HSP70的来源和释放机制是什么?细胞外HSP70对RA炎症是否有影响?目前尚无相关研究。
     本研究首先观察了RA患者血清和关节液中HSP70水平的改变及其临床意义;然后探讨热应激和TNF-α对细胞外HSP70释放的影响及其机制;并从整体动物水平和细胞水平探讨细胞外HSP70对RA的作用及其机制。主要的实验结果如下:
     1、RA患者血清和关节液中HSP70的改变及临床意义。
     (1)类风湿关节炎(RA)患者血清中HSP70含量变化:RA患者血清中HSP70含量(2.84±1.16 ng/ml)明显高于骨关节炎(OA)(0.74±0.34 ng/ml)和正常对照组(0.84±0.42 ng/ml),并且活动期RA血清中HSP70含量(3.31±1.09 ng/ml)明显高于非活动期RA(1.89±0.06 ng/ml);RA患者血清中HSP70水平与肿瘤坏死因子(TNF)-α、白介素(IL)-6水平呈正相关;RA患者血清HSP70的水平与血沉(ESR)、C-反应蛋白(CRP)、类风湿因子(RF)呈正相关。(2)类风湿关节炎(RA)患者关节液中HSP70含量变化:RA患者关节液中HSP70含量(88.97±21.49 ng/ml)明显高于OA组(33.13±17.27 ng/ml),并且活动期RA(102.55±19.61 ng/ml)明显高于非活动期RA(80.36±10.88 ng/ml);RA患者血清HSP70水平与TNF-α、IL-6、IL-10水平呈正相关。上述结果提示细胞外HSP70产生可能与RA炎症刺激有关,也提示细胞外HSP70可能参与RA的炎症过程,细胞外HSP70水平可以考虑作为RA患者的病情活动指标。
     2、应激对成纤维样滑膜细胞HSP70释放的影响。
     (1)热应激对HSP70释放的影响:成纤维样滑膜细胞(fibroblast-like synoviocytes,FLSs)遭受不同温度的热休克(heat shock,HS)时,细胞内HSP70表达和细胞外HSP70释放都明显增加;重度HS引起HSP70释放增多同时伴有乳酸脱氢酶(LDH)释放增多;轻度HS也能诱导HSP70释放,却没有明显LDH释放。(2)炎症应激对HSP70释放的影响:TNF-α能剂量和时间依赖性诱导成纤维样滑膜细胞HSP70的表达和释放增多,但是LDH释放并没有明显增多。这提示多种应激可导致HSP70的主动释放。(3)脂筏在HSP70主动释放中的作用:脂筏结构的破坏剂β甲基环状糊精(methyl-β-cyclodextrin,MβD)处理成纤维样滑膜细胞后能上调热休克和TNF-α诱导的细胞内HSP70表达水平,同时MβD能剂量依赖性抑制热休克或TNF-α所致成纤维样滑膜细胞HSP70的主动释放。以上研究表明,各种应激刺激,包括TNF-α能促进成纤维样滑膜细胞HSP70的表达和主动释放,而脂筏与成纤维样滑膜细胞HSP70的主动释放有关。
     3、HSP70对成纤维样滑膜细胞炎症细胞因子分泌的影响及机制。
     (1)细胞外HSP70对成纤维样滑膜细胞炎症细胞因子分泌的影响:本研究用重组的人HSP70处理成纤维样滑膜细胞,结果发现HSP70单独处理不能影响促炎因子IL-6、IL-8和巨噬细胞趋化蛋白(MCP)-1的分泌,但能剂量依赖性抑制TNF-α所致成纤维样滑膜细胞中IL-6、IL-8和MCP-1的分泌;HSP70能剂量和时间依赖性直接诱导抗炎细胞因子IL-10的生成;煮沸(100℃)能消除HSP70对细胞因子分泌的影响,而多粘菌素B(polymyxin B,PMB)不能消除HSP70对细胞因子分泌的影响。以上结果表明细胞外HSP70通过抑制成纤维样滑膜细胞促炎因子分泌和促进抗炎因子分泌而发挥抗炎作用,而且细胞外HSP70对细胞因子分泌的影响与内毒素污染无关。
     (2)HSP70作用于成纤维样滑膜细胞的受体类型:本研究首先通过RT-PCR和Western blotting实验证实了Toll样受体(toll-likereceptor,TLR)2和TLR4在成纤维样滑膜细胞中的表达;采用专一针对抗TLR2或TLR4的单克隆抗体封闭成纤维样滑膜细胞膜上TLR2或TLR4,发现抗TLR4抗体预处理废除了HSP70对促炎细胞因子IL-6、IL-8、MCP-1和抗炎细胞因子IL-10分泌的影响,而抗TLR2抗体预处理却不能废除HSP70对上述细胞因子分泌的影响。以上结果表明细胞外HSP70对成纤维样滑膜细胞炎症因子分泌的影响是TLR4依赖性的,即成纤维样滑膜细胞表面TLR4可能是细胞外HSP70的受体。
     (3)HSP70对炎症信号通路的影响:重组的人HSP70能够显著抑制TNF-α所致JNK、ERK、p38 MAPK的活化;HSP70能够抑制TNF-α所致IκB的降解和NF-κB p65的核移位;HSP70也能够直接诱导STAT3的活化和SOCS3的表达。上述研究表明,细胞外HSP70通过抑制MAPK、NF-κB通路的活化及激活JAK-STAT3-SOCS3通路来调节炎症细胞因子分泌。
     4、HSP70对胶原性关节炎(collagen induced arthritis,CIA)动物模型的影响。本研究首先应用基因工程技术制备重组的人HSP70,然后在小鼠初次免疫胶原后的第28天出现关节炎时给予重组HSP70腹腔注射。结果显示,HSP70能够减轻CIA小鼠关节肿胀和降低关节炎评分;组织病理学检查显示HSP70能够减少滑膜组织炎症细胞渗出和骨质破坏。此外,HSP70明显降低CIA小鼠血清中TNF-α和IL-6水平。上述研究表明细胞外HSP70能够缓解小鼠胶原性关节炎的炎症,对RA具有治疗作用。
     综上所述,RA患者血清和关节液中HSP70水平明显升高,并且与RA疾病活动性和炎症细胞因子之间存在相关性,提示细胞外HSP70产生可能与RA炎症刺激有关,细胞外HSP70水平可作为RA疾病活动性的参考指标;热休克或TNF-α诱导了成纤维样滑膜细胞HSP70的主动释放,而且HSP70的主动释放与成纤维样滑膜细胞膜上的脂筏结构有关,提示RA患者关节液中高水平的HSP70可能来源于成纤维样滑膜细胞受应激刺激后的主动分泌;重组人HSP70通过抑制成纤维样滑膜细胞促炎因子IL-6、IL-8和MCP-1的分泌和促进抗炎细胞因子IL-10分泌来发挥抗炎作用;HSP70对细胞因子分泌的影响具有TLR4依赖性,提示成纤维样滑膜细胞表面的TLR4可能是HSP70作用的受体;HSP70通过抑制MAPK、NF-κB通路和激活JAK-STAT3-SOCS3通路来调节成纤维样滑膜细胞炎症因子的分泌;重组HSP70减轻CIA小鼠关节肿胀,抑制滑膜组织炎症细胞渗出和骨质破坏,降低血清促炎因子的水平,从而能有效缓解CIA小鼠病情恶化,对RA具有治疗作用。
Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic inflammation of synovial membranes and proliferation of the synovial lining, leading to cartilage damage and ultimately joint destruction. Although the pathogenesis of RA remains unclear, a variety of cytokines have been implicated in the development of the disease. Heat shock proteins (HSPs) are a superfamily of highly conserved proteins found in all eukaryotes and prokaryotes. Among them HSP70 is the most important subfamily which contains multiple members such as constitutive HSP70 (HSC70) and stress-inducible HSP70 (HSP70). Although HSP70 are traditionally regarded as intracellular proteins and their primary functions appear to be as molecular chaperones, involved in protein folding and transport, accumulating data suggest that HSP70 are also actively released and have important extracellular functions. It has been shown that HSP70 are released from a variety of cells in response to cellular stress. HSP70 may serve as a "danger signal" to the innate immune system and may also be relevant to the pathogenesis of autoimmune diseases. Although elevated HSP70 have been found in synovial fluid from RA patients, their sources and functions remain unclear.
     In present studies, the investigators observed the clinical significance of HSP70 alteration in serum or synovial fluid of RA patients, explored the effects of stress on HSP70 release and its mechanism, and further studied the effects of extracellular HSP70 on inflammatory response and its mechanisms from TNF-αstimulated fibroblast-like synoviocytes (FLSs) as well as a mouse model with collagen induced arthritis (CIA). The main results are as follows:
     1.The clinical significance of HSP70 alteration in serum or synovial fluid of RA patients. 1) Changes of HSP70 in serum of RA patients. The serum levels of HSP70 were significantly higher in RA patients than those in osteoarthritis (OA) or nomal control groups, and the serum levels of HSP70 were higher in active RA than those in inactive RA. The levels of HSP70 were correlated with the levels of TNF-αand IL-6 in serum of RA. Moreover, the levels of HSP70 in serum of RA were correlated with erythrocyte sedimentation rate (ESR), C-response protein (CRP) and rheumatoid factor (RF). 2) Changes of HSP70 in synovial fluid (SF) of RA patients. The SF levels of HSP70 were significantly higher in RA group than those in OA group, while the SF levels of HSP70 were higher in active RA than those in inactive RA. The levels of HSP70 were correlated with TNF-α, IL-6 and IL-10 in SF of RA. It suggests that extracellular HSP70 is correlated with the inflammatory response in RA, and the examination of HSP70 levels may be helpful in the evaluation of prognosis of RA.
     2. The effects of stress on HSP70 release in FLSs. Firtly, the effects of heat stress on HSP70 release were observed. Exposure of FLSs from RA patients to nonlethal HS resulted in a marked up-regulation of intracellular HSP70 and HSP70 release without significant cell death as indicated by LDH release. Then, the effects of inflammatory stress on HSP70 were studied. Treatment of FLSs with TNF-αdose- and time-dependently increased the expression of intracellular HSP70 and the release of HSP70 into the medium, without significant increase in cell death as indicated by LDH release. In addition, the investigators explored the role of lipid raft in HSP70 release. Treatment of FLSs with methyl-β-cyclodextrin (MβD), a lipid raft-disrupting reagent, inhibited nonlethal HS or TNF-αinduced HSP70 release from FLSs. It suggests that FLSs can actively release HSP70 when exposed to different kinds of stressors, and lipid raft may be involved in HSP70 release in FLSs.
     3. The effects of extracellular HSP70 on inflammatory cytokine secretion in FLSs and its mechanisms. 1) The effects of extracellular HSP70 on the secretion of inflammatory cytokine in FLSs. Recombinant human HSP70 inhibited the secretion of IL-6, IL-8 and monocyte chemoattractant protein (MCP)-1 induced by TNF-αstimulation in RA FLSs, although HSP70 alone had no effect on FLSs. HSP70 directly induced IL-10 secretion in dose-and time-dependent manners. Moreover, the effects of human HSP70 on cytokine secretion were completely abolished by the treatment of HSP70 with boiling but not with polymyxin B (PMB). 2) The analysis of receptor for extracellular HSP70 on cell surface of FLSs. By RT-PCR and Western blotting, it was shown that human RA FLSs could express TLR2 and TLR4. When the FLSs were preincubated with TLR2 or TLR4 antibody, and the effects of HSP70 on the secretion of IL-6, IL-8, MCP-1 and IL-10 were blocked by TLR4 antibody but not by TLR2 antibody. It suggests that the effects of human HSP70 on cytokine secretion in FLSs were mediated through TLR4, and TLR4 on cell surface of FLSs may be as the possible receptor of HSP70. 3) The effects of HSP70 on inflammatory signal pathways. Recombinant human HSP70 inhibited activation of MAPK signal pathways (p38, JNK, and ERK ) induced by TNF-α. HSP70 also inhibited the degradation of IκBαand nuclear translocation of NF-κB p65 induced by TNF-α. However, HSP70 directly induced the activation of STAT3 and expression of SOCS3. It suggests that the anti-inflammatory effect of extracellular HSP70 on human RA FLSs may be explained by its ability to suppress TNF-α-induced activation of MAPK and NF-κB, two vital pro-inflammatory signal pathways in RA, and promote activation of JAK-STAT3-SOCS3, a known anti-inflammatory signal pathway.
     4. The effect of HSP70 on collage induced arthritis (CIA). Recombinant human HSP70 significantly suppressed paw swelling of mice with CIA. Histological analysis confirmed the suppression of joint inflammation and bone destruction in mice with CIA after treatment with HSP70. Serum TNF-αand IL-6 levels were significantly reduced after treatment of HSP70. These results suggest that HSP70 is effective in suppressing inflammatory response and bone damage in CIA, and may have potential value in the treatment of rheumatoid arthritis.
     Taken together, it is suggested that 1) human HSP70 is up-regulated and actively released by RA FLSs exposed to stress; 2) Extracellular HSP70 inhibits the release of IL-6, IL-8 and MCP-1 induced by TNF-αand promotes the release of IL-10 in FLSs; 3) the anti-inflammatory role of extracellular HSP70 in human RA FLSs can be blocked by TLR4 antibody and recombinant human HSP70 inhibits the activation of MAPK and NF-κB signal pathways induced by TNF-α, but activates Jak-STAT3-SOCS3 pathway; 4) recombinant HSP70 suppresses systemic and joint inflammation and cartilage and bone destruction in mice with CIA, indicates a possible therapeutic effect of HSP70 on RA.
引文
[1] Fujisawa K, Aono H, Hasunuma T, et al. Activation of transcription factor NF-kappa B in human synovial cells in response to tumor necrosis factor alpha. Arthritis Rheum. 1996,39(2): 197-203.
    
    [2] Miossec P. An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol. 2004,16(3):218-222.
    
    [3] Gravallese EM, Goldring SR. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis Rheum. 2000,43(10):2143-2151.
    
    [4] Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol. 1999,92(2): 153-160.
    
    [5] van den Berg WB. The role of cytokines and growth factors in cartilage destruction in osteoarthritis and rheumatoid arthritis. Z Rheumatol. 1999,58(3): 136-141.
    
    [6] Moreland LW. The role of cytokines in rheumatoid arthritis: inhibition of cytokines in therapeutic trials. Drugs Today (Barc). 1999,35(4-5):309-319.
    
    [7] Feldmann M, Maini RN. The role of cytokines in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 1999,38 Suppl 2:3-7.
    
    [8] Odeh M. Role of cytokines in rheumatoid arthritis. Drug News Perspect. 1998,11(6):331-341.
    
    [9] Brennan FM, Maini RN, Feldmann M. Role of pro-inflammatory cytokines in rheumatoid arthritis. Springer Semin Immunopathol. 1998,20(1-2): 133-147.
    
    [10] Sivalingam SP, Thumboo J, Vasoo S, et al. In vivo pro- and anti-inflammatory cytokines in normal and patients with rheumatoid arthritis. Ann Acad Med Singapore. 2007,36(2):96-99.
    
    [11] Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003,423(6937):356-361.
    
    [12] Muller-Ladner U, Gay RE, Gay S. Role of nuclear factor kappaB in synovial inflammation. Curr Rheumatol Rep. 2002,4(3):201-207.
    
    [13] Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001,107(1 ):7-11.
    
    [14] Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-kappa B in rheumatoid synovium.Localization of p50 and p65.Arthritis Rheum.1995,38(12):1762-1770.
    [15]Malemud CJ,Miller AH.Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs.Expert Opin Ther Targets.2008,12(2):171-183.
    [16]Dalpke A,Heeg K.Suppressors of cytokine signaling proteins in innate and adaptive immune responses.Arch Immunol Ther Exp(Warsz).2003,51(2):91-103.
    [17]Duhe RJ,Wang LH,Farrar WL.Negative regulation of Janus kinases.Cell Biochem Biophys.2001,34(1):17-59.
    [18]Kubo M,Hanada T,Yoshimura A.Suppressors of cytokine signaling and immunity.Nat Immunol.2003,4(12):1169-1176.
    [19]Wendling D.Do patients with RA receiving anti-TNF agents have an increased risk of surgical site infections? Nat Clin Pract Rheumatol.2007,3(8):432-433.
    [20]Olsen N.Anti-TNF switching:effect on outcomes in patients with RA.Nat Clin Pract Rheumatol.2007,3(8):430-431.
    [21]Askling J,Fored CM,Brandt.L,et al.Time-dependent increase in risk of hospitalisation with infection among Swedish RA patients treated with TNF antagonists.Ann Rheum Dis.2007,66(10):1339-1344.
    [22]Taylor PC.Is abatacept an effective treatment for patients with RA who do not respond to other anti-TNF treatments? Nat Clin Pract Rheumatol.2006,2(3):128-129.
    [23]Weisman MH.TNF and anti-TNF treatment in rheumatoid arthritis(RA).What we know and what we still need to know.Ryumachi.1997,37(2):142-143.
    [24]罗心静 莫选荣,肖献忠.细胞外热休克蛋白70的释放机制及免疫功能.国际病理科学与临床杂志.2007,27(1):77-80.
    [25]Beckmann RP,Lovett M,Welch WJ.Examining the function and regulation of hsp 70 in cells subjected to metabolic stress.J Cell Biol.1992,117(6):1137-1150.
    [26]Huber SA.Heat-shock protein induction in adriamycin and picomavirus-infected cardiocytes.Lab Invest.1992,67(2):218-224.
    [27]Maulik N,Wei Z,Liu X,et al.Improved postischemic ventricular functional recovery by amphetamine is linked with its ability to induce heat shock.Mol Cell Biochem.1994,137(1):17-24.
    [28]Martins GA,David CM,Mitchell C,et al.Expression of heat shock protein 70in leukocytes of patients with sepsis.Int J Mol Med.1999,3(4):401-404.
    [29]Chen HW,Chou FP,Lue SI,et al.Evidence of multi-step regulation of HSP72 expression in experimental sepsis. Shock. 1999,12(1):63-68.
    
    [30] Ofenstein JP, Heidemann S, Juett-Wilstermann A, et al. Expression of stress proteins HSP 72 & HSP 32 in response to endotoxemia. Ann Clin Lab Sci. 2000,30(1):92-98.
    
    [31] Haiti FU. Heat shock proteins in protein folding and membrane translocation. Semin Immunol. 1991,3(1):5-16.
    
    [32] Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998,80(2): 183-201.
    
    [33] Guzhova I, Kislyakova K, Moskaliova O, et al. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 2001,914(1-2):66-73.
    
    [34] Kim HP, Morse D, Choi AM. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 2006,10(5):759-769.
    
    [35] Meerson FZ, Malyshev I, Zamotrinsky AV. Adaptive protection of the heart and stabilization of myocardial structures. Basic Res Cardiol. 1991,86(2):87-98.
    
    [36] Liu X, Engelman RM, Moraru, II, et al. Heat shock. A new approach for myocardial preservation in cardiac surgery. Circulation. 1992,86(5 Suppl):II358-363.
    
    [37] Maulik N, Engelman RM, Wei Z, et al. Drug-induced heat-shock preconditioning improves postischemic ventricular recovery after cardiopulmonary bypass. Circulation. 1995,92(9 Suppl):II381-388.
    
    [38] Samali A, Holmberg CI, Sistonen L, et al. Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS Lett. 1999,461(3):306-310.
    
    [39] Yang YL, Lin MT. Heat shock protein expression protects against cerebral ischemia and monoamine overload in rat heatstroke. Am J Physiol. 1999,276(6 Pt 2):H1961-1967.
    
    [40] Jayakumar J, Suzuki K, Sammut IA, et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation. 2001,104(12 Suppl 1):I303-307.
    
    [41] Chen HW, Hsu C, Lue SI, et al. Attenuation of sepsis-induced apoptosis by heat shock pretreatment in rats. Cell Stress Chaperones. 2000,5(3): 188-195.
    
    [42] Kim HD, Kang HS, Rimbach G, et al. Heat shock and 5-azacytidine inhibit nitric oxide synthesis and tumor necrosis factor-alpha secretion in activated macrophages. Antioxid Redox Signal. 1999,l(3):297-304.
    
    [43] Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia. 2005,21(8):713-716.
    
    [44] LoCicero J, 3rd, Xu X, Zhang L. Heat shock protein suppresses the senescent lung cytokine response to acute endotoxemia. Ann Thorac Surg. 1999,68(4):1150-1153.
    
    [45] Lawrence T. Modulation of inflammation in vivo through induction of the heat shock response, effects on NF-kappaB activation. Inflamm Res. 2002,51(2): 108-109.
    
    [46] Tang D, Kang R, Xiao W, et al. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol. 2007,179(2):1236-1244.
    
    [47] Johnson JD, Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol. 2006,79(3):425-434.
    
    [48] Fleshner M, Johnson JD. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia. 2005,21(5):457-471.
    
    [49] Dybdahl B, Slordahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart. 2005;91(3):299-304.
    
    [50] Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005,280(24):23349-23355.
    
    [51] Svensson PA, Asea A, Englund MC, et al. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis. 2006,185(1):32-38.
    
    [52] Brzozowski T, Konturek PC, Moran AP, et al. Enhanced resistance of gastric mucosa to damaging agents in the rat stomach adapted to Helicobacter pylori lipopolysaccharide. Digestion. 2003,67(4): 195-208.
    
    [53] Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol. 2006,177(11):7849-7857.
    
    [54] Broquet AH, Thomas G, Masliah J, et al. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem. 2003,278(24):21601-21606.
    [55] Hauet-Broere F, Wieten L, Guichelaar T, et al. Heat shock proteins induce T cell regulation of chronic inflammation. Ann Rheum Dis. 2006,65 Suppl 3:iii65-68.
    
    [56] van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005,5(4):318-330.
    
    
    [57] Williams JH, Ireland HE. Sensing danger Hsp72 and HMGB1 as candidate signals. J Leukoc Biol. 2008, 83(3):489-92.
    
    [58] Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000,6(4):435-442.
    
    [59] Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol. 2004,286(4):C739-744.
    
    [60] Radons J, Multhoff G.Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev. 2005,11:17-33.
    
    [61] Rivoltini L, Castelli C, Carrabba M, et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol. 2003,171(7):3467-3474.
    
    [62] Milani V, Noessner E, Ghose S, et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia. 2002,18(6):563-575.
    
    [63] Ito A, Shinkai M, Honda H, et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother. 2003,52(2):80-88.
    
    [64] Asea A. Chaperokine-induced signal transduction pathways. Exerc Immunol Rev. 2003,9:25-33.
    
    [65] Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002,105(6):685-690.
    
    [66] Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. 2008(183): 111-127.
    
    [67] Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002,277(17): 15028-15034.
    
    [68] Martin CA, Carsons SE, Kowalewski R, et al. Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol. 2003,171(11):5736-5742.
    [69]Gutierrez-Canas I,Juarranz Y,Santiago B,et al.VIP down-regulates TLR4expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts.Rheumatology(Oxford).2006,45(5):527-532.
    [70]Kim KW,Cho ML,Lee SH,et al.Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4activation.Immunol Lett.2007,110(1):54-64.
    [71]Ritossa F.Discovery of the heat shock response.Cell Stress Chaperones.1996,1(2):97-98.
    [72]Hromadnikova I,Nguyen TT,Zlacka D,et al.Expression of heat shock protein receptors on fibroblast-like synovial cells derived from rheumatoid arthritis-affected joints.Rheumatol Int.2008,Epub ahead of print.
    [73]Nguyen TT,Gehrmann M,Zlacka D,et al.Heat shock protein 70 membrane expression on fibroblast-like synovial cells derived from synovial tissue of patients with rheumatoid and juvenile idiopathic arthritis.Scand J Rheumatol.2006,35(6):447-453.
    [74]Arnett FC,Edworthy SM,Bloch DA,et al.The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.Arthritis Rheum.1988,31(3):315-324.
    [75]Altman R,Asch E,Bloch D,et al.Development of criteria for the classification and reporting of osteoarthritis.Classification of osteoarthritis of the knee.Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association.Arthritis Rheum.1986,29(8):1039-1049.
    [76]Lisowska B,Maslinski W,Maldyk P,et al.The role of cytokines in inflammatory response after total knee arthroplasty in patients with rheumatoid arthritis.Rheumatol Int.2007,Epub ahead of print.
    [77]Schonbohn H,Schuler M,Kolbe K,et al.Plasma levels of IL-1,TNF alpha,IL-6,IL-8,G-CSF,and IL1-RA during febrile neutropenia:results of a prospective study in patients undergoing chemotherapy for acute myelogenous leukemia.Ann Hematol.1995,71(4):161-168.
    [78]Matsuno H,Yudoh K,Katayama R,et al.The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis(RA):a study using a human RA/SCID mouse chimera.Rheumatology(Oxford).2002,41(3):329-337.
    [79]Nakahara H,Nishimoto N.Anti-interleukin-6 receptor antibody therapy in rheumatic diseases.Endocr Metab Immune Disord Drag Targets.2006,6(4):373-381.
    [80]Wendling D,Racadot E,Wijdenes J.Treatment of severe rheumatoid arthritis by anti-intedeukin 6 monoclonal antibody.J Rheumatol.1993,20(2):259-262.
    [81]Cho ML,Kim WU,Min SY,et al.Cyclosporine differentially regulates intedeukin-10,intedeukin-15,and tumor necrosis factor a production by rheumatoid synoviocytes.Arthritis Rheum.2002,46(1):42-51.
    [82]Isomaki P,Luukkainen R,Saado R,et al.Interleukin-10 functions as an antiinflammatory cytokine in rheumatoid synovium.Arthritis Rheum.1996,39(3):386-395.
    [83]Tanaka Y,Otsuka T,Hotokebuchi T,et al.Effect of IL-10 on collagen-induced arthritis in mice.Inflamm Res.1996,45(6):283-288.
    [84]Walmsley M,Katsikis PD,Abney E,et al.Intedeukin-10 inhibition of the progression of established collagen-induced arthritis.Arthritis Rheum.1996,39(3):495-503.
    [85]唐道林,肖献忠.热休克蛋白基因技术在心肌保护研究中的应用.国外医学·生理、病理科学与临床分册.2004,24(3):226-228.
    [86]罗学滨,刘可,易宇欣.热休克蛋白72在氧化应激所致急性乳鼠培养心肌细胞损伤中的作用.中南大学学报(医学版).2006,31(2):228-231.
    [87]Yang RC,Wang CI,Chen HW,et al.Heat shock treatment decreases the mortality of sepsis in rats.Kaohsiung J Med Sci.1998,14(11):664-672.
    [88]Tang D,Kang R,Xiao W,et al.Nuclear heat shock protein 72 as a negative regulator of oxidative stress(hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release.J Immunol.2007,178(11):7376-7384.
    [89]Tang D,Kang R,Cao L,et al.A pilot study to detect high mobility group box 1and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis.Crit Care Med.2008,36(1):291-295.
    [90]Terry DF,Wyszynski DE Nolan VG,et al.Serum heat shock protein 70 level as a biomarker of exceptional longevity.Mech Ageing Dev.2006,127(11):862-868.
    [91]Shamaei-Tousi A,Stephens JW,Bin R,et al.Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus.Eur Heart J.2006,27(13):1565-1570.
    [92]Satoh M,Shimoda Y,Akatsu T,et al.Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail. 2006,8(8):810-815.
    
    [93] Asea A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. Curr Immunol Rev. 2006,2(3):209-215.
    
    [94] Asea A. Mechanisms of HSP72 release. J Biosci. 2007,32(3):579-584.
    
    [95] Asea A. Hsp72 release: mechanisms and methodologies. Methods. 2007,43(3): 194-198.
    
    [96] Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol. 2005,175(5):2777-2782.
    
    [97] Mambula SS, Stevenson MA, Ogawa K, et al. Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods. 2007,43(3): 168-175.
    
    [98] Wang R, Kovalchin JT, Muhlenkamp P, et al. Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood. 2006,107(4): 1636-1642.
    
    [99] Schett G, Redlich K, Xu Q, et al. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf 1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J Clin Invest. 1998,102(2):302-311.
    
    [100] Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000,12(11): 1539-1546.
    
    [101] Whitham M, Fortes MB. Heat shock protein 72: release and biological significance during exercise. Front Biosci. 2008,13:1328-1339.
    
    [102] Walsh RC, Koukoulas I, Gamham A, et al. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones. 2001,6(4):386-393.
    
    [103] Johnson JD, Campisi J, Sharkey CM, et al. Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol. 2005,99(5): 1789-1795.
    
    [104] Schett G, Tohidast-Akrad M, Steiner G, et al. The stressed synovium. Arthritis Res. 2001,3(2):80-86.
    
    [105] Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 1996,39(11): 1781- 1790.
    [106]Feldmann M,Brennan FM,Maini RN.Role of cytokines in rheumatoid arthritis.Annu Rev Immunol.1996,14:397-440.
    [107]莫选荣 罗心静.类风湿性关节炎发病机制的研究进展.医学临床研究.2007,27(2):336-340.
    [108]Berckmans RJ,Nieuwland R,Kraan MC,et al.Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes.Arthritis Res Ther.2005,7(3):R536-544.
    [109]Miyazawa K,Mori A,Yamamoto K,et al.Constitutive transcription of the human interleukin-6 gene by rheumatoid synoviocytes:spontaneous activation of NF-kappaB and CBF1.Am J Pathol.1998,152(3):793-803.
    [110]Miyazawa K,Mori A,Okudaira H.Regulation of interleukin-lbeta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by glucocorticoids.J Biochem(Tokyo).1998,124(6):1130-1137.
    [111]Juarranz MG,Santiago B,Torroba M,et al.Vasoactive intestinal peptide modulates proinflammatory mediator synthesis in osteoarthritic and rheumatoid synovial cells.Rheumatology(Oxford).2004,43(4):416-422.
    [112]Wong PK,Campbell IK,Egan PJ,et al.The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover.Arthritis Rheum.2003,48(5):1177-1189.
    [113]Min DJ,Cho ML,Lee SH,et al.Augmented production of chemokines by the interaction of type Ⅱ collagen-reactive T cells with rheumatoid synovial fibroblasts.Arthritis Rheum.2004,50(4):1146-1155.
    [114]Calderwood SK,Theriault J,Gray PJ,et al.Cell surface receptors for molecular chaperones.Methods.2007,43(3):199-206.
    [115]Sanchez E,Orozco G,Lopez-Nevot MA,et al.Polymorphisms of toll-like receptor 2 and 4 genes in rheumatoid arthritis and systemic lupus erythematosus.Tissue Antigens.2004,63(1):54-57.
    [116]Pierer M,Rethage J,Seibl R,et al.Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands.J Immunol.2004,172(2):1256-1265.
    [117]Schett G,Tohidast-Akrad M,Smolen JS,et al.Activation,differential localization,and regulation of the stress-activated protein kinases,extracellular signal-regulated kinase,c-JUN N-terminal kinase,and p38 mitogen-activated protein kinase,in synovial tissue and cells in rheumatoid arthritis.Arthritis Rheum. 2000,43(11):2501-2512.
    [118]Corrigall VM,Bodman-Smith MD,Brunst M,et al.Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP:relevance to the treatment of inflammatory arthritis.Arthritis Rheum.2004,50(4):1164-1171.
    [119]Panayi G,Corrigall V.BiP:a new biologic immunomodulator for the treatment of rheumatoid arthritis.Autoimmun Rev.2004,3 Suppl 1:S16-17.
    [120]Zanin-Zhorov A,Tal G,Shivtiel S,et al.Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells:effects on signaling,chemotaxis,and inflammation.J Immunol.2005,175(1):276-285.
    [121]Zanin-Zhorov A,Bruck R,Tal G,et al.Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines.J Immunol.2005,174(6):3227-3236.
    [122]Cohen-Sfady M,Nussbaum G,Pevsner-Fischer M,et al.Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway.J Immunol.2005,175(6):3594-3602.
    [123]De AK,Kodys KM,Yeh BS,et al.Exaggerated human monocyte IL-10concomitant to minimal TNF-alpha induction by heat-shock protein 27(Hsp27)suggests Hsp27 is primarily an antiinflammatory stimulus.J Immunol.2000,165(7):3951-3958.
    [124]Sur R,Lyte PA,Southall MD.Hsp27 Regulates Pro-Inflammatory Mediator Release in Keratinocytes by Modulating NF-kappaB Signaling.J Invest Dermatol.2007,Epub ahead of print.
    [125]Johnson BJ,Le TT,Dobbin CA,et al.Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production.J Biol Chem.2005,280(6):4037-4047.
    [126]Aneja R,Odoms K,Dunsmore K,et al.Extracellular heat shock protein-70induces endotoxin tolerance in THP-1 cells.J Immunol.2006,177(10):7184-7192.
    [127]Bausinger H,Lipsker D,Ziylan U,et al.Endotoxin-free heat-shock protein 70fails to induce APC activation.Eur J Immunol.2002,32(12):3708-3713.
    [128]Gao B,Tsan MF.Induction of cytokines by heat shock proteins and endotoxin in murine macrophages.Biochem Biophys Res Commun.2004,317(4):1149-1154.
    [129]Medzhitov R.Toll-like receptors and innate immunity.Nat Rev Immunol. 2001,1(2):135-145.
    
    [130] Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001,2(8):675-680.
    
    [131] Andreakos E, Sacre S, Foxwell BM, et al. The toll-like receptor-nuclear factor kappaB pathway in rheumatoid arthritis. Front Biosci. 2005,10:2478-2488.
    
    [132] Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med. 1998, 187(12):2097-2101.
    
    [133] Seibl R, Birchler T, Loeliger S, et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol. 2003,162(4): 1221-1227.
    
    [134] Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 2004,50(5): 1457-1467.
    
    [135] Ospelt C, Neidhart M, Gay RE, et al. Synovial activation in rheumatoid arthritis. Front Biosci. 2004,9:2323-2334.
    
    [136] Medicherla S, Ma JY, Mangadu R, et al. A selective p38 alpha mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis. J Pharmacol Exp Ther. 2006,318(1): 132-141.
    
    [137] Miyazawa K, Mori A, Miyata H, et al. Regulation of interleukin- 1beta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by p38 mitogen-activated protein kinase. J Biol Chem. 1998,273(38):24832-24838.
    
    [138] Georganas C, Liu H, Perlman H, et al. Regulation of IL-6 and EL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol. 2000,165(12):7199-7206.
    
    [139] Aupperle KR, Bennett BL, Boyle DL, et al. NF-kappa B regulation by I kappa B kinase in primary fibroblast-like synoviocytes. J Immunol. 1999,163(1):427-433.
    
    [140] Puga Yung GL, Le TD, Roord S, et al. Heat shock proteins (HSP) for immunotherapy of rheumatoid arthritis (RA). Inflamm Res. 2003,52(11):443-451.
    
    [141] van Laar JM. Do high levels of IgA rheumatoid factor indicate a poor response to treatment with TNF inhibitors in patients with RA? Nat Clin Pract Rheumatol. 2007,3(10):544-545.
    
    [142] Brar A, Hiebert T, El-Gabalawy H. Unresolved issue: should patients with RA and a history of malignancy receive anti-TNF therapy? Nat Clin Pract Rheumatol. 2007,3(3):120-121.
    
    [143] Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature. 2007,448(7152): 474-479.
    
    [144] van Noort JM, van Sechel AC, Bajramovic JJ, et al. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995,375(6534):798-801.
    
    [145] Miyata M, Sato H, Sato H, et al. Significance of endogenous heat shock protein in adjuvant arthritis. J Rheumatol. 1999,26(10):2210-2214.
    
    [146] Kamphuis S, Albani S, Prakken BJ. Heat-shock protein 60 as a tool for novel therapeutic strategies that target the induction of regulatory T cells in human arthritis. Expert Opin Biol Ther. 2006,6(6):579-589.
    
    [147] Panayi GS, Corrigall VM. BiP regulates autoimmune inflammation and tissue damage. Autoimmun Rev. 2006,5(2): 140-142.
    
    [148] Li J, Wang H, Mason JM, et al. Recombinant HMGB1 with cytokine- stimulating activity. J Immunol Methods. 2004,289(1-2):211-223.
    
    [149] Calderwood SK. Heat shock proteins in extracellular signaling. Methods. 2007,43(3): 167.
    
    [150] Calderwood SK, Mambula SS, Gray PJ, Jr., et al. Extracellular heat shock proteins in cell signaling. FEBS Lett. 2007.
    
    [151] Miletic T, Kovacevic-Jovanovic V, Stanojevic S, et al. Strain differences and the role for HSP47 and HSP70 in adjuvant arthritis in rats. Scand J Immunol. 2006,64(6):623-632.
    
    [152] Bodman-Smith MD, Corrigall VM, Berglin E, et al. Antibody response to the human stress protein BiP in rheumatoid arthritis. Rheumatology (Oxford). 2004,43(10): 1283-1287.
    
    [153] Brownlie RJ, Myers LK, Wooley PH, et al. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum. 2006, 54(3):854-863.
    
    [154] Lehner T, Wang Y, Whittall T, et al. Functional domains of HSP70 stimulate generation of cytokines and Chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans. 2004,32(Pt 4):629-632.
    
    [155] Wang Y, Kelly CG, Singh M, et al. Stimulation of Th 1-polarizing cytokines, C-C Chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol. 2002,169(5):2422-2429.
    
    [156] Deighton C. The updated BSR guidelines for anti-TNF in adults with RA: what has changed and why? Musculoskeletal Care. 2005,3(3): 122-130.
    
    [157] Kobelt G, Eberhardt K, Geborek P. TNF inhibitors in the treatment of rheumatoid arthritis in clinical practice: costs and outcomes in a follow up study of patients with RA treated with etanercept or infliximab in southern Sweden. Ann Rheum Dis. 2004,63(1):4-10.
    
    [158] Wimett L. TNF-alpha inhibitors offer hope to RA patients. Nurse Pract. 2003,28(10):40-48.
    
    [159] Ohshima S, Mima T, Sasai M, et al. Tumour necrosis factor alpha (TNF-alpha) interferes with Fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells: a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF-alpha therapy for RA. Cytokine. 2000,12(3):281-288.
    
    [160] Yokota K, Miyazaki T, Hirano M, et al. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Rheumatol. 2006,33(3):463-471.
    
    [161] Mould AW, Tonks ID, Cahill MM,et al. Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum,2003,48(9):2660-2669.
    [1]Walter.S,Buchner J.Molecular chaperones—cellular machines for protein folding.Angew Chem Int Ed Engl.2002,41(7):1098-1113.
    [2]Cvoro A,Matic G.Hyperthermic stress stimulates the association of both constitutive and inducible isoforms of 70 kDa heat shock protein with rat liver glucocorticoid receptor.Int J Biochem Cell Biol.2002,34(3):279-285.
    [3]King YT,Lin CS,Lin JH,et al.Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice.J Exp Biol.2002,205(Pt 2):273-278.
    [4]Kregel KC,Moseley PL.Differential effects of exercise and heat stress on liver HSP70 accumulation with aging.J Appl Physiol.1996,80(2):547-551.
    [5]Thomas G,Souil E,Richard MJ,et al.Hyperthermia assists survival of astrocytes from oxidative-mediated necrotic cell death.Cell Mol Biol (Noisy-le-grand).2002,48(2):191-198.
    [6]Redaelli CA,Wagner M,Kulli C,et al.Hyperthermia-induced HSP expression correlates with improved rat renal isograft viability and survival in kidneys harvested from non-heart-beating donors. Transpl Int. 2001,14(6):351-360.
    
    [7] Paroo Z, Noble EG Isoproterenol potentiates exercise-induction of Hsp70 in cardiac and skeletal muscle. Cell Stress Chaperones. 1999,4(3): 199-204.
    
    [8] Calabrese V, Scapagnini G, Catalano C, et al. Regulation of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: role of vitamin E. Int J Tissue React. 2001,23(4): 127-135.
    
    [9] Wallen ES, Buettner GR, Moseley PL. Oxidants differentially regulate the heat shock response. Int J Hyperthermia. 1997,13(5):517-524.
    
    [10] Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996,381(6583):571-579.
    
    [11] Hartl FU, Martin J. Molecular chaperones in cellular protein folding. Curr Opin Struct Biol. 1995,5(1):92-102.
    
    [12] Martin J, Hartl FU. Molecular chaperones in cellular protein folding. Bioessays. 1994,16(9):689-692.
    
    [13] Kampinga HH. Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handb Exp Pharmacol. 2006(172): 1-42.
    
    [14] Kim HP, Morse D, Choi AM. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert. Opin Ther Targets. 2006,10(5):759-769.
    
    [15] Arieli Y, Eynan M, Gancz H, et al. Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72. Brain Res. 2003,962(1-2): 15-20.
    
    [16] Kelly S, Zhang ZJ, Zhao H, et al. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol. 2002,52(2): 160-167.
    
    [17] Franklin TB, Krueger-Naug AM, Clarke DB, et al. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia. 2005,21(5):379-392.
    
    [18] Mestril R, Giordano FJ, Conde AG, et al. Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol. 1996,28(12):2351-2358.
    
    [19] Hutter JJ, Mestril R, Tam EK, et al. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation. 1996,94(6): 1408-1411.
    [20] Quindry JC, Hamilton KL, French JP, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol. 2007,103(3): 1056-1062.
    
    [21] Lau SS, Griffin TM, Mestril R. Protection against endotoxemia by HSP70 in rodent cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000,278(5):H1439-1445.
    
    [22] Hamilton KL, Staib JL, Phillips T, et al. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003,34(7):800-809.
    
    [23] Paroo Z, Haist JV, Karmazyn M, et al. Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res. 2002,90(8):911-917.
    
    [24] Mao H, Li F, Ruchalski K, et al. hsp72 inhibits focal adhesion kinase degradation in ATP-depleted renal epithelial cells. J Biol Chem. 2003, 278(20): 18214-18220.
    
    [25] Liu TS, Musch MW, Sugi K, et al. Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am J Physiol Cell Physiol. 2003,284(4):C1073-1082.
    
    [26] Hall DM, Xu L, Drake VJ, et al. Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol. 2000,89(2):749-759.
    
    [27] Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002,92(5):2177-2186.
    
    [28] Xie Y, Chen C, Stevenson MA, et al. Heat shock factor 1 represses transcription of the EL-1 beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem. 2002,277(14): 11802-11810.
    
    [29] Ianaro A, Ialenti A, Maffia P, et al. HSFl/hsp72 pathway as an endogenous anti-inflammatory system. FEBS Lett. 2001,499(3):239-244.
    
    [30] Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, et al. Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine. 2001,16(6):210-219.
    
    [31] Yenari MA, Liu J, Zheng Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci. 2005,1053:74-83.
    
    [32] Tang D, Kang R, Cao L, et al. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med. 2008,36(1):291-295.
    [33] Tang D, Kang R, Xiao W, et al. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol. 2007,179(2): 1236-1244.
    
    [34] Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb J. 2001,15(7): 1118-1131.
    
    [35] Johnson JD, Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol. 2006, 79(3):425-434.
    
    [36] Wright BH, Corton JM, El-Nahas AM, et al. Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels. 2000,15(1): 18-22.
    
    [37] Pockley AG, De Faire U, Kiessling R, et al. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens. 2002, 20(9): 1815-1820.
    
    [38] Pockley AG, Georgiades A, Thulin T, et al. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension. 2003,42(3):235-238.
    
    [39] Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002,105(6):685-690.
    
    [40] Fleshner M, Campisi J, Johnson JD. Can exercise stress facilitate innate immunity? A functional role for stress-induced extracellular Hsp72. Exerc Immunol Rev. 2003,9:6-24.
    
    [41] Johnson JD, Campisi J, Sharkey CM, et al. Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol. 2005,99(5): 1789-1795.
    
    [42] Campisi J, Fleshner M. Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol. 2003,94(1 ):43-52.
    
    [43] Walsh RC, Koukoulas I, Garnham A, et al. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones. 2001,6(4):386-393.
    
    [44] Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999,5(11): 1249-1255.
    
    [45] Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000,12(11): 1539-1546.
    
    [46] Sauter B, Albert ML, Francisco L, et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000,191(3):423-434.
    
    [47] Berwin B, Reed RC, Nicchitta CV. Virally induced lytic cell death elicits the release of immunogenic GRP94/gp96. J Biol Chem. 2001,276(24):21083-21088.
    
    [48] Lancaster GI, Febbraio MA. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev. 2005,11:46-52.
    
    [49] Fleshner M, Johnson JD. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia. 2005,21(5):457-471.
    
    [50] Broquet AH, Thomas G, Masliah J, et al. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem. 2003,278(24):21601-21606.
    
    [51] .Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 2005,65(12):5238-5247.
    
    [52] Clayton A, Turkes A, Navabi H, et al. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005,118(Pt 16):3631-3638.
    
    [53] Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem. 2005,280(24): 23349- 23355.
    
    [54] Bausero MA, Gastpar R, Multhoff G, et al. Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol. 2005,175(5):2900-2912.
    
    [55] Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al. The biogenesis and functions of exosomes. Traffic. 2002,3(5):321-330.
    
    [56] Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol. 2005,175(5):2777-2782.
    
    [57] Moseley P. Stress proteins and the immune response. Immunopharmacology. 2000,48(3):299-302.
    
    [58] Multhoff G.Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods. 2007,43(3):229-237.
    
    [59] Routsias JG, Tzioufas AG The role of chaperone proteins in autoimmunity. Ann N Y Acad Sci. 2006,1088:52-64.
    
    [60] Calderwood SK, Mambula SS, Gray PJ, Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci. 2007,1113:28-39.
    
    [61] Prohaszka Z. Chaperones as part of immune networks. Adv Exp Med Biol. 2007,594:159-166.
    
    [62] Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol. 2002,168(6):2997-3003.
    
    [63] Radons J, Multhoff G.Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev. 2005,11:17-33.
    
    [64] Schmitt E, Gehrmann M, Brunet M, et al. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007,81(1):15-27.
    
    [65] Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol. 2005,35(9): 2518- 2527.
    
    [66] Sherman M, Multhoff G.Heat shock proteins in cancer. Ann N Y Acad Sci. 2007,1113:192-201.
    
    [67] Graner MW, Cumming RI, Bigner DD. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci. 2007,27(42):11214-11227.
    
    [68] Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol. 2004,286(4):C739-744.
    
    [69] Calderwood SK, Mambula SS, Gray PJ, Jr., et al. Extracellular heat shock proteins in cell signaling. FEBS Lett. 2007,581(19):3689-3694.
    
    [70] Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. 2008(183): 111-127.
    
    [71] Vabulas RM, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem. 2002,277(17):15107-15112.
    
    [72] Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002,277(17): 15028-15034.
    
    [73] Lehner T, Wang Y, Whittall T, et al. Functional domains of HSP70 stimulate generation of cytokines and Chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans. 2004,32(Pt 4):629-632.
    
    [74] Wang Y, Kelly CG, Singh M, et al. Stimulation of Th1-polarizing cytokines, C-C Chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol. 2002,169(5):2422-2429.
    
    [75] Salkowitz JR, Sieg SF, Harding CV, et al. In vitro human memory CD8 T cell expansion in response to cytomegalovirus requires CD4+ T cell help. J Infect Dis. 2004,189(6):971-983.
    
    
    [76] Wang Y, Whittall T, McGowan E, et al. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol. 2005,174(6):3306-3316.
    
    [77] Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem. 2003,278(1): 174-179.
    
    [78] Gao B, Tsan MF. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem. 2003,278(25):22523-22529.
    
    [79] Wendling U, Paul L, van der Zee R, et al. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol. 2000,164(5):2711-2717.
    
    [80] Tanaka S, Kimura Y, Mitani A, et al. Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol. 1999,163(10):5560-5565.
    
    [81] Chen Y, Voegeli TS, Liu PP, et al. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets. 2007,6(2):91-100.
    
    [82] Segal BH, Wang XY, Dennis CG, et al. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today. 2006,11(11-12):534-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700