温敏性微凝胶用于可注射三维细胞支架材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文制备了两种温敏性水凝胶细胞支架材料:
     1. P(NIPAM-HEMA)微凝胶细胞支架的制备及表征以往的研究者多采用线性或枝型高分子来合成凝胶支架材料,在本文中我们尝试用高分子微球作为构建支架结构的单元。我们以N-异丙基丙烯酰胺(N-isopropyl-acrylamide/ NIPAM)、甲基丙烯酸-2-羟基乙酯(2-hydroxyethyl methacrylate/HEMA)为单体,N,N’-亚甲基双丙烯酰胺(N,N'-methylene-bis-acrylamide/BIS)为交联剂,制备了温敏性P (NIPAM-HEMA)微凝胶。该微凝胶具有良好的温度敏感性和生物相容性。粒度仪实验表明,该P(NIPAM-HEMA)微凝胶的相转变温度为29℃。然而流变实验表明,该凝胶分散液在温度高于其VPTT实仍保持稳定,说明疏水作用不能单独引发凝胶化。在加入氯化钙,即引入了离子键后,凝胶乳液在37℃下凝胶迅速凝胶化,而且增加CaCl2的浓度,凝胶水溶液的VPTT逐渐降低。SEM实验表明,该凝胶呈互穿的多孔结构,该多孔结构有利于培养物质的传递及细胞代谢物质的排泄。我们以293T细胞为模型,将单细胞分散液与浓缩后的凝胶水溶液在室温下混合,在37℃下加热形成凝胶支架,并置于培养箱中长期培养。MTT实验及荧光倒置显微镜实验表明,293T细胞在该支架材料中能正常生长增殖,但长期培养的293T细胞会变小,这是由于PNIPAM水凝胶的收缩作用导致的。
     2.丙烯酸对PNIPAM微凝胶收缩作用的影响在第一个工作中,P(NIPAM-HEMA)水凝胶仍然存在不足。水凝胶中的293T细胞会变小,这是P(NIPAM--HEMA)水凝胶的收缩作用导致的,有可能会改变293T细胞的生理功能。因此,在第二个工作中,我们尝试在PNIPAM长链中引入丙烯酸基团(Acrylic acid/AAc),丙烯酸基团具有良好的亲水性及良好的生物相容性,通过丙烯酸的亲水作用使水凝胶部分亲水,从而减弱微凝胶的收缩作用。我们仍然以N-异丙基丙烯酰胺、丙烯酸(AAc)为单体,N,N’-亚甲基双(丙烯酰胺)为交联剂,合成系列不同丙烯酸含量的P(NIPAM-AAc)共聚微凝胶。在37℃下原位形成大块凝胶,并研究该系列凝胶的原位收缩现象。实验表明,AAc能有效改变PNIPAM微凝胶的相转变行为,系列P(NIPAM-AAc)大块凝胶在37℃下的收缩现象呈现出一定的规律性。我们选取了其中几个较低AAc含量的P(NIPAM-AAc)共聚微凝胶样品用于制备可注射细胞支架。将HepG2细胞与P(NIPAM-AAc)系列共聚微凝胶混合,在37℃下加热原位形成细胞支架,长期培养以观察细胞的生长情况。经系统观察,我们发现不同AAc含量的凝胶支架的细胞形态、数量明显不同,其中含量为AAc%=1%的P(NIIPAM-AAc)的细胞生长增殖现象最为明显,说明AAc%=1%的P(NIPAM-AAc)共聚微凝胶形成的细胞支架最为适合细胞生长。
In present work,two kinds of thermosensitive hydrogel scaffold materials have been faricated:
     1. Injectable 3D cell scaffold built with thermal microgels In this work we try to develop a new thermal gelling injectable scaffold for 3D cell culture. Instead of using linear, branched, or grafted macromolecules, thermosensitive microgel particles or microspheres are used as building blocks for the construction of the macroscopic hydrogel scaffold. As a proof of concept, thermosensitive poly(N-isopropylacrylamide-co-2-hydroxyethylmethacrylate) (P(NIPAM-HEMA)) microgel particles were synthesized, which present a volume phase transition temperature (VPTT) at about 29 C. Rheological test shows that the concentrated P(NIPAM-HEMA) microgel dispersion is colloidally stable when heated above its VPTT, indicating hydrophobic interaction alone can not induce thermal gelation of the dispersion. In the presence of a low concentration of CaC12, however, with the introduction of additional ionic cross-linking, the microgel dispersion gelates and forms macroscopic hydrogel. Gelation temperature of the microgel dispersion decreases with increasing ionic strength. SEM observation reveals that the resultant bulky gel has an interconnected porous microstructure.293T cells, a human cell line, were encapsulated inside the hydrogel by simple mixing with the microgel dispersion at room temperature and heating to 37℃. MTT assays reveal that the cells are viable and proliferate inside the 3D scaffold.
     2. Syneresis effect of thermal gelable injectable 3D cell caffold shrinkage phenomonen is popular in PNIPAM hydrogels.in this work,we try to fabricate a scaffold which would not shrink or less shrinkage.we propose to introduce acrylic acid group (AAc) into the PNIPAM chains, acrylic acid group is hydrophilic and biocompatible.the hydrophilic property of AAc can weaken the hydrophobic effect of the thermal microgels,thereby leads to the weakening of syneresis effect of the micro-gel. To study shrinkage behavior of the formed bulk gel,a serie of thermal sensitive P (NIPAM-AAc) copolymeric microgels were prepaerd with various content of acrylic acid,the microgels were then heated at 37 C to formed physical network in situ. Rheologic experiments indicate that, the induced AAc group can change the phase transition behavior of P(NIPAM-AAc) microgels. P (NIPAM-AAc) copolymeric microspheres with different AAc content were then used to form injectable 3D cell scaffold with HepG2 cells by mixed together and heated at 37℃. Through systematic observation, we found that morphology and number of the cells in the cell scaffold with different AAc content are different,the cell number in the scaffold with a content AAc%=1% is the most one,indicating that P(NIPAM-AAc) with a AAc content of 1% is most suitable one for cell proliferation.
引文
[1]Langer R,Vacanti J P. Tissue engineering. Science,1993,260:920-926
    [2]Mooney D J.Mikos A G. Growing new organs. Sci Am,1999,280:60-65
    [3]Marler J J, Upton J, Langer R, et al. Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliver Rev,1998,33:165-182
    [4]Niklason L E. Gao J. Abbott W M, et al. Functional arteries grown in vitro. Science,1999,284: 489-493
    [5]Oberpenning F, Meng J, Yoo J J. et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol.,1999,17:149-155
    [6]Pomahac B, Svensjo T, Yao F, et al. Tissue engineering of skin. Crit Rev Oral Biol M,1998,9: 333-344
    [7]Lin V S, Lee M C, O'Neal S, et al. Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng.,1999.5:443-451
    [8]Ma P X,Langer R. Morphology and mechanical function of long-term in vitro engineered cartilage. Journal of Biomedical Materials Research,1999,44:217-221
    [9]Kim B S,Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol.,1998,16:224-230
    [10]Harris L D, Kim B S.Mooney D J. Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research.1998,42:396-402
    [11]Thomson R C, Mikos A G, Beahm E. et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials,1999,20:2007-2018
    [12]Jhon M S,Andrade J D. J. Water and hydrogels. Biomed. Mater. Res.,1973, 7:509-21
    [13]Jen AC, Wake M C,Mikos A G. Review:hydrogels for cell immobilization.Biotech. Bioeng., 1996,50:357-364
    [14]Rault I, Frei V. Herbage D, et al. Evaluation of different chemical methods for crosslinking collagen gel, films and sponges J. Mater. Sci. Mater. Med.,1996,7:215-21
    [15]Chevallay B. Abdul-Malak N,Herbage D. J. Biomed. Mater. Res.,1999,49:448-459
    [16]Pulapura S.Kohn J. Trends in the development of bioresorbable polymers for medical applications J. Biomater. Appl.,1992,6:216-50
    [17]Srivastava S, Gorham S D.Courmey J M. The attachment and growth of an established cell line on collagen, chemically modified collagen, and collagecomposite surfaces.Biomaterials. 1990,11:162-8
    [18]Kaufmann P M, Heimrath S, Kim B S, et al. Highly porous polymer matrices as a three-dimensional culture system for hepatocytes.Cell Transplant.,1997,6:463-8
    [19]Auger F A, Rouabhia M, Goulet F, et al. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels:clinical and fundamental applications. Med. Biol. Engin. Comput.,1998,36:801-12
    [20]Seliktar D, Black R A, Vito R P, et al. Ann. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Biomed. Eng..2000,28:351-62
    [21]Vbytik-Harbin S L, Brightman A 0, Waisner B Z, et al. Small Intestinal Submucosa:A Tissue-Derived Extracellular Matrix That Promotes Tissue-Specific Growth and Differentiation of Cells in Vitro Tissue Eng.,1998,4:157-174
    [22]Yamamoto M, Tabata Y,Ikada Y. J. Bioact. Compat. Polym.,1999,14:474
    [23]Kuijpers A J, Engbers G H M, Feijen J, et al. Characterization of the Network Structure of Carbodiimide Crosslinked Gelatin Gels.Macromolecules,1999,32:3325-3333
    [24]Choi Y S, Hong S R. Lee Y M, et al. Study on gelatin-containing artificial skin:1 Preparation and characteristics of novel gelatin-alginate sponge.Biomaterials.1999,20:409-417
    [25]Vercruysse K. P. Marecak D M, Marecek J F, et al. Synthesis and in vitro Degradation of New Polyvalent Hydrazide Cross-Linked Hydrogels of Hyaluronic Acid.Bioconjugate Chem., 1997,8:686-694
    [26]Pouyani T, Harbison G S.Prestwich G D. Novel Hydrogels of Hyaluronic Acid:Synthesis, Surface Morphology, and Solid-State NMR J. Am. Chem. Soc.,1994,116:7515-22
    [27]lnukai M, Jin Y, Yomota C, et al. Preparation and characterization of hyaluronate-hydroxyethyl acrylate blend hydrogel for controlled release device.Chem. Pharm. Bull.,2000,48:850-854
    [28]Afify A M, Stern M, Guntenhoner M, et al. Purification and characterization of human serum hyaluronidase. Arch. Biochem. Biophys.,1993.305:434-41
    [29]Choi Y S, Hong S R, Lee Y M, et al. Studies on gelatin-containing artificial skin:Ⅱ Preparation and characterization of crosslinked gelatin-hyaluronate sponge J. Biomed. Mater. Res.,1999,48:631-639
    [30]Duranti F, Salti G, Bovani B. et al. Injectable hyaluronic acid gel for soft tissue augmentation A clinical and histological study Dermatol. Surg.,1998,24:1317-25
    [31]Radomsky M, Swain L, Aufdemorte T, et al. J. Bone Mineral Res.,1996,11:M667
    [32]Liu L S. Thompson A Y, Heidaran M A, et al. An osteoconductive collagen hyaluronate matrix for bone regeneration. Biomaterials,1999,20:1097-108
    [33]Perka C, Spitzer R S, Lindenhayn K. et al. Matrix-mixed culture:new methodology for chondrocyte culture and preparation of cartilage transplants J. Biomed. Mater. Res.,2000, 49:305-311
    [34]Ye Q,Zund G, Benedikt P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardio-Thorac. Surg.,2000,17:587-91
    [35]Draget K I, Skjak-Braek G,Smidsrod O. TIBTECH,1990.8:71
    [36]Atala A, Kim W, Paige K T, et al. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J. Urol.,1994,152:641-3
    [37]Klock G, Pfeffermann A. Ryser C, et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials,1997,18:707-13
    [38]Gombotz W R,Wee S F. Protein release from alginate matrices. Adv. Drug Deliv. Rev.,1998, 31:267-285
    [39]Gregory K E, Marsden M E. Anderson-MacKenzie J, et al. Abnormal collagen assembly, though normal phenotype, in alginate bead cultures of chick embryo chondrocytes. Exp. Cell Res.,1999,246:98-107
    [40]Joly A, Desjardins J F, Fremond B, et al. Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads:a step toward a reliable bioartificial liver. Transplantation,1997.63:795-803
    [41]Uludag H, De Vos P.Tresco P A. Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev.,2000,42:29-64
    [42]Lee K Y. Bouhadir K. H.Mooney D J. Degradation Behavior of Covalently Crosslinked Poly(aldehyde guluronate) Hydrogels. Macromolecules,2000,33:97-101
    [43]Al-Shamkhani A,Duncan R. Radioiodination of alginate via covalently-bound rytosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym.,1995.10:4-13
    [44]Smentana K. Cell biology of hydrogels. Biomaterials,1993.14:1046-50
    [45]Sultzbaugh K. J,Speaker T J. A method to attach lectins to the surface of spermine alginate microcapsules based on the avidin biotin interaction. J. Microencapsulation,1996,13: 363-76
    [46]Putnam A J.Mooney D J. Tissue engineering using synthetic extracellular matrices. Nat. Med.. 1996,2:824-6
    [47]Singh D K,Ray A R. Biomedical applications of chitin, chitosan, and their derivatives J. Macromol. Sci.-Rev. Macromol. Chem. Phys.,2000, C40:69-83
    [48]Muzzarelli R A A. Chitin and its derivatives:new trends of applied research.Carbohydr. Polym.,1983,3:53-75
    [49]Kurita K, Kojima T, Nishiyama Y, et al. Synthesis and Some Properties of Non-natural Amino Polvsaccharides:Branched Chitin and Chitosan.Macromolecules,2000,33:4711-4716
    [50]Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials,2000,21:2155-2161
    [51]Mi F L, Kuan C Y, Shyu S S, et al. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-crosslinked chitosan gel and their effects on microspheres preparation and drug release.Carbohydr. Polym.,2000,41:389-396
    [52]Yagi K, Michibayashi N, Kurikawa N, et al. Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment. Biol. Pharm. Bull.,1997,20:1290-4
    [53]Elcin A E, Elcin Y M.Pappas G D. Neural tissue engineering:adrenal chromaffin cell attachment and viability on chitosan scaffolds. Neurol. Res.,1998,20:648-54
    [54]Kidane A, Szabocsik J M.Park K. Accelerated study on lysozyme deposition on poly(HEMA) contact lenses. Biomaterials,1998,19:2051-5
    [55]Lu S X,Anseth K. S. Photopolymerization of multilaminated poly(HEMA) hydrogels for
    controlled release. J. Controlled Release,1999,57:291-300
    [56]Oxley H R, Corkhill P H, Fitton J H, et al. Macroporous hydrogels for biomedical applications:methodology and morphology. Biomaterials,1993,14:1064-72
    [57]Sefton M V, May M H, Lahooti S. et al. Making microencapsulation work:conformal coating, immobilization gels and in vivo performance. J. Controlled Release,2000.65:173-86
    [58]Meyvis T K L, De Smedt S C, Demeester J, et al. Influence of the Degradation Mechanism of Hydrogels on Their Elastic and Swelling Properties during Degradation Macromolecules, 2000,33:4717-4725
    [59]Heskins M.Guillet J E. Solution Properties of Poly(N-isopropylacrylamide) J. Macromol. Sci. Chem. Ed.,1968, A2:1441-1455
    [60]Stile R A, Burghardt W R,Healy K. E. Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules,1999.32:7370-7379
    [61]Brazel C S.Peppas N A. Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels J. Controlled Release, 1996.39:57-64
    [62]Serres A. Baudys M.Kim S W. Temperature and pH-sensitive polymers for human calcitonin delivery. Pharm. Res.,1996,13:196-201
    [63]Kwon O H, Kikuchi A, Yamato M, et al. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. Biomed. Mater. Res., 2000,50:82-9
    [64]Huh K M, Ilashi J, Ooya T, et al. Synthesis and characterization of dextran grafted with poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) Macromol. Chem. Phys.,2000, 201:613-619
    [65]Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chem.,1995,6:150-65
    [66]Sofia S J, Premnath V.Merrill E W. Poly(ethylene oxide) Grafted to Silicon Surfaces:Grafting Density and Protein Adsorption. Macromolecules,1998.31:5059-70
    [67]West J L.Hubbell J A. Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration.Macromolecules,1999,32:241-244
    [68]Andreopoulos F M, Deible C R, Stauffer M T, et al. Photoscissable Hydrogel Synthesis via Rapid Photopolymerization of Novel PEG-Based Polymers in the Absence of Photoinitiators J. Am. Chem. Soc.,1996.118:6235-6240
    [69]Gombotz W R.Pettit D K.. Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem.,995,6:332-51
    [70]Batrakova E V, Meliknubarov N S, Fedoseev N A, et al. A ew class of drug carriers:micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain J. Controlled Release,1992,22:141-157
    [71]Harada A,Kataoka K. Chain length recognition:core-shell supramolecular assembly from
    oppositely charged block copolymers.Science,1999.283:65-7
    [72]Cao Y, Rodriguez A, Vacanti M. et al. Comparative study of the use of poly(glycolic acid), calcium alginate and Pluronic in the engineering of autologous porcine cartilage. J. Biomater. Sci., Polym. Ed.,1998.9:475-487
    [73]Alakhov V Y, Moskaleva E Y, Batrakova E V, et al. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjugate Chem.,1996, 7:209-16
    [74]Bo J. Study on PVA hydrogel crosslinked by epichlorohydrin J. Appl. Polym. Sci..1992.46; 783-786
    [75]Peppas N A.Stauffer S R. Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes:a short review J. Controlled Release.1991,16:305-10
    [76]Yoshii F, Zhanshan Y, Isobe K, et al. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing.Radiat. Phys. Chem.,1999.55:133-138
    [77]Zheng-Qiu G, Jiu-Vlei X.Xiang-Hong Z. The development of artificial articular cartilage-PVA-hydrogel. Biomed. Mater. Eng.,1998.8:75-81
    [78]Kawase M. Miura N, Kurikawa N, et al. Immobilization of tripeptide growth factor glycyl-L-histidyl-L-lysine on poiy(vinylalcohol)-quarternized stilbazole (PVA-SbQ) and its use as a ligand for hepatocyte attachment. Biol. Pharm. Bull.,1999.22:999-1001
    [79]Kobayashi H.lkada Y. Corneal cell adhesion and proliferation on hydrogel sheets bound with cell-adhesive proteins. Curr. Eye Res.,1991.10:899-908
    [80]Cappello J, Crissman J. Dorman M, et al. Genetic engineering of structural protein polymers. Biotechnol. Prog.,1990,6:198-202
    [81]Lee J, Cuddihy M J.Kotov N A. Three-Dimensional Cell Culture Matrices:State of the Art.Tissue Eng., Part B,2008.14:61-86
    [82]Xu F.Burg K J L. Three-dimensional polymeric systems for cancer cell studies. Cytotechnology,2007,54:135
    [83]Cushing M C,Anseth K. S. Hydrogel Cell Cultures.Science,2007.316:1133-1134
    [84]Kotov N A, Liu Y F, Wang S P. et al. Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir,2004,20:7887
    [85]Salem A K., Rose F R A J, Oreffo R O C, et al. Porous Polymer and Cell Composites That Self-Assemble In Situ. Adv. Mater..2003.15:210-213
    [86]Wintermantel E, Mayer J, Blum J, et al. Tissue engineering scaffolds using superstructures. Biomaterials.1996,17:83-91
    [87]Tate M C, Shear D A, Hoffman S W, et al. Biocompatibility of methyicellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials,2001.22:1113-1123
    [88]Kim W S, Vacanti J P, Cima L, et al. Cartilage Engineered in Predetermined Shapes Employing Cell Transplantation on Synthetic Biodegradable Polymers. Plastic and Reconstructive Surgery,1994,94:233-237
    [89]Hou Q P, De Bank P A.Shakesheff K M. lnjectable scaffolds for tissue regeneration J. Mater. Chem.,2004.14:1915-1923
    [90]Hubbell J A. Synthetic biodegradable polymers for tissue engineering and drug delivery. Curr Opin Solid St M,1998,3:246-251
    [91]Hou Q P. De Bank P A,Shakesheff K M. Injectable scaffolds for tissue regeneration. J. Mater. Chem.,2004,14:1915-1923
    [92]Lee K. Y, Alsberg E,Mooney D J. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J Biomed Mater Res,2001.56:228-233
    [93]Hennink W E,van Nostrum C E Novel crosslinking methods to design hydrogels. Adv. Drug Delivery Rev.,2002,54:13-36
    [94]Shin H, Temenoff J S,Mikos A G. In vitro cytotoxicity of unsatd. oligo[poly(ethylene glycol) fumarate] macromers and their crosslinked hydrogels. Biomacromolecules.2003,4: 552-560
    [95]Suggs L J, Shive M S, Garcia C A, et al. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res.,1999,46: 22-32
    [96]Bryant S J, Nuttelman C R.Anseth K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH,3T3 fibroblasts in vitro. J. Biomater. Sci., Polym. Ed..2000,11:439-457
    [97]Mi F L, Tan Y C, Liang H F. et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials,2002.23:181-191
    [98]Elisseeff J, Anseth K, Sims D, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plastic and Reconstructive Surgery,1999,104:1014-1022
    [99]Elisseeff J, Anseth K. Sims D. et al. Transdermal photopolymerization for minimally invasive implantation. P Natl Acad Sci USA.1999,96:3104-3107
    [100]Lee K Y,Mooney D J. Hydrogels for Tissue Engineering. Chem. Rev.,2001.101:1869-1879
    [101]Elbert D L.Hubbell J A. Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering. Biomacromolecules.2001, 2:430-441
    [102]Park Y D, Tirelli N.Hubbell J A. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials.2003,24:893-900
    [103]Lee K Y, Alsburg E.Mooney D J. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering J. Biomed. Mater. Res..2001.56:228-233
    [104]West J L.Hubbell J A. Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules.1999.32:241-244
    [105]Mann B K, Gobin A S, Tsai A T, et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains:synthetic ECM analogs for tissue engineering. Biomaterials.2001,22:3045-3051
    [106]Lee K Y, Alsberg E,Mooney D J. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J. Biomed. Mater. Res.,2001,56:228-233
    [107]Timmer M D, Ambrose C G,Mikos A G. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials,2002,24:571-577
    [108]Martens P J, Bryant S J,Anseth K S. Tailoring the Degradation of Hydrogels Formed from Multivinyl Poly(ethylene glycol) and Poly(vinyl alcohol) Macromers for Cartilage Tissue Engineering. Biomacromolecules,2003,4:283-292
    [109]Payne R G, Yaszemski M J, Yasko A W, et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials,2002,23:4359-4371
    [110]Behravesh E, Jo S, Zygourakis K, et al. Synthesis of in Situ Cross-Linkable Macroporous Biodegradable Poly(propylene fumarate-co-ethylene glycol) Hydrogels. Biomacromolecules, 2002,3:374-381
    [111]Wang D-a, Williams C G, Li Q, et al. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials,2003,24:3969-3980
    [112]Shastri V P, Hildgen P,Langer R. In situ pore formation in a polymer matrix by differential polymer degradation. Biomaterials,2003,24:3133-3137
    [113]Sarda S, Nilsson M, Balcells M, et al. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J. Biomed. Mater. Res., Part A,2003,65A:215-221
    [114]Senuma Y, Franceschin S, Hilborn J G, et al. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier:from preparation to in vitro evaluation. Biomaterials, 2000,21:1135-1144
    [115]Whitaker M J, Quirk R A, Howdle S M, et al. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol,2001,53:1427-1437
    [116]Shakesheff K M, Cannizzaro S M,Langer R. Creating biomimetic micro-environments with synthetic polymer-peptide hybrid molecules. J Biomat Sci-Polym E,1998,9:507-518
    [117]Drumheller P D,Hubbell J A. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem,1994,222:380-388
    [118]Hern D L,Hubbell J A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res.,1998,39:266-276
    [119]Han D K,Hubbell J A. Lactide-based poly(ethylene glycol) polymer networks for scaffolds in tissue engineering. Macromolecules,1996,29:5233-5235
    [120]Han D K,Hubbell J A. Synthesis of Polymer Network Scaffolds from L-Lactide and Poly(ethylene glycol) and Their Interaction with Cells. Macromolecules,1997,30: 6077-6083
    [121]Metters A T, Anseth K S,Bowman C N. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer,2000,41:3993-4004
    [122]Drumheller P D, Elbert D L,Hubbell J A. Multifunctional poly(ethylene glycol) semi-interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotechnol. Bioeng.,1994,43:772-780
    [123]Cruise G M, Scharp D S,Hubbell J A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials,1998,19:1287-1294
    [124]Cao Y, Rodriguez A, Vacanti M, et al. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed,1998,9:475-487
    [125]Saim A B, Cao Y, Weng Y, et al. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. The Laryngoscope,2000,110:1694-1697
    [126]Anseth K S, Metters A T, Bryant S J, et al. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Controlled Release,2002,78:199-209
    [127]Jeong B, Bae Y H, Lee D S, et al. Biodegradable block copolymers as injectable drug-delivery systems. Nature,1997,388:860-862
    [128]Jeong B, Lee K M, Gutowska A, et al. Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering. Biomacromolecules,2002, 3:865-868
    [129]Lin H-H,Cheng Y-L. In-Situ Thermoreversible Gelation of Block and Star Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) of Varying Architectures. Macromolecules,2001,34:3710-3715
    [130]Stile R A,Healy K E. Thermo-Responsive Peptide-Modified Hydrogels for Tissue Regeneration. Biomacromolecules,2001,2:185-194
    [131]Ohya S, Nakayama Y,Matsuda T. In vivo evaluation of poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as an in situ-formable scaffold. Journal of Artificial Organs,2004, 7:181-186
    [132]Ibusuki S, Fujii Y, Iwamoto Y, et al. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin:Fabrication and in vitro performance. Tissue Eng., 2003,9:371-384
    [133]Chinen N, Tanihara M, Nakagawa M, et al. Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrixes to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release. J. Biomed. Mater. Res., Part A, 2003,67A:61-68
    [134]Elcin Y M, Dixit V,Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor:implications for tissue engineering and wound healing. Artif Organs,2001,25:558-565
    [135]Peters M C, Isenberg B C, Rowley J A, et al. Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed,1998,9:1267-1278
    [136]Radomsky M L, Thompson A Y, Spiro R C, et al. Potential role of fibroblast growth factor in
    enhancement of fracture healing. Clinical orthopaedics and related research,1998. S283-293
    [137]Mallery S R, Pei P, Kang J. et al. Sustained angiogenesis enables in vivo transplantation of mucocutaneous derived AIDS-related Kaposi's sarcoma cells in murine hosts. Carcinogenesis, 2000,21:1647-1653
    [138]Zisch A H, Schenk U, Schense J C, et al. Covalently conjugated VEGF-fibrin matrixes for endothelialization. J. Controlled Release,2001,72:101-113
    [139]Burdick J A,Anseth K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials,2002.23:4315-4323
    [140]Bensaid W, Triffitt J T, Blanchat C, et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials,2003.24:2497-2502
    141]Payne R G, McGonigle J S. Yaszemski M J. et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking polypropylene fumarate). Biomaterials.2002,23:4373-4380
    [142]Payne R G, McGonigle J S. Yaszemski M J. et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials.2002,23:4381-4387
    [143]Gao R Z, Dennis J E. Solchaga I. A, et al. Repair of osteochondrai defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng.,2002,8:827-837
    [144]Ibusuki S, Fujii Y, lwamoto Y, et al. Tissue-Engineered Cartilage Using an Injectable and in Situ Gelable Thermoresponsive Gelatin:Fabrication and in Vitro Performance. Tissue Eng., 2003,9:371-384
    [145]Elisseeff J, McIntosh W, Anseth K, et al. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J. Biomed. Mater. Res.,2000,51: 164-171
    [146]Bryant S J.Anseth K S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res.,2002,59: 63-72
    [147]Paige K 1, Cima 1. G, Yaremchuk M J. et al. Injectable cartilage. Plast Reconstr Surg,1995. 96:1390-1398:discussion 1399-1400
    [148]Park D J, Bong J P. Park S Y, et al. Cartilage generation using alginate-encapsulated autogenous chondrocytes in rabbits. The Annals of otology, rhinology. and laryngology 2000, 109:1157-1161
    [149]Silverman R P, Passaretti D, Huang W, et al. Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg,1999,103:1809-1818
    [150]Duranti F, Salti G, Bovani B, et al. Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol Surg..1998.24:1317-1325
    [151]Shafir R,Amir A,Gur E.Long-term complications of facial injections with Restylane (injectable hyaluronic acid). Plast. Reconstr. Surg.,2000,106:1215-1216
    [152]Gan T, Zhang Y,Guan Y. In Situ Gelation of P(NIPAM-HEMA) Microgel Dispersion and Its Applications as Injectable 3D Cell Scaffold. Biomacromolecules,2009,10:1410-1415
    [153]Au A, Ha J, Polotsky A, et al. Thermally reversible polymer gel for chondrocyte culture. Journal of Biomedical Materials Research Part A,2003,67A:1310-1319
    [154]Ohya S, Nakayama Y,Matsuda T. Thermoresponsive Artificial Extracellular Matrix for Tissue Engineering:(?) Hyaluronic Acid Bioconjugated with Poly(N-isopropylacrylamide) Grafts. Biomacromolecules,2001,2:856-863
    [155]Kidane A, Szabocsik J M,Park K. Accelerated study on lysozyme deposition on poly(HEMA) contact lenses. Biomaterials,1998,19:2051-2055
    [156]Lu S X,Anseth K S. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J. Controlled Release,1999,57:291-300
    [157]Daly E,Saunders B R. A study of the effect of electrolyte on the swelling and stability of poly(N-isopropylacrylamide) microgel dispersions. Langmuir,2000,16:5546-5552
    [158]Saunders B R,Vincent B. Microgel particles as model colloids:theory, properties and applications. Adv. Colloid Interface Sci.,1999,80:1-25
    [159]Kuo C K,Ma P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials,2001,22:511-521
    [160]Park T QHoffman A S. Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules,1993,26:5045-5048
    [161]Xia X H, Tang S J, Lu X H, et al. Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules,2003,36:3695-3698
    [162]Ouyang A, Ng R,Yang S T. Long-Term Culturing of Undifferentiated Embryonic Stem Cells in Conditioned Media and Three-Dimensional Fibrous Matrices Without Extracellular Matrix Coating. Stem Cells,2007,25:447
    [163]Volkmer E, Drosse I, Otto S, et al. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Pt A,2008,14:1331-1340
    [164]Tae G, Kim Y J, Choi W I, et al. Formation of a Novel Heparin-Based Hydrogel in the Presence of Heparin-Binding Biomolecules. Biomacromolecules,2007,8:1979
    [165]Lee J, Cuddihy M J,Kotov N A. Three-dimensional cell culture matrices:State of the art. Tissue Eng Pt B-Rev,2008,14:61-86
    [166]Cushing M C,Anseth K S. Materials science. Hydrogel cell cultures. Science,2007,316: 1133-1134
    [167]Abbott A. Biology's new Dimension. Nature,2003,424:870-872
    [168]Cukierman E, Pankov R, Stevens D R, et al. Taking cell-Matrix Adhesions to the Third Dimension. Science,2001,294:1708
    [169]Subramanian R, Zhu S,Pelton R H. Synthesis and flocculation performance of graft and random copolymer microgels of acrylamide and diallyldimethylammonium chloride. Colloid.
    Polym. Sci.,1999,277:939-946
    [170]Shibayama M,Nagai K. Shrinking kinetics of poly(N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures. Macromolecules,1999,32:7461-7468
    [171]Han C K,Bae Y H. Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solutions. Polymer,1998,39:2809-2814
    [172]Benee L S, Snowden M J,Chowdhry B Z. Novel gelling behavior of poly(N-isopropylacrylamide-co-vinyl laurate)microgel dispersions. Langmuir,2002,18: 6025-6030
    [173]Beloussov L V. Mechanically based generative laws of morphogenesis. Phys Biol,2008,5:
    [174]Brandl F, Sommer F,Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials,2007,28:134-146
    [175]Shih W H, Shih W Y, Kim S I, et al. Scaling behavior of the elastic properties of colloidal gels. Phys Rev A,1990,42:4772-4779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700