高速电主轴扭矩加载试验台的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速数控机床(CNC)是装备制造业的重点发展方向之一,是装备制造业的战略性产业。数控机床关键功能部件可靠性直接影响着整机可靠性水平,电主轴作为数控机床重要关键功能部件之一,研究其可靠性对提高数控机床整机可靠性提升具有重要意义。
     关键功能部件是数控机床的重要故障源,由于功能部件比整机的体积小,且价格远远低于整机,可以采用实验室试验的方法,通过模拟实际加工工况,诱发或者加速促使功能部件发生故障,并测量其相关性能指标,找出发生故障的因素,获得故障数据,建立故障模型,对其可靠性指标进行评估,并对故障数据进行分析,从而提高关键功能部件的可靠性水平提高依据。实现了通过开发和研究功能部件的可靠性试验台来提高数控机床整机的可靠性的研究途径。
     高速电主轴可靠性试验与测试平台用于测试数控机床及高速电主轴轴向窜动、径向跳动以及主轴温升等因素对电主轴工作可靠性的影响;评价工作前后电主轴的工作稳定性、可靠性和精度保持性等。根据申请课题的研究工作内容和主要目标,需研制通用型电主轴综合性能试验系统,并结合理论计算对高速电主轴的工作稳定性和可靠性进行综合测试与评估。
     本论文将主要介绍高速电主轴的加载方案设计,包括非接触式加载和接触式加载方案,重点讨论对高速电主轴试验台的扭矩加载实验与数据分析。文中所述的电力测功加载系统的高速电主轴可靠性试验台能够完成功率22kW、转速为18000r/min以下的电主轴可靠性试验,较普通测试电主轴性能的试验台的功率、转速均大大提高;并完全能够实现高速电主轴的性能指标测试,如,电主轴温升控制,主轴的径向跳动和轴向窜动等试验;采用电力测功加载系统及压电陶瓷加载系统模拟主轴受力状况(包括径向力、轴向力与扭矩),实现电主轴的动态加载实验与测试;能够检测试验过程中的各种故障,记录试验过程中试验信息,并可进行记录和查询,通过组态软件和板卡及工控机配合的控制系统,对采集的参数数据进行可靠性分析,为提高电主轴的可靠性提供了定量数值评估平台。
     预计试验台调试完成后,经过试验检测,可达到高速电主轴功能达标,运行稳定,在扭矩加载实验中性能良好的效果,并将获得一些试验数据。高速电主轴可靠性试验台的研制将对数控机床关键功能部件可靠性深入研究有着重要的意义。
High speed CNC machine tools is one of the developing direction and technologyfoundation of equipment manufacturing industry, and it is also a strategy industry forequipment manufacturing industry. The reliability of the key functional parts on CNCmachine tools effects on the reliability of the whole machine. As an important keyfunctional part, electric spindle’s reliability research has significant meaning forincreasing MTBF level for the whole CNC machine tools.
     Key functional parts are CNC machine tools important sources of failure.Because its volume is little than a whole machine’s, and expense is less than a wholemachine, we can test it in a laboratory environment. We simulate real machiningworking conditions, induce or increase promoting component failure in laboratory,and measure its performance, identify the factors of failure, make statistics of failuredata, establish failure model, thereby the reliability of key functional parts has beenimproved. We achieved the way to improve the reliability of the CNC machine toolsthrough the development and study the reliability of the key functional parts.
     High-speed electric spindle test and its test-bed are used to test axial runout,radial runout and spindle temperature rise of the electric spindles for CNC machinetools and machining centers and other factors impact on the reliability of electricspindle machining, and evaluate the electric spindle stability, reliability and accuracyto maintain before and after the machine tools working. According to the applyingsubject content and the main objective, we need to develop the comprehensiveperformance test system for general electric spindles, comprehensive test and evaluateon the stability and reliability of high-speed electric spindle combining with thetheoretical calculation.
     The high-speed electric spindle’s reliability test-bed of electric dynamometerloading system described in this paper, is able to complete electric spindle reliabilitytest above18000r/min, greatly improve the speed than the ordinary electric spindleperformance test-bed. And it is able to achieve high-speed electric spindleperformance test absolutely, such as temperature rise control of the electric spindle,spindle radial runout and axial movement and other tests. It simulates spindle forcestatus (including radial force, axial force and torque) using electric dynamometerloading system and piezoelectric ceramic loading system to achieve electric spindledynamic loading experiments and tests. It is able to detect a variety of failure duringthe test, records information during the tests, and the data can be recorded and query,it collects parameter data for reliability analysis through configuration softwaretogether with boards and industrial computer control system, in order to provide aquantitative numerical evaluation platform to improve the reliability of the electricspindle.
     After the test-bed debugging and a period of test and detection, the test results show that the high-speed electric spindle’s functions meet the standards, and it worksstable, it perform good in torque loading experiments. We got some test data, and alsofound some failures in the electric spindle. We recorded and analyzed the failures.The deep study on high-speed electric spindle reliability test-bed for the keyfunctional parts reliability of CNC machine tools has great significance.
引文
[1]呼烨、杨兆军.基于电力测功和压电陶瓷加载系统的高速电主轴可靠性试验台设计.科技导报.第34-38
    [2]康惠民.高速电主轴静动态性能分析与实验检测技术.重庆大学.2010年4月
    [3]郭旭东.数控机床高速电主轴结构分析.科技创新导报2010年12月
    [4]杨兆军.国产加工中心寿命分布及可靠性研究评估.吉林大学
    [5]蒋家强.油气润滑在轧机轴承上的应用.液压与气动2009年12月
    [6]黄红兵、汪永明.油气润滑技术在高速电主轴轴承上的应用.机械制造与自动化2009年02月
    [7]王德岩.润滑技术研究进展.合成润滑材料-2007-03-20
    [8]王爱玲.现代数控机床结构与设计.兵器工业出版社.1999年9月.1-170
    [9]王超、王金.机械可靠性工程.冶金工业出版社.1998年6月:17-246
    [10]莫布雷著、石磊,谷宁昌译.以可靠性为中心的维修.北京:机械工业出版社.2006年2月:1-6
    [11]贺国芳.可靠性数据的收集与分析.北京:国防工业出版社,1997年5月:40
    [12]夏田,数控加工中心设计,北京,化学工业出版社,2006年2月
    [13]王志明,数控技术,上海:上海大学出版社,2009年3月
    [14]李庆余、张佳.机械制造装备设计.北京:机械工业出版社,2007年8月
    [15]大连组合及研究所.组合机床设计.北京:机械工业出版社,1975年
    [16]于骏一、邹青.机械制造技术基础.北京:机械工业出版社,2004.
    [17]徐灏.机械设计手册.北京:机械工业出版社,1991.
    [18]《机床设计手册》编写组.机床设计手册.北京:机械工业出版社,1996.
    [19]熊军数控机床原理与结构人民邮电出版社,2007.
    [20]张伯霖.高速切削技术及其应用[M].机械工业出版社,2002.64一65
    [21]艾兴等.高速切削加工技术[M].国防工业出版社,2003.33一34
    [22]张坷,孙红,富大伟,吴玉厚.高速电主轴的原理与应用[J].沈阳建筑工程学院学报,1999,(1):68一72
    [23]蒋兴奇,马家驹,赵联春.高速精密角接触球轴承热分析[J].轴承,2000(8):1‐4.
    [24]王保民,胡赤兵,孙建仁等.高速电主轴热态特性的ANSYS仿真分析[J].兰州理学报,2009,35(1):28‐31.
    [25]蒋红琰,黄中浩,程峰等.高速电主轴系统的在线动平衡及其仿真研究[J].制造技床,2009(4):47‐51.
    [26]陈观慈,王黎钦,古乐.高速球轴承的生热分析[J].航空动力学报,2007,22(1):1
    [27]熊万里,吕浪,阳雪兵等.高频变流诱发的电主轴高次谐波振动及其抑制方法[J].工程学报,2008,21(6):600‐607.
    [28]孟杰,陈小安,合烨.高速电主轴电动机—主轴系统的机电耦合动力学建模[J].机械工程学报,2007,43(12):160‐165.
    [29]金明光.高速电主轴设计与动静态特性分析[D].长春:吉林大学,2009.
    [30]栾景美.超高速加工机床用电主轴及其矢量控制方法研究[D].长沙:湖南大学,2003.
    [31]陈燕林.高频电主轴系统电机参数设计及其优化方法研究[D].西安:西安建筑科技大学,2004.
    [32]张燕宾.变频器应用教程[M].北京:机械工业出版社,2007.
    [33]赵春江,王建梅,黄庆学,等.高速滚珠轴承动态特性求解的沟道控制理论修正.工业机械学报,2009,40(5):199‐202.
    [34]解文志.高速电主轴动静态特性的有限元分析[D].哈尔滨:哈尔滨工业大学,20
    [35]杨光,程胜文.高速转子动力学研究[J].武汉理工大学学报(信息与管理工程版),24(2):119‐121.
    [36]张庆春,邢涛,李国栋等.电磁轴承磨床电主轴控制器的研究[J].机械工报,2006,42(11):168‐172.
    [37]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程,16(10):864‐868.
    [38]吴玉厚.数控机床电主轴单元技术[M].机械工业出版,2006.
    [39]徐宝信,张安琪,谭祯.国内外超高速主轴轴承技术发展研究[J].机械设计与2005,5:91‐93.
    [40]李东伟,杨光,刘秀娟.高速加工机床主轴支承系统的研究[J].机械研究与应用19(6):12‐13.
    [41]肖曙红,张伯霖,陈焰基等.高速电主轴关键技术的研究[J].组合机床与自动化加工技术,1999,12:5‐10.
    [42]吕浪.超高速磨削电主轴系统机电耦合参数优化及动态特性研究[D].长沙:湖南2006.
    [43]蔡海翔.基于变频器性能匹配的高速异步型电主轴设计方法研究[D].长沙:湖南2006.
    [44]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,20(5):522‐525.
    [45]朱金虎,翁世修,蒋书运.高频电主轴临界转速计算及其影响参数分析[J].机械设计与研究,2005,21:28‐30.
    [46]李松生,张朝煌,李中行等.轴承套圈内表面磨削用高速电主轴的加载试验[J].轴承1996,4:35‐38.
    [47]李茂森.动力试验与测功机技术[J].电机与控制应用,2006,9:43‐45.
    [48]袁先达.小功率测功机国内外现状及发展趋势[J].电动工具,1997,3:9‐13.
    [49]洪荣华.高速永磁同步电主轴的设计及热态特性研究[D].哈尔滨:哈尔滨工业大学2007.121
    [50]林立,黄声华.基于矢量控制的高性能异步电机速度控制器的设计[J].电子技术2006,2:102‐105.
    [51]张锦舟.新型异步测功机测试系统[J].电动工具,2004,1:21‐29.
    [52]何惠平.全数字测功机控制系统[J].电气传动自动化,2001.
    [53]张珂;徐湘辉;王利杰等.高速电主轴直接转矩控制系统设计[J].沈阳学学报(自然科学版),2006,23(4):691‐695.
    [54]李擎,杨立永,李正熙等.异步电动机定子磁链与电磁转矩的逆系统解耦控制方法.中国电机工程学报,2006,26(6):146‐150.
    [55]靳其兵,袁琴.双输入双输出过程解耦内模控制[J].控制工程,2009,16(1):5
    [56]邹旭东,朱鹏程,康勇等.基于电压解耦原理的感应电机无速度传感器矢量控制[电机工程学报,2005,25(14):98‐102.
    [57]陈硕,迁峰男,山田英二.感应电机无速度传感器矢量控制系统的定子电阻在线辨识[J]中国电机工程学报,2003,23(2):88‐92.
    [58]B.Bossmanns,J.F.Tu,A power flow model for high speed motorized spindgeneration characterization,in:International Mech‐anical Engineering CongreExposition,Anaheim,CA,USA,1998.
    [59]Chi‐Wei Lin,Jay F.Tu,Joe Kamman.An integrated thermo‐mechanical‐dynamic mcharacterize motorized machine tool spindles during very high speed rotaInternational Journal of Machine Tools&Manufacture43(2003):1035‐1050.
    [60]Jenq‐Shyong Chen,Wei‐Yao Hsu.Characterizations and models for the thermalgrow motorized high speed spindle[J].International Journal of MachineTools&Manufac(2003)1163‐1170.
    [61]Jenq‐Shyong Chen,Kwan‐WenChen,Bearing load analysis and control ofamotoriz speed spindle.International Journal of Machine Tools&Manufacture45(2005)1487
    [62]Bernd Bossmanns,Jay F.Tu.A thermal model for high speed motorized spinInternational Journal of Machine Tools&Manufacture39(1999):1345‐1366.
    [63]J.L.Stein,J.F.Tu,A state‐space model for monitoring thermally induced preanti‐friction spindle bearings of high‐speed machine tools,Transactions of theASM(1994):372‐386.
    [64]K.Mizuta et al.,Heat transfer characteristics between inner and outer rings of anangu bearing,Heat Transfer‐Asian Research32(2003):42‐57.
    [65]B.Bossmanns,J.F.Tu,A thermal model for high speed motorized spindles,InternJournal ofMachine Tools andManufacture39(1999):1345‐1366.
    [66]Wasawat Nakkiew,Chi‐Wei Lin,Jay F Tu.A new method to quantify radial errmotorized end‐milling cutter/spindle system at very high speed rotations[J].InternJournal of Machine Tools&Manufacture,2006,46:877‐889.
    [67]G.Tadmor.Control of a combined GTO/IGBT drive system for low torque ripplein a largpermanent magnet synchronous motor[J].IEEE Transactions on ControlSystem Technology,2004,12(1):21‐35.
    [68]Yong Li,Ji Bin Zou,Yong Ping Lu.Optimum Design of Magnet Shape inPermanent‐magnesynchronous motors[J].IEEE Transactions on Magnetics,2003,39(6):3523‐3526.
    [69]J.R.Brauer,I.D.Mayergoyz.Finite‐element computation of nonlinear magneticdiffusion and its effects when coupled to electrical,mechanical,and hydraulicsystems[J].IEEE Transactions on Magnetics,2004,40(2):537‐540.
    [70]Frederickson,Paul,Grimes,David.Optimizing motor technology for spindleapplication[J].Motion System Design,2004,46(11):24‐32.
    [71]J.Jdrzejewski,Z.Kowal,W.Kwany,et al.High‐speed precise machine tools spindimproving[J].Materials Processing Technology,2005,162‐163:615~621.
    [72]Wasawat Nakkiew,Chi‐Wei Lin,Jay F Tu.A new method to quantify radial errmotorized end‐milling cutter/spindle system at very high speed rotations[J].InternJournal of Machine Tools&Manufacture,2006,46:877‐889.
    [73]Burton R A,Staph H E.Thermally activated seizure of angular contact bearing[J]Trans,1967,10:408‐417.
    [74]LU Lang, XIONG Wanli, GAO Hang.Mechanical‐electric coupling dyncharacteristics of an ultra‐high speed grinding motorized spindle system[J].Chineseof Mechanical Engineering(English Edition),2008,21(5):34‐40.
    [75]Eksn I,Guzelkaya M,TOKAT S.Self‐tuning mechanism for sliding surface slopeadju in fuzzy sliding mode controllers[J].Proc Instn Mech Engrs,Part I:J System andEngineering,2002,216:393‐406.
    [76]Lixin Tang,Rahman M.F.A novel proportional‐integral stator resistanceestimator for torque controlled interior permanent magnet synchronous machinedrive[J].I1182003,(1):382‐388.
    [77]G.D.Hagiu,M.D.Gafitanu.Dynamic characteristics of high speed angular contactbalbearings[J].Wear,1997,211:22‐29.
    [78]L.Wang,R.W.Snidle,L.Gu.Rolling contact silicon nitride bearing technology:areview of recent research[J].Wear,2000,246:159‐173.
    [79]Igor Zverv,Young‐Shik Pyoun,Keon‐Beom Lee,et al.An elastic deformation modelof high speed spindles built into ball bearings[J].Materials ProcessingTechnology,2005,170570‐578.
    [80]Cheng‐Ying Lo,Cheng‐Chi Wang,Yu‐Han Lee.Performance analysis of high‐speedspindle aerostatic bearings[J].Tribology International,2005,38:5‐14.
    [81]Cheng‐Hsien Wu,Yu‐Tai Kung.A parametric study on oil/air lubrication of ahigh‐speed spindle[J].Precision Engineering,2005,29:162‐167.
    [82]S.H.Yeo,K.Ramesh,Z.W.Zhong.Ultra‐high‐speed grinding spindle characteristicsupon using oil/air mist lubrication[J].Machine Tools&Manufacture,2002,42:815‐823.
    [83]K.Ramesh,S.H.Yeo,Z.W.Zhong,et al.Ultra‐high‐speed thermal behavior of arolling element upon using oil‐air mist lubrication[J]. ProcessingTechnology,2002,127:191‐198.
    [84]Tsuneo Kume,Toshihiro Sawa,Toshitaka Yoshida,et al.High speed vector controlencoder for a high speed spindle motor[J].Industry Applications Society Annual
    [M]1990,1:390‐394.
    [85]A.Boglietti,P.Ferraris,M.Lazzari,et al.About the design of very high frequencyinmotors for spindle applications[J].Industry Applications Society AnnualMeeting1:25‐32.
    [86]Tang H P,Wang D Y,Zhong J.Investigation into the electromechanical cunstability of a rolling mill[J].Journal of Materials Processing Technology,200294‐298.
    [87]János Füzi.Strong coupling in electromechanical computation[J].Magnetism andM.Materials,2000,215.216:746‐748.
    [88]PHAM T H,WENDLING P F,SALON S J,et al.Transient finite element analysiinduction motor with external circuit connections and electromechanicalcoupling[J]Transactions on Energy Conversion,1999,14(4):1407‐1412.
    [89]H.P.Tang,D.Y.Wang,J.Zhong.Investigation into the electrome chanicalcunstability of a rolling mill[J].Materials Processing Technology,2002,129:294‐298.
    [90]A.Boglietti,P.Ferraris,M.Lazzari,et al.Test procedure for very high speedmotors[J].Industry Applications Society Annual Meeting,1990,1:102‐108.
    [91]Tan H.Pham,Philippe F.Wendling,Sheppard J.Salon,et al.Transient FiniteE.Analysis of an Induction Motor with External Circuit Connections and ElectromecCoupling[J].IEEE Transactions on Energy Conversion,1999,14(4):1407‐1412.
    [92]S.Vafaei,H.Rahnejat,R.Aini.Vibration monitoring of high speed spindles usinganalysis techniques[J].Machine Tools&Manufacture,2002,42:1223‐1234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700