20S蛋白酶体对SVZ神经干细胞增殖潜能的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察小鼠室管膜下区(Subventricular zone,SVZ)神经干细胞(Neural Stem Cells, NSCs)20S蛋白酶体的表达,以及机体老化进程中SVZ 20S蛋白酶体的活性变化,旨在揭示蛋白酶体活性改变对NSCs增殖潜能的影响,为延缓机体衰老进程提供新的突破方向。
     方法:将小鼠分为胚胎(Embryonic 14 days, E14)、新生(Postnatal day, P0)、幼年(Postnatal 30 days, P30)、成年(Postnatal 60 days, P60)、老年(Postnatal 540 days, P540)5组。
     1.应用20S蛋白酶体/nestin(神经干细胞标志物)免疫荧光双标法观察SVZ NSCs 20S蛋白酶体的表达。2.提取E14、P0、P30、P60、P540小鼠SVZ蛋白,通过Western Blot半定量分析不同年龄阶段小鼠20S蛋白酶体的表达变化。3.提取E14、P0、P30、P60、P540小鼠SVZ蛋白,应用荧光分光光度法检测不同年龄阶段小鼠20S蛋白酶体的活性。4.将1μl MG132(30mg/kg)注入成年小鼠侧脑室,分别在3d、7d后腹腔注射BrdU (5mg/kg),通过免疫荧光染色观察BrdU阳性细胞数,检测蛋白酶体抑制剂对NSCs增殖潜能的影响。
     结果:1.20S蛋白酶体免疫阳性细胞沿侧脑室侧壁分布,阳性细胞呈圆形,胞浆与胞核内均可见阳性表达,并且20S蛋白酶体阳性表达与NSCs标志物nestin共存,提示20S蛋白酶体可能对NSCs具有调控作用。2. Western Blot结果表明随年龄增加20S蛋白酶体表达水平逐渐降低,其中胚胎小鼠SVZ 20S蛋白酶体表达量最高(1.22±0.1),老年小鼠20S蛋白酶体表达量最低(0.6±0.05),二者相比差异有统计学意义(P<0.05)。3.蛋白酶体活性检测结果表明随着年龄增加蛋白酶体活性出现递减趋势,其中胚胎、新生、幼年小鼠20S蛋白酶体活性显著高于老年小鼠(P<0.05),但成年小鼠与老年小鼠20S蛋白酶体活性差异无统计学意义(P>0.05)。4.MG132干预实验结果显示注入MG132 3d、7d后脑室SVZBrdU阳性细胞减少,统计分析结果显示注入MG1323d后BrdU阳性细胞数减少(2±0.1),与溶剂对照DMSO组(22±3)相比差异有统计学意义(P<0.05);注入MG132 7d后BrdU阳性细胞数减少(3±1),与溶剂对照DMSO组(8±3)相比差异有统计学意义(P<0.05),提示蛋白酶体活性降低可导致NSCs增殖潜能下降。
     结论:1..NSCs表达20S蛋白酶体,且随年龄增加SVZ NSCs 20S蛋白酶体表达量及活性逐步降低,提示20S蛋白酶体活性降低可能是导致NSCs衰老进而使机体老化的关键因素。
     2.应用蛋白酶体抑制剂能够显著抑制NSCs的增殖潜能,提示蛋白酶体功能异常导致NSCs库耗竭可能是衰老相关疾病发生的重要原因。
Objective:To reveal the effect of the activity of proteasome on proliferation potential in neural stem cell, observe the expression of 20S proteasome of neural stem cells in SVZ and the activity change of 20S proteasome in the aging process, to provide a new breakthrough to delay the aging process of the body
     Methods:Mice were divided into five groups which are embryonic 14 days (E14)、postnatal day (P0)、Postnatal 30 days (P30)、Postnatal 60 days (P60)、Postnatal 540 days (P540) 1.to observe the expression of nestin and 20S proteasome of neural stem cells in SVZ through immunofluorescence.2.to extract proteins in SVZ from the E14、P0、P30、P60、P540 mouse, then semi-quantitative analysis the expression change of 20s proteasome at different ages with Western Blot method.3.to extract the proteins in SVZ from the E14、P0、P30、P60、P540mouse, to detect the activity of 20S proteasome of different ages in mice by fluorimetric method.4. To inject proteasome inhibitor MG132 into lateral ventricle of the adult mouse, then take the intraperitoneal injection of Brdu after 3days、7 days, to detect proteasome inhibitors on the proliferative potential of NSCs by immunofluorescence staining BrdU+.
     Results:1.20S proteasome positive cells can be seen in both cytoplasm and the nucleus, round, distributed along the lateral ventricle wall, and the neural stem cell marker nestin also expressed in the same cells which suggest 20S proteasome may have a regulatory role in NSCs.2. The western-blot results show that the expression of 20S proteasome gradually decreased with age. The expression of 20S proteasome from embryonic mouse is highest, compared to aged mouse, it has a statistically significant difference (p< 0.05).3.Proteasome activity of the test results also show the activity of 20S proteasome is on the decrease with age, in which the activity of 20S proteasome from E14、P0、P30 mice were significantly higher than which from the P540 mice (p<0.05), but the activity of 20S proteasome from P60 mice and P540 mice has no significant difference(p>0.05).4. MG132 intervention results showed that after injection of MG132 3days and 7 days, The number of BrdU+ cells are decreased in SVZ. After injection of MG132 3days, The number of BrdU+ cells are decreased (2±0.1), compared with the DMSO group (22±3), it has a statistically significant difference (p<0.05). After injection of MG132 7days, The number of BrdU+ cells are decreased (3±1), compared with the DMSO group (8±3), it has a statistically significant difference (p<0.05). Which indicate the decreased activity of 20Sproteasome led to the decrease of proliferative potential in NSCs.
     Conclusion:(1)the expression and activity of 20S proteasome gradually reducedand in SVZ NSCs with age; which suggest the decreased activity of 20S proteasome may result in the senescence of NSCs and the aging of the body.
     (2) Proteasome inhibitors can significantly inhibit the proliferation potential of NSCs, indicating that aging of the body may make proteasome dysfunction which induce to the depletion of NSCs library and aging-related diseasesby.
引文
[1]Alvarez-Buylla A, Lim DA. For the long run:Maintaining germinal niches in the adult brain. Neuron 2004; 41:683-686.
    [2]Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al. Cellular composition of the adult human subventricular zone:A niche of neural stem cells. J Comp Neurol 2006; 494:415-434
    [3]Ciechanover A. The ubiquitin proteolytic system and pathogenesis of human diseases:A novel platform for mechanism-based drug targeting. Biochem Soc Trans 2003; 31:474-481.
    [4]Meiners S, Ludwig A, Stangl V, et al. Proteasome inhibitors:poisons and remedies[J]. Med Res Rev,2008,28(2):309-327.
    [5]P. Zwickl, D. Voges and W. Baumeister, The proteasome:a macromolecular assembly designed for controlled proteolysis, Philosophical Transactions of the Royal Society of London-Series B:Biological Sciences 1999; 354:1501-1511
    [6]W. Baumeister, J. Walz, F. Zuhl and E. Seemuller, The proteasome:paradigm of a self-compartmentalizing protease, Cell 1998; 92:367-380.
    [7]A. Devoy, T. Soane, R. Welchman, R.J. Mayer, A. Devoy, T. Soane, R. Welchman and R.J. Mayer, The ubiquitin-proteasome system and cancer, Essays in Biochemistry 2005; 41: 187-203
    [8]George Paxinos, Chles Waston.The rat brain in stereotaxic coordinates. London:Elsevier Academic Press,2004.
    [9]Uta Schambra, Ph.D. Prenatal mouse brain atlas.2008.
    [10]Dravid G, Ye Z, Hammond H et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005; 23: 1489-1501
    [11]Levenstein ME, Ludwig TE, Xu RH et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006; 24:568-574
    [12]Song HJ, Stevens CF, age FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci,2002,5(5):438--459.
    [13]Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci,2002,22:629-634
    [14]Gage FH. Mammalian neural stem cells. Science。2000.287(5457):1433--1438
    [15]Lothian C, Prakash N, Lendahl U, et al. Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter[J]. Exp Cell Res,1999,248(2): 509-519
    [16]Maslov AY, Barone TA, Plunkett RJ, et al. Neural stem cell detection, characterization and age-related changes in the subvertricular zone of mice. J Neurosci,2004,24(7):1726-1733
    [17]Johnston MV. Brain plasticity in paediatric neurology. Eur J Paediatr. Neurol,20o3,7(3):105--113.
    [18]Romanko MJ, Rothstein RP, Levison SW. Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas pro-genitom are vulnerable. JCBM,2004,24(7): 814-825.
    [19]Lowe, S.W., and Sherr, C.J.. Tumor suppression by Ink4a-Arf:Progress and puzzles. Curr. Opin. Genet.2003; 13:77-83.
    [20]Maslov, A.Y., Barone, T.A., Plunkett, R.J., and Pruitt, S.C. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 2004,24,1726-1733.
    [21]Molofsky, A.V., He, S., Bydon, M., Morrison, S.J., and Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways.Genes 2005; (19):1432-1437.
    [22]Molofsky, A.V., Slutsky, S.G., Joseph, N.M., He, S., Pardal, R., Krishnamurthy,J., Sharpless, N.E., and Morrison, S.J. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443,448-452
    [23]Peters JM, Franke WW, Kleinschmidt JA. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem, March 1994,11;269(10):7709-18.
    [24]Strickland E, Hakala K, Thomas PJ, et al. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome[J]. J Biol Chem,2000,275(8):5565-5572.
    [25]Groil M, Huber R, Moroder L. The persisting challenge of selec-tive and specific proteasome inhibition[J]., Pept Sci,2009,15(2):58-66.
    [26]Karin M, Cao Y, Greten FR, et al. NF-KB in cancer:from inno-cent bystander to major culprit[J]. Nat Rev Cancer,2002,2(4):301-310.
    [27]King RW, Deshaies RJ, Peters JM, et al. How pmteolysis drives the cell cycle[J]. Science, 1996,274(5293):1652-1659.
    [28]Sehube- U, Ant6n LC, Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes_J], Nature,2000,404(6779):770-774.
    [29]Barsi JC, Rajendra R, Wu JI et al. Mind bombl is a ubiquitin ligase essential for mouse embryonic development and Notch signaling. Mech Dev 2005; 122:1106-1117.
    [30]Merkle FT, Alvarez-Buylla A. Neural stem cells in mammalian development. Curr Opin Cell Biol 2006; 18:704-709.
    [31]Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4:192-201.
    [32]Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315-326.
    [33]Hernebring M, Brolen G, Aguilaniu H et al. Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci USA 2006; 103:7700-7705.
    [34]Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su,L., and Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging.J. Clin. Invest.2004; 114: 1299-1307.
    [35]BuheauAL, SzwedaLI, Friguet B. Age dependent declines in piotea-some activityin the heart CJ]. Arch Biochem Biophys,2002; 397(2):298-304.
    [1]Schwartz AL, Ciechanover A.Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009,49:73-96.
    [2]Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction.Physiol Rev 2002,82:373-428.
    [3]Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 2002,82:965-980.
    [4]Wolf DH, Hilt W. The proteasome:a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 2004; 1695:19-31.
    [5]Groll M, Huber R. Inhibitors of the eukaryotic 20S proteasome core particle:a structural approach. Biochim Biophys Acta 2004; 1695:33-44.
    [6]Pickart CM, Eddins MJ. Ubiquitin:structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695:55-72.
    [7]Pickart CM, Cohen RE. Proteasomes and their kin:proteases in the machine age. Nat Rev Mol Cell Biol 2004; (5):177-187.
    [8]Bondar T, Kalinina A, Khair Letal. Cul4A and DDB1 associate with Skp2 to target p27Kip1 for proteolysis involving the COP9 signalosome. Mol Cell Biol 2006; (26):2531-2539.
    [9]Gong B, Cao Z, Zheng Petal.Ubiquitin hydrolase Uch--L1 rescues-amyloid-induced decreases in synaptic function and contextual memory. Cell 2006; 126:775-788.
    [10]Ciechanover A, Schwartz AL.The ubiquitin system:pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 2004; 1695:3-17.
    [11]Crane JF, Trainor PA. Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol 2006; 22:267-286.
    [12]Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28:223-250.
    [13]Uchida N, Buck DW, He D et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97:14720-14725.
    [14]Delaunay D, Heydon K, Cumaneo A et al.Early neuronal and glial fate restriction of embryonic neural stem cells.J Neurosci 2008; 28:2551-2562.
    [15]Lledo PM, Saghatelyan A. Integrating new neurons into the adult olfactory bulb:joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 2005; 28:248-254.
    [16]Merkle FT, Mirzadeh Z, Alvarez-Buylla A. Mosaic organisation of neural stem cells in the adult brain. Science 2007; 317:381-384.
    [17]Carpenter MK, Cui X, Hu ZY et al. In vitro expansion of a multipotent population of human neural progenitor cells.Exp Neurol 1999; 158:265-278.
    [18]Seri B, Herrera DG, Gritti A et al。 Composition and organization of the SCZ:a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb Cortex 2006; (suppl 1):i103-i111.
    [19]Suh H, Consiglio A, Ray J et al In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2(+) neural stem cells in the adult hippocampus. Cell Stem Cell 2007; 1:515-528.
    [20]Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132:645-660.
    [21]Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 2007; 8:481-488.
    [22]Shih CC, Weng Y, Mamelak A et al. Identification of a candidate human neurohematopoietic stem-cell population. Blood 2001; 98:2412-2422.
    [23]Rietze RL, Valcanis H, Brooker GF et al. Purification of a pluripotent neural stem cell from the adult mouse brain.Nature 2001; 412:736-739.
    [24]Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell 2008;3:16-24.
    [25]Itoh M, Kim CH, Palardy G et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by delta. Dev Cell 2003; 4:67-82.
    [26]Louvi A, Artavanis-Tsakonas S. Notch signaling in vertebrate neural development. Nat Rev Neurosci 2006; 7:93-102.
    [27]Barsi JC, Rajendra R, Wu JI et al. Mind bombl is a ubiquitin ligase essential for mouse embryonic development and Notch signaling. Mech Dev 2005; 122:1106-1117.
    [28]Koo BK, Lim HS, Song R et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 2005; 132:3459-3470.
    [29]Tasaki T, Mulder LC, Iwamatsu A et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 2005; 25:7120-7136.
    [30]Meinnel T, Serero A, Giglione C. Impact of the N-terminal amino acid on targeted protein degradation. Biol Chem 2006; 387:839-851.
    [31]An JY, Seo JW, Tasaki T et al. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 2006; 103:6212-6217.
    [32]Awasthi N, Wagner BJ. Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest Ophthalmol Vis Sci.2006; 47(10):4482-4489.
    [33]Stapnes C, Dskeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB, Gjertsen BT, Bruserud O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol. 2007; 136(6):814-828.
    [34]Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts:induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem.2003; 278(30):28026-28037. [35] Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ,Gonos ES. Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem.2005; 280(12):11840-11850.
    [36]Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol.2000; 35(6-7):721-728.
    [37]Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem.2006; 281(39):29228-29235.
    [38]Ferre S, Mazur A, Maier JA. Low-magnesium induces senescent features in cultured human endothelial cells. Magnes Res.2007; 20(1):66-71.
    [39]Hyun DH, Lee M, Halliwell B, Jenner P. Proteasome inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem.2003; 86(2):363-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700