不同Pfirrmann分级椎间盘内髓核细胞生物学特性的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎间盘连接相邻两块椎骨,在脊柱的承重和活动中发挥着重要作用。当椎间盘发生退变时就会导致颈椎病和下腰痛。随着人口逐渐老龄化的进程其发病率越来越高,给社会造成巨大的经济负担。全面的认识椎间盘的退变机制是找到合适治疗措施的前提。椎间盘细胞的培养则是从细胞水平研究椎间盘退变的基础。目前关于人腰椎间盘髓核细胞培养的文献较多。而人颈椎间盘髓核细胞培养的文献报道很少。本研究的第一部分旨在尝试对人颈椎间盘髓核细胞进行培养。磁共振(MRI)在临床上是一种评估椎间盘退变的重要方式。其T2像上的影像特征可以很好的反应椎间盘的退变和老化。Pfirrmann等人根据MRI T2像的信号强度、信号是否均质、髓核与纤维环的分界是否清晰和椎间盘的高度等指标建立了腰椎间盘退变的磁共振分级体系。该体系简单、直观、全面,各级间具有很好的区分性。因此为临床评价和基础研究提供了一种标准化的评估方式。本研究的第二部分目的是通过对比不同Pfirrmann分级椎间盘内髓核细胞的生物学特性检验该分级在细胞水平的效果。
     实验一颈椎间盘髓核细胞的体外培养和鉴定
     目的:建立人颈椎间盘髓核细胞体外培养体系,并对其细胞表型进行鉴定。方法:采用酶消化法分离人颈椎间盘髓核细胞,进行单层培养,倒置相差显微镜观察细胞生长和形态,流式细胞仪测定细胞周期和凋亡率,并行甲苯胺蓝、Ⅱ型胶原及CK8免疫组化染色对其细胞表型进行鉴定。结果:原代髓核细胞凋亡率6.1±1.4%,S期细胞比例7.3±0.5%。贴壁后形态为多角形或短楔形,传代后生长加速。细胞呈甲苯胺蓝异染性;Ⅱ型胶原免疫组化染色阳性;只有少量椭圆形大细胞CK8免疫组化染色阳性。结论:成功建立人颈椎间盘髓核细胞体外培养模型,细胞鉴定符合髓核细胞特征。并证实成年后人髓核内仍有少量细胞保持脊索细胞表型。
     实验二不同Pfirrmann分级椎间盘内髓核细胞生物学特性的比较
     目的:比较腰椎间盘退变的Pfirrmann分级各级间的髓核细胞生物学特性。方法:按腰椎间盘退变Pfirrmann分级标准将因腰椎退变性疾病而接受手术病人的髓核组织进行分组,A组为II级,B组为III级,C组为IV级。行组织切片甲苯胺蓝观察比较各组髓核细胞密度。采用酶消化法分离培养髓核细胞。台盼蓝染色计算各组细胞活性比率,光镜观察细胞形态和生长状态,透射电镜观察细胞的超微结构。绘制2代细胞的生长曲线。阿利辛蓝法测蛋白聚糖含量,比较各组差异。结果:组织切片染色显示A组细胞密度最高,B组次之,C组细胞密度最低。A组细胞的活性比率为91.6±4.3%;B组细胞活性比率为83.5±6.7%;C组细胞活性比率为74.8±5.9%。各组间差异具有统计学意义,P﹤0.05。光镜下A组细胞呈短梭形或多角形轮廓清晰饱满,C组细胞轮廓不清,胞突较长。电镜下A组细胞内有大量粗面内质网和线粒体, C组细胞内的粗面内质网和线粒体稀少,存在很多空泡样结构,并且可见到细胞相互吞噬的现象。B组细胞的超微形态介与两者之间。A组细胞生长速率明显快于B组和C组分别为(T=61.5,P<0.05,T=76.4 , P<0.01))。B组细胞生长速率快于C组(T=64.5,P<0.05)。A、B、C组细胞GAG含量分别为408.23±29.25mg/L、273.05±52.44mg/L、91.73±38.06mg/L,各组间均有统计学差异,P﹤0.05。结论:椎间盘退变的Pfirrmann分级,能很好的反应髓核组织在细胞水平的退变程度。是一种简单有效的退变分级系统。
Intervertebral discs play a significant role in the support, durability, and flexibility of the spine. Disc degeneration is a relatively common problem. There is a known strong association between disc degeneration and disc-related pain. As the population to age, the incidence and prevalence of pain related to disc degeneration will undoubtedly increase. This situation causes heavy economic burden on the society. A thorough comprehension of disc degeneration is Fundamental to an appropriate treatment strategy. The culture of the disc cells is the premise to research disc degeneration on the cell level and a source of cells for intervertebral disc engineering. However, there is few article about the culture of human cervical nucleus pulposus cells. So the part one of this article aims to successfully establish a system of the culture of cervical nucleus pulposus cells. Magnetic resonance imaging (MRI) is the most important method for the clinical assessment of intervertebral disc pathology. The signal characteristics of the disc in T2-weighted MRIs reflect changes caused by aging or degeneration. Pfirrmann and his colleagues develop a grading system for lumbar disc degeneration based on MRI signal intensity, disc structure, distinction between nucleus and anulus, and disc height. This grading system is simple and comprehensive, with intra- and inter-observer reliability sufficient to discriminate between the different grades, therefore provides a standardized and reliable assessment method of disc degeneration for research and clinical purposes. the part two of this article aims to compare biological characteristics of nucelus pulposus cells in different grade of this system.
     Part one---Cultivation and identification of human cervical nucleus pulposus cells
     Objective: To establish the system for culturing the human cervical nucleus pulposus cells and to identify their phenotypes. Methods The human cervical nucleus pulposus cells were isolated by collagenase digestion method and cultured in monolayer by culture solutions of DF12 + 20%FBS. Morphologic changes and growth of the cells were detected by microscope. The cell cycle and apoptosis rate were detected by Flow cytometric. The morphological structure and the phenotype were identified with the toluidine blue staining and immunocytochemistry means. Result The apoptosis rate of primary cells was 6.1±1.4%. The Cells at S phase were 7.3±0.5%. The cells were polygonal or short wedged morphology. The second passage cells grew more fast than that of the primary cells. The cells displayed intense toluidine blue metachromasia. The cells expressed collagen typeⅡ, but only a few elliptic gaint cells expressed CK8. Conclusion The human cervical nucleus pulposus cells were isolated and cultured in monolayer successfully. A few cells of the nucleus pulposus still maintain notochord cells phenotype in adult specimens.
     Part two --- Comparison of biological characteristics of nucleus pulposus cells in intervertebral discs with different grade of Pfirrmann grading system
     Objective: To compare the biological characteristics of nucleus pulposus cells in intervertebral discs with different grade of Pfirrmann grading system. Method :Human nucleus pulposus cells were isolated by collagenase digestion method and cultured.they were grouped based on the Pfirrmann grading system. Group A represents grade II. Group B represents grade III. Group C represents grade IV. Cell vitality assay were examined with Trypan blue staining. Morphologic changes of the cells were observed by an inverted microscope. Cell ultra-structure morphological changes were examined using transmission electron microscopy. Cell growth curve was determined by cell counting . Proteoglycans expressions were examined by Alican blue chromatometry. These indexes were compared among 3 groups above。Results: Group A has the highest cell density and its cell vitality is 91.6±4.3%. Cell vitality of Group B is 83.5±6.7%. Group C has the lowest cell density and its cell vitality is 74.8±5.9%. There were statistical significances ( P < 0.05). The cells from group A were short spindle or polygonal shaped. They had clear outlines and rich cytoplasm with a lot of rough endoplasmic reticulum and mitochondria. The cells from group C had long processes and vague outlines. Much vacuoles located in their cytoplasm. Additionally, the entosis phenomenon had been observed. Under the same cellular density and culture conditions , the growth rate of passage 2 cells from the three groups were statistically significant respectively. The content of glycosaminoglycan of group A, B and C were 408.23±29.25mg/L、273.05±52.44mg/L、91.73±38.06 mg/L, respectively. There were significant differences among these groups (P﹤0.05). Conclusion:Pfirrmann classification of disc degeneration can be very good reaction in degenerative degree of nucleus pulposus cells. It is a simple and effective disc degeneration grading system.
引文
[1] Twomey LT, Taylor JR: Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop 1987, 11(24):97-104.
    [2] Roberts S, Urban JPG, Menage J: Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989, 14:166-174.
    [3] Buttermann GR,Glazer PA,Hu SS,et al. Revision of failed lumbar fusions. A comparison of anterior autograft and allograft[J]. Spine,1997,22(23):2748- 2755.
    [4]孙鹏,王拥军,施杞.大鼠不同部位软骨细胞的形态及表型特征比较研究[J].中国矫形外科杂志,2004,12(9):681.
    [5] Marchand F, Ahmed AM,et al: Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990, 15(21):402-410.
    [6] Jing Yu, Peter C, Roberts S, et al: Elastic fibre organization in the intervertebral discs of the bovine tail. J Anatomy 2002,201(6):465-475.
    [7] Freemont AJ ,Le Maitre CL, Hoyland JA, et al : Degeneration of intervertebral discs : current understanding of cellular and molecular events, and implications for novel therapies. Expert Review Mol Med 2001 3(20) : 1-10.
    [8] Inoue H: Three-dimensional architecture of lumbar intervertebral discs. Spine 1981, 6(8):139-146.
    [9] Hollander, Heathfield, Webber C, et al. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 1994 93(15):1722–1732.
    [10] Maroudas A, Nachemson A, Stockwell R, Urban J: Some factors involved in the nutrition of the intervertebral disc. J Anat 1975, 120(8):113-130.
    [11] Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA: Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 2002, 201(5):159-171.
    [12] Roberts S, Urban JPG, Menaga J, et al: Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989, 14(3):166-174.
    [13] Eisenstein SM, Menage J, Evans EH, et al:Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine 1995, 20(24):2645-2651.
    [14] Eyre DR, Muir H: Quantitative analysis of types I and II collagens in the human intervertebral disc at various ages. Biochimica et Biophysica Acta 1977, 492(1):29-42.
    [15] Urban JP, Maroudas A, Bayliss MT, et al: Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 1979, 16(5):447-464.
    [16] Menage J, Duance V, Wotton S, et al: 1991 Volvo Award in Basic Sciences: Collagen Types Around the Cells of the Intervertebral Disc and Cartilage End Plate: An Immunolocalization Study. Spine 1991, 16(9):1030-1038.
    [17] Melrose J, Ghosh P, Taylor TK: A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 2001, 198 (1):3-15.
    [18] Eyre DR, Wu JJ, Fernandes RJ, et al: Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network.Biochem Soc Trans 2001, 30(8):893-899.
    [19] Mort JS, Alini M, Roughley PJ, et al: Aggrecans degradation in human intervertebral discs and articular cartilage.Biochem J 1997, 326(3):235-241.
    [20] Caterson B, Roberts S, Menage J, et al: Matrix Metalloproteinases And Aggrecanase: Their Role in Disorders of the Human Intervertebral Disc. Spine 2000, 25(23):3005-3013.
    [21] Weilor C, Nerlich AG, Zipparer J, et al: 2002 SSE Award Competition in Basic Science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption.Eur Spine J 2002, 11(4): 308-320.
    [22] Donohue PJ, Jahnke MR, Blaha JD, et al: Characterization of link protein(s) from human intervertebral-disc tissues. Biochem J 1988, 251(8):739-747.
    [23] Cheung KM, Karppinen J, Chan D, et al: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 2009, 34(8):934-940.
    [24] Walker BF: The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord 2000, 13(2):205-217.
    [25] Nikolaos M, Gray A: The economic burden of back pain in the UK.Pain 2000, 84(1):95-103.
    [26] Hastreiter D, Ozuna RM, Spector M: Regional variations incertain cellular characteristics in human lumbar intervertebral discs, including the presence of alpha-smooth muscle actin. J Orthop Res 2001, 19:597-604.
    [27] Eisenstein SM, Menage J, Evans EH, et al:Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine1995, 20(23):2645-2651.
    [28] Johnson W, Eisenstein S, Roberts S: Cell clusters formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 2001, 42(2):197-207.
    [29] Buckwalter J:Aging and degeneration of the human intervertebral discs. Spine 1995,20(11):1307-1314.
    [30] Trout J, Buckwalter J, Moore K: Ultrastructures of the human intervertebral discs: II. Cells of the nucleus pulposus. Anat Rec 1982, 204(3):307-314.
    [31] Gruber H, Johnson T, Leslie K, et al.Autologous intervertebral disc cells implantation:a model using Psammomys obesus,the sand rat.Spine 2002;27(14):1626–1633.
    [32] Eisenstein S, Lyons G, Sweet M, et al: Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 1981, 673 (4): 443 -453.
    [33] Lee Y, Kong M, Song K, et al : The relations between SOX 9, TGF -1 and proteoglycan in human intervertebral disc cells. J Korean Neurosurg Soc 2008;43(2) : 149-154,
    [34] Antoniou J, Steffen T, Nelson F, et al: The human lumbar intervertebral discs: evidences for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996;98(8):996-1003.
    [35] Holander A, Heathfield T, Liu J, et al: Enhanced denaturation of the alpha II chains of type II collagen in normal adult human intervertebral discs compared with femoral articular cartilage. J Orthop Res 1996;14(1):61-66.
    [36]王昆,谢林.颈椎间盘退变机理和预防的研究进展[J].中医正骨,2007,3(19):67.
    [37] Duance VC, Crean JK, Sims TJ , et al:Change in collagen cross linking in degenerative discs disease and scoliosis. Spine 1998; 23(24): 2545-2551.
    [38] Urban JP.The role of the physicochemical environment in determining disc cell behaviour. Biochemical Society Transactions 2002;30(7): 858-864.
    [39] Richardson J, Schultz J, Chung T, et al. A familial predisposition toward lumbar disc injury. Spine 1997; 22(13):1487-1492
    [40] Haro H, Crawford H, Fingleton B, et al. Matrix metalloproteinase-3- dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. Journal of clinical investigation, 2000; 105(2): 133-141.
    [41] Paul R, Cheng H, Haydon R, et al. Potential use of Sox-9 gene therapy for intervertebral degenerative disc disease. Spine 2003;28(8): 755-763.
    [42] Wrocklage C,Wassmann H, Paulus W, et al. COL9A2 allelotypes in intervertebral disc disease.Biochemical and biophysical Research Communications, 2000; 279(2):398-400
    [43] Roughley P, Martens D, Rantakoko J, et al. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. European Cells and Materials, 2006; 18(11):1-7.
    [44] Rodrigue E, Roland S, Plas A, et al. The glycosaminoglycan attachment region of human aggrecan.The journal of biological chemistry, 2006; 281(27): 18444-18450
    [45] Videman T, Gibbons L, Battie M, et al. The relative role of intragenic polymorphisms of the vitamin-D receptor gene in lumbar spine degeneration and bone density. Spine, 2001, 26(3): 1-6
    [46] Cheung K, Chan D, Karppinen J, et al:Association of the TaqI allele invitamin-D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine 2006; 31(10): 1143-1148.
    [47] Jones G, White C, Sambrook P, et al. Allelic variations in the vitamin-D receptors, lifestyle factor and lumbar spinal degenerative disease. Annals of the Rheumatic Disease, 1998; 57(2): 94-99
    [48] Chiba K, Andersson GB, Masuda K, et al . A new culture system to study the metabolis m of the intervertebral disc in vitr o [J]. Spine,1998, 17(16): 1821-1828
    [49] Nerlich A, Schlicher E,Boots N, et al.Immunohistologic marker for age-related change of human lumbar intervertebral disc. Spine 1997; 22(23) 2781-2795
    [50] Wendling-Mansuy S, Boiron O, Maqnier C, et al. Nutrient distribution and metabolism in the intervertebral disc in the unloaded state: a parametric study [J]. Journal of Biomechanics, 2009; 42(2): 100-108
    [51]曹国永,周跃,滕海军等.水通道蛋白在正常大鼠椎间盘组织中的表达与分布.中国矫形外科,2005;13(13):996-999
    [52] S Roberts, B Caterson, J Menage, et al. Matrix metalloproteinases and aggrecanase: their roles in disorders of the human intervertebral discs [J]. Spine, 2000; 25(23): 3005-3013
    [53] Shinmei M, Kikuch T,Yamagish M , et al. The roles of IL-1 on proteoglycan metabolism of rabbit annulus fibrosus cells cultured in vitro. Spine, 1988; 13(11):1284-1290
    [54] M,Battie D Haynor, L Fisher, et al. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins[J]. Journal of Bone Joint Surgery, 1995; 77(11): 1662-1670
    [55] Cinotti G, Romeo S, Rocca C, et al. Degeneration changes of porcineintervertebral discs induced by vertebral endplate injuries. Spine, 2005; 30 (2): 174-180
    [56]陈立,詹红生,应航等。异常应力环境下兔颈椎软骨终板蛋白聚糖变化的实验研究。中国矫形外科杂志,2003;11(2):110-112
    [57] T Handa, H Ishihara, H Ohshima, et al. Effect of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc[J]. Spine 1997; 22(10):1085-1091
    [58] Chin J, Lotz J Intervertebral disc cells death is dependent on the magnitude and duration of spinal loading. Spine, 2000; 25(12): 1477-1483
    [59] Yu J, Fairbank J, Roberts G, et al. The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 2005.30(15), 1815–1820.
    [60] A Walsh, J Lotz Biological response of the intervertebral discs to dynamic loading. Journal of Biomechanics 2004 37(3):329-337
    [61] Nemoto O, Yamagishi M, Yamada H, et al. Matrix metalloproteinase-3 production by human degenerated intervertebral discs. Journal of Spinal Disorders 1997;10(6):493-498
    [62] Kanemoto M, Komiya Y, Hukuda S, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in human intervertebral discs. Spine 1996; 21(1):1-8
    [63] Haro H, Crawford H, Fingleton B, et al. Matrix metalloproteinase-3- dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. Journal of clinical investigation 2000;105(2): 133-141
    [64] J Crean,S Roberts, D Jaffray, et al. Matrix Metalloproteinases in the Human Intervertebral Discs: Role in Disc Degeneration and Scoliosis.Spine 1997; 22(24): 2877-2884
    [65] Bibby S, Jones D, Ripley R, et al. Metabolism of the intervertebral discs: effect of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 2005; 30(5): 487-496
    [66] Le Msitre C, Freemont A,Hoyland J. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther, 2005; 7(4): 732-745
    [67] J Burke, R Watson, D Conhyea, et al. Human nucleus pulposus can respond to a pro-inflammatory stimulus. Spine 2003;28(24): 2685-2693
    [68] Murakami S, Lefebvre V, Crombrugghe B, et al. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-α. The Journal of Biological Chemistry, 2000; 275(23):3687-3692
    [69] Walsh A, Bradford D, et al. In vivo growth factor treatment of degenerated intervertebral disc [J]. Spine, 2004; 29(2):156-163
    [70]李斌,张佐伦,姜礼庆等.成人颈椎间盘中转化生长因子β及其受体的测定及意义.中国脊柱脊髓杂志, 2004; 14(5): 345-348
    [71]戎利民.成人退变颈椎间盘骨形态发生蛋白的表达及意义。中国脊柱脊髓杂志。2000;10(6):339-340
    [72] Furusawa N, MiyoshiN, Baba H, et al. Herniation of cervical intervertebral discs : Immunohistochemical examination and measurement of nitric oxide production. Spine 2001;26(10):1110-1116
    [73] Thompson JP,Pearce RH, Schechter MT, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc, 1990; 15(5): 411-415.
    [74] JI Sive, P Baird, M Jeziorsk,et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs .Mol Path2002;55(2):91-97.
    [75] Pfirrmann, Alexander M, Marco Z, et al.Magnetic resonance classification of lumbar intervertebral disc degeneration spine 2001,26(17), 1873–1878
    [76] Brant-Zawadzki MN, Jensen MC, Obuchowski N, et al. Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities:a comparison of two nomenclatures. Spine 1995;20(10):1257– 1263.
    [77] Modic M, Steinberg P, Ross J, et al. Degenerative disk disease : assessment of changes in vertebral body marrow with MR imaging. Radiology 1988;166(2):193–199.
    [78] Schiebler ML, Camerino VJ, Fallon, MD, et al. In vivo and ex vivo magneticresonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine 1991;16(5):635–640.
    [79] Tertti M, Paajanen H, Laato M, et al. Disc degeneration in magnetic resonance imaging: a comparative biochemical, histologic, and radiologic study in cadaver spines. Spine, 1991;16(5):629–634.。
    [80] Modic M, Masaryk T, Ross J, et al. Imaging of degenerative disk disease . Radiology 1988;168(2):177–186
    [81] Peiarce RH, Thompson JP, Bebault GM, et al. Magnetic resonance imaging reflects the chemical changes of aging degeneration in the human intervertebral disk. J Rheumatol Suppl 1991;27:42–3.
    [82] Thompson JP, Pearce RH, Ho B. Correlation of gross morphology and chemical composition with magnetic resonance images of human lumbar intervertebral discs. Trans Orthop Res Soc 1988;13(2):276-278.
    [83] Herbert C, Lindberg K, Jayson M, et al. Proceedings: intervertebral disccollagen in degenerative disc disease [J].Ann Rheum Dis, 1975, 34(5) : 467- 471.
    [84] Zhao CQ, Wang LM, Jiang LS, et al. The cell biology of intervertebral disc aging and degeneration[J]. Ageing Res Rev,2007, 6(3):247-261
    [85] Calderon L, Collin E, Velasco BD, et al. Type II collagen-hyaluronan hydrogel– a step towards a scaffold for intervertebral disc tissue engineering. European Cells and Materials, 2010, 20(1):134-148
    [86] Gilson A, Dreger M, Urban J. Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers [J]. Arthritis Res Ther, 2010, 12(1): 2-4
    [87] Tow B, Hsu W, Wang J. Disc regeneration: a glimpse of the future [J]. Clin Neurosurg, 2007, 54(1):122-128
    [88] Sakai D, Mochida J,YamamotoY, et al. Immortalization of human nucleus pulposus cells by a recombinant SV 40 adenovirus vector: establishment of a novel cell line for the study of human nucleus pulposus cells [J]. Spine, 2004, 29(13) :1515–1523
    [89] Horner H, Urban J, 2000 Volvo Award in basic science : effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc [J]. Spine, 2001, 26(23): 2543–2549
    [90] Gruber H, Hanley J. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation [J]. BMC Musculoskeletal Disord, 2000, 1 (1) : 1-3.
    [91] Benneker L, Heini P, Alini M, et al. Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine, 2005; 30(2): 167-173
    [92] Horner H, Bielby R, Roberts S , et al. Cells from different regions of the intervertebral disc effect of culture system on matrix expression and cell phenotype[J].Spine, 2002, 27(10):1018-1028.
    [93] Can J, Ducheyne P, Vresilovic E. Intervertebral disc tissue engineering II : cultures of nucleus pulposus cell[J]. Clin Orthop, 2003, 4(11) : 315– 324.
    [94] Hunter C, Matyas J, Duncan N, The notochordal cells in the nucleus pulposus: a review in the context of tissue engineering[J]. Tissue Eng, 2003, 9(5):667–677.
    [95] Kim J, Deasy BM, Seo HY, et al.. Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro[J]. Spine, 2009,34(23):2486–2493
    [96] Gotz W, Kasper M, Fischer G, et al. Intermediate filament typing of the human embryonic and fetal notochord[J]. Cell Tissue Res, 1995, 280(3):455–462
    [97] Ludescher B,Effelsberg J,Martirosian P,et al. T2- and diffusionmaps reveal diurnal changes of intervertebral disc composition:an in vivo MRI study at 1.5 Tesla [J]. J Magn Reson Imaging,2008,28(1):252-257.
    [98] Kanemoto M, Hukuda S, Komiya Y, et al.Immunohistochemical study of matrix metalloproteinase - 3 and tissue inhibitor of metalloproteinase- 1 in human intervertebral discs [ J ] Spine, 1996, 21(1): 1– 8.
    [99] Kang J, Georgescu H, Mctntyre L, et al.Herniated lumbar intervertcbral disc spontaneously produce matrix metallop roteinases , nitric oxide, interleukin - 6, and prostaglandin E2 [ J ] Spine, 1996, 21(2): 271– 277.
    [100] Kawakami M, Tamaki T, Hashizume H, et al.The role of phospholipase A2 and nitric oxide in pain– related behavior produced by an allograft of inter - vertebral disc material to the sciatic nerve of the rat [ J ].Sp ine, 1997, 22(9): 1074– 1079.
    [101] Gruber H, Hanley E. Ultrastructure of the human intervertebral discduring aging and degeneration: comparison of surgical and control specimens. Spine 2002;27(6):798–805.
    [102] Nerlich A, Schleicher E, Boos N. 1997 Volvo award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 1997;22(23):2781–2795.
    [103] Gruber H, Hanley E: Analysis of aging and degeneration of the human intervertebral discs - Comparison of surgical specimens with normal controls. Spine 1998, 23(6):751-757.
    [104] Gruber H, Hanley E. Recent advances in disc cell biology. Spine 2003;28(2):186–93.
    [105] Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans, 2007, 35(Pt 4): 652-655.
    [106] Gan J, Ducheyne P,Vresilovic E, et al. Intervertebral disc tissue engineeringⅠ: cultures of nucleus pulposus cells. Clin Orthop, 2003,11(4):305-314.
    [107] John A, Thomas S, Fred N, et al. The Human Lumbar Intervertebral and Denaturation of the Extracellular Matrix with Growth, Maturation, Ageing , and Degeneration. J. Clin. Invest. 1996,98(4):996~1003
    [108]胡有谷,吕振华,陈晓亮等.腰椎间盘的细胞、胶原与弹性蛋白.中华骨科杂志. 1997;17(12):8~10
    [109]印金玉,胡有谷,夏精武等.腰椎间盘弹性蛋白超微结构观察.中华骨科杂志.1998;18(3):157~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700