烧蚀模式激光推进的机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光推进是利用高能激光与工质相互作用产生的反作用力推动飞行器前进的一种新概念推进技术。与传统的化学推进相比,激光推进在概念上的创新主要可归结为两个分离:1、工质和能量的分离,2、飞行器和能源系统的分离。从是否消耗自身携带工质看,激光推进的驱动模式可分为两类:大气模式和火箭烧蚀模式。本文就火箭烧蚀模式激光推进进行探讨,采用模型分析、数值模拟以及实验研究等几个方面,从物理、力学的角度深入研究烧蚀模式激光推进的物理机理和力学规律,得到了一些有益的结果。
     以激光与固体靶相互作用的动态物理过程为线索,分析了烧蚀模式激光推进的基本原理,并将其划分为三个过程阶段:①靶材料表面的受热气化过程;②靶面蒸气与入射激光的相互作用并使得蒸气继续电离、升温的过程;③靶面蒸气等离子体的膨胀运动过程。激光烧蚀压力和冲量耦合系数是衡量激光推进效应的重要参数,详细分析了基于LSD的激光推进效应力学模型。
     介绍了一维辐射流体动力学代码MEDUSA,给出了MEDUSA程序的主要计算流程图。采用MEDUSA程序对单脉冲激光与固体靶相互作用的动态物理过程进行了数值模拟计算。得到了一维情形下等离子体各参数(粒子速度、密度、温度)的随时间以及空间的变化,并给出了动态烧蚀面(激光束与固体靶的作用面)压力随时间的动态变化规律。采用烧蚀压力随时间积分的方法计算固体靶所获得的作用冲量,分别计算了铝靶材料和C-H靶材料在不同激光参数条件下的推进性能。计算得到的冲量耦合系数与实验结果以及经验模型进行了比较,结果表明,数值计算结果与实验结果符合较好。
     采用一种平均电离度的简易快速计算方法并由此给出等离子体状态方程,以及具有五阶精度的加权本质无振荡差分格式-WENO建立了烧蚀模式激光推进数值模拟程序,考虑了入射激光与固体靶的相互作用,着重于激光与固体靶面蒸气等离子体的相互作用与能量耦合,用于模拟激光作用于固体靶产生等离子体喷射的全过程,包括固体靶表面吸收激光能量气化、电离产生等离子体,入射激光与靶面等离子体的能量耦合及能量屏蔽,靶面的后续动态烧蚀。进行了以下几个方
Laser propulsion, which works on the counterforce generated during the interaction between high-power laser and propellant, is a new concept technique for propulsion. Compared with traditional chemical propulsion, the main innovation in concept of laser propulsion reduces to two separations: separation of energy and material, and separation of aero-craft and energy source system. In general, there are two main modes, the rocket ablation mode and the air-breathing mode, which divided by whether consume the taking material or not. In the present thesis, it focuses on the ablation mode laser propulsion, physical and mechanical mechanism of ablation mode laser propulsion have been studied by model analysis、 numerical simulation and experiment study, some main conclusions are reached and will be listed as follows.
    The principle of ablation laser propulsion (ALP) was analyzed on the dynamic physical processes of laser target interaction, and can be divided into three stages. The process of vapour of solid target surface material; the process of temperature rise and ionization of target vapor under interaction with laser pulse; the process of free expand movement of plasma. The ablation pressure and mechanical coupling coefficient are the important parameters of laser propulsion. The mechanics propulsion efficiency model based on LSD (laser supported detonation) was detailed analyzed.
    1 -D radiation-hydrodynamic code MEDUSA was introduced, and presented the main floe chat of MEDUSA. The dynamic physical process of single-pulse laser interaction with solid target was simulated by use of MEDUSA code; the parameters of ablated plasma (particle velocity, density, temperature) variety of time and space were obtained, and presented the pressure of ablated surface (the surface of laser target interaction) variety of time during the laser pulse. The impulse solid target obtained can calculate by integral the pressure of time, thus can calculate the mechanical coupling coefficient c_m. The propulsion efficiency of Al target and C-H target of different laser parameters were simulated, and compared with experiments and empirical model results, which showed that the simulated results were believable.
    A general Godunov finite difference schemes-WENO (Weighted Essentially Non-Oscillatory) schemes which have fifth-order accuracy is used to make a numerical calculation for 2-dimensional axis symmetrical laser-supported plasma flow field under laser ablated solid target and laser ablated propulsion efficiency
引文
[1] Kantrowitz A., Propulsion to orbit by ground-based Laser, Astronautics and Aeronautics, 10(5), 74-76(1972)
    [2] Phipps C. R., Luke J., Lippert T., Micro-propulsion using laser ablation, Appl. Phys. A, 2004, 79: 1385-1389
    [3] Shigeaki Uchida, kazuhisa Hashimoto, Kazuhisa Fujita, Masayuki Niino, Takashi Ashizuka, Nobuki Kawasahima, Characteristics of volume expansion of laser plasma for efficient propulsion, High-Power Laser Ablation Ⅳ, 4760(2002), Proceedings of SPIE, 810-820
    [4] Phipps C. R., Impulse coupling to targets in vacuum by KrF, HF, and CO_2 single-pulse lasers, J. Appl. Phys. 64 (3), (1988) 1083-1096
    [5] 孙承纬著.激光辐照效应.北京:国防工业出版社,2002
    [6] Pirri A. N., Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA Journal. 1978, 16(12): 1296~1304
    [7] Pirri A. N., Theory for momentum transfer to a surface with a high-power laser, Phys. Fluids 16(9), 1435-1440 (1973)
    [8] Pirri A. N., Analytic solutions for laser-supported combustion wave ignition above surfaces, AIAA Journal 15(1), (1977) 83-88
    [9] Pirri A. N., Theory for laser simulation of hypervelocity impact, Phys. Fluids 20 (2), (1977) 221-228
    [10] Pirri A. N., Schlier R. and Northam D., Momentum transfer and plasma formation above a surface with a high-power CO_2 laser, Appl. Phys. Lett., 21, 79-81 (1972)
    [11] Pirri A. N., Propulsion by Absorption of Laser Radiation, AIAA J., 1974, 12(9): 1254—1261
    [12] Pirri A. N., Weiss R. F., Laser propulsion, AIAA Paper, 72, Boston, Mass, 1972, 719-725
    [13] 孙承纬,卫玉章,周之奎著.应用爆轰物理.北京:国防工业出版社,2000
    [14] Ferriter N. and D. E. Maiden, AIAA Journal 15, 1597-1603 (1977)
    [15] 袁钢,强激光作用下金属材料在等离子体点燃阈值附近力学效应研究.硕士论文,中国科技大学,1988
    [16] Myrabo L. N., Apollo lightcraft project, Final Report, prepared for the NASA/USRA Advanced Design Program, 4th Annual Summer Conference, Kennedy SFC, FL, 13-17, 1988
    [17] Myrabo, L. N., MessittD. G., Mead F. B., Jr., Ground and Flight Tests of a laser propelled Vehicle, AIAA Paper 98-101, Jan, 1998
    [18] Myrabo L. N., The Apollo light-craft project, NASA/USRA Advanced Design Program, Rensselaer Poly-tech. Institute. 1989
    [19] Myrabo L. N., T. R. Knowles, J. O. Bagford, Dan B. Seibert, Experimental investigation of Laser-pushed Light Sails in a Vacuum, High-Power Laser Ablation Ⅲ, Proceedings of SPIE, 4065(2000) 521-532
    [20] Phipps C. R.,. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths, Laser and Particle Beams 8 (1-2), 281-287 (1990)
    [21] Phipps C. R., Michaelis M. M., laser impulse space propulsion, Laser and Particle Beams 12 (1), 23-54 (1994)
    [22] Phipps C. R., Daniel B. Seibert Ⅱ, Very High Coupling Coefficients at Low Laser Fluence with a Structured Target. Proceedings of SPIE, 4065 (2000) 931-938
    [23] Phipps C. R., Luke J. R., Measurements of Laser Impulse Coupling at 13Ofs. High-Power Laser Ablation V, Proceedings of SPIE, 5448 (2004) 1201-1209
    [24] Phipps C. R., and James Luke, Micro Laser Plasma Thrusters for Small Satellites, High-Power Laser Ablation Conference, Proceedings of SPIE, 4065 (2000), 801-809
    [25] Phipps C. R., and James Luke, Diode Laser-driven Micro-thrusters: A New Departure for Micro-propulsion, AIAA J., 40 (2) 310-318 2002
    [26] Phipps C. R., Reilly J. P., Campbell J. W., Laser Launching a 5-kg Object into Low Earth Orbit, High-Power Laser Ablation Ⅲ, Proceedings of SPIE, Vol. 4065(2000) 502-510
    [27] Phipps Claude R., Orion: challenges and benefits, High-Power Laser Ablation, Proceedings of SPIE, 3343 (1998) 575-582
    [28] Phipps C. R., Optimum parameters for laser launching objects into low earth orbit, Laser and Particle Beams 18, (2000) 661-669
    [29] Schall W. O., W. L. Bohn, H.-A. Eckel, Lightcraft Experiments in Germany, High-Power Laser Ablation Ⅲ, Proc. of SPIE, 2000, 4065: 472—481.
    [30] Schall Wolfgang O. and Hans-Albert Eckel, Pulsed laser propulsion experiments, AIAA Paper, 54th international astronautical congress of theinternational astronautical federation, the international academy of astronautics, and the international institute of space law, Bremen 29-3 2003
    [31] Schall Wolfgang O., Removal of small space debris with orbiting Lasers, High-power Laser Ablation IV, Proceedings of SPIE, 3343 (1998) 564-574
    [32] Masashi Yamaguchi, Ryou Nakagawa, Takashi Yabe, Laser-driven water-powered propulsion and air curtain for vacuum insulation, Second international Symposium on Beamed Energy Propulsion, 2003 557-568
    [33] Pakhomov A.V., Thompson M.S. and Gregory D. A., Ablative laser propulsion: specific impulse and thrust derived from force measurements, AIAA Journal, 40(11) 2002 2305-2311
    
    [34] Pakhomov A.V., Gregory D.A.,Michael S. T., Specific impulse and other characteristics of elementary propellants for ablative laser propulsion, AIAA J., 40(5), 2002 947-951
    [35] Chaleard C., Detalle V., Kocon S., Experimental investigation of laser ablation efficiency of metals, Proceedings of SPIE, 3404(1998) 432-440
    [36] Yu. P. Golovachov, Yu. A. Kurakin, Yu. A. Rezunkov, A. A. Schmidt, V. V. Stepanov, Numerical Analysis of Gasdynamic Aspects of Laser Propulsion. Beamed energy propulsion:First international Symposium on Beamed Energy Propulsion, 2002, 149-158
    [37] Yuri Rezunkov, Alexander Andreev, Yuri Golovachov, Yuri Kurakin, Alexander Schmidt, Vladimir Stepanov, Simulation of laser propulsion at space conditions. High-power Laser Ablation IV, Proceedings of SPIE, 4760(2002) 799-809
    [38] Toshi Fujiwara and Takeshi Miyasaka, Laser-supported Detonation Concept as a Space Thruster, Second international Symposium on Beamed Energy Propulsion, 2003 80-91
    
    [39] Yen-Sen Chen, Jiwen Liu and Ten-see Wang, Numerical Modeling of Laser Supported Propulsion with an Aluminum Surface Breakdown Model, First international Symposium on Beamed Energy Propulsion, 2002, 138-148
    
    [40] Irina N.Z.,Yuri V. A.,Boris N.C., Vladimir A.I., Laser ablation of organic materials: hydrodynamic model, High-power Laser Ablation III, Proceedings of SPIE, 4065(2000) 301-307
    
    [41] Maria M. S., Sar Sardy, Tjung Jie Lie, May On Tjia, Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism and analytical application, J. Appl. Phys., 97,053305 (2005) 1-9
    
    [42] 唐志平, 童慧峰. 用激光推进轻型飞行器的初步实验研究. 2000~2001 年度激光的热 和力学效应学术会议论文集.四川 绵阳,2001
    [43] 龚平,唐志平,大气呼吸模式激光推进的实验研究和数值模拟,爆炸与冲击,2003,23(增刊)315-316
    [44] 童慧峰,唐志平,“烧蚀模式”激光推进的实验研究.强激光与粒子束,2004,16(11):1380-1384
    [45] Jing Li, Huifeng Tong, and Zhiping Tang, Multi-use laser impulse pendulum and laser propulsion parameters measurement, Chinese Optics Letters, 2004, 2 (11), 650-653
    [46] Estabrook K. G., E. J. Valeo and W. L. Kruer, Two-dimensional relativistic simulations of resonance absorption, Phys. Fluids, 18(9) 1975 1151-1159
    [47] Franklin B. Mead, L. N. Myrabo and Donald G. Messitt, Flight Experiments and Evolutionary development of a laser propelled, Trans-atmospheric vehicles, High-Power Laser Ablation Ⅲ, Proceedings of SPIE, 3343(1998) 560-563
    [48] Fabbro R., J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laser-produced plasma in confined geometry, J. Appl. Phys. 68(2), 775-785 (1990)
    [49] Fauquignon C. and Floux F., Hydrodynamic of Solid Deuterium under Laser Heating, The Physics of Fluids, 13 (2), (1970) 386-392
    [50] Goldstone P. D., R. F. Benjamin, and R. B. Schultz, Shock-wave production and plasma motion in CO2-1aser-irradiated targets, Appl. Phys. Lett. 38(4), (1981) 223-225
    [51] Arad B., Eliezer S., Y. Gazit, H. M. Loebenstein, A. Zigler, H. Zmora, and S. Zweigenbaum, Burn-through of thin aluminum foils by laser-driven ablation, J. Appl. Phys. 50(11), (1979) 6817-6821
    [52] Caressa J-P., M. Autric, D. Dufresne, and Ph. Bournot, Experimental study of CO2-laser-induced air breakdown over long distances, J. Appl. Phys. 50(11), (1979) 6822-6825
    [53] Claire E. Max, C. F. McKee and W. C. Mead, A model for laser driven ablative tmplosions, Phys. Fluids, 23(8), 1980 1620-1645
    [54] DeGroot J. S. and Tull J. E., Heated electron distributions from resonant absorption, The Physics of Fluids, 18 (6), (1975) 672-678
    [55] Girard A. Simons, Momentum transfer to a surface when irradiation by a high-power laser, AIAA Journal, 22, 1275-1280(1984)
    [56] Henderson P. B., Transmission of a Train of Short Intense Laser Pulses, Los Alamos Scientific Laboratory Report, LA-5102-MS(Dec. 1972)
    [57] Holmes B. S., Maher W. E. and Hall R. B., Laser-target interaction near the plasma-formation threshold, J. Appl. Phys. 51 (11), (1980) 5699-5707
    [58] Hettche L. R., Tucker T. R., Schriempf J. T., Mechanical response and thermal coupling of metallic targets to high-intensity 1.06μm laser radiation, J. Appl. Phys. 47, 1415-1421 (1976)
    [59] 赵伊君,强激光与金属的相互作用,全国第二届物理力学会议论文,1986,11,成都
    [60] Reino A. Liukonen, Laser Jet Propulsion, SPIE 3574 (1998) 470-474
    [61] Reilly J. P., A. Ballantyne and J. A. Woodroffe, Modeling of momentum transfer to a surface by laser-supported absorption waves, AIAA Journal, 17(10), (1979) 1098-1105
    [62] Rosen D. I., J. Mitteldorf, G. Kothandaraman, A. N. Pirri, and E. R. Pugh, Coupling of pulsed 0.35-μm laser radiation to aluminum a11oys, J. Appl. Phys. 53 (4), 3190-3200 (1982)
    [63] RosenD. I., Hastings D. E., andG. M. Weyl, Coupling of pulsedO. 35-μm laser radiation to titanium alloys, J. Appl. Phys. 53 (8), 5882-5890 (1982)
    [64] Jarboe T. R., W. B. Kunkel, and A. F. Lietzke, Study of plasma density distribution produced by irradiating a 50μdeuterium pellet on one side with a ruby laser, The Physics of Fluids, 19 (10), (1976) 1501-1506
    [65] Basov N. G., Quantum Electroics Proceeding of the Internation Congress, Paris 1963, 1373-1377
    [66] Maker P. D., Terhune R. W. and Savage C. M., Optical third harmonic generation, in Quantum Electronics Ⅲ, P. Grivet and N. Bloembergen, Ed., New York: Columbia University Press, 1964, 1559
    [67] Kroll N, Watson K M., Theoretical Study of Ionization of Air by Intense Laser Pulses, Institute for Defense Analysis. JASON, Arlington, VA(Dec. 1970)
    [68] Ageev V. P., Barchukov A. I., Bunkin F. V., Experimental and Theoretical Modeling of Laser Propulsion, Acta Astronautica, 1980, 7: 79—90.
    [69] 孙承纬,激光驱动空间飞行器的原理分析.激光的热和力学效应学术会议论文集,广西,北海 2000,1—8.
    [70] 龚平,大气呼吸模式激光推进的研究,中国科技大学博士学位论文,2004
    [71] 谢多夫,力学中的相似方法与量纲理论,北京:科学出版社,1982
    [72] Gregg D. W. and Thomas S. J., Momentum transfer produced by focused laser giant pulses, J. Appl. Phys. 37 (7), (1966) 2787-2789
    [73] Fox J. A., Barr D. N., Laser-induced shock effects in Plexiglas and 6061-T6 aluminum, Appl. Phys. Lett., 22(1973), 594-596
    [74] Eliezer S., Gilath I., Laser-induced spall in metals: Experiment and simulation J. Appl. Phys., 67(2) 1990 715-724
    [75] Cottet F., Boustie M., In "Shock Compression of Condensed Matter-1989", S. C. Schmidt (ed.), Elsevier, (1990), 425
    [76] Caruso A. and Gratton R., Plasma Phys., 10 (1968) 867
    [77] Walters C. T., Initiation of laser-supported-detonation (LSD) waves, J. Appl. Phys. 49 (5), (1978) 2937-2949
    [78] Thomas P. D., Laser absorption wave formation, AIAA Journal 13 (10), 1279-1286(1975)
    [79] 谭维输,中国激光,Vol.11,No.11,1984,641
    [80] 赵伊君,强激光与金属的相互作用,全国第二届物理学会议论文,1986,成都
    [81] 唐志平,李欣增,周光泉等,脉冲强激光在金属靶板中引起的层裂,激光的热和力学效应学术会议论文集,1991,上海
    [82] Zhou G. Q., Tang Z. P., X. Z. Li, Experimental study of spalling strength and the hydro-elastic-viscoplastic constitutive equation with damage, in shock compression of Condensed Matter-1991, S. C. Schmidt et al(eds.), Elsevier Amsterdam, 1992, pp399-402
    [83] 唐志平,李欣增,周光泉等,激光引起金属靶层裂的实验研究,科学通报,37(22),1992,2100—2103
    [84] 唐志平,周光泉,李欣增,铝靶的激光层裂和解析模型,激光的热和力学效应学术会议论文集,北京,1992,pp508-513
    [85] 袁钢,周光泉,唐志平,李欣增,锗靶受强激光辐照的数值模拟研究,激光的热利力学效应学术会议论文集,长沙,1993,pp275-265
    [86] Wheeler C. B., and S. J. Fielding, Absorption of Infra-red Radiation as General Technique for the Determination of Plasma Temperature, Plasma Physics, Vol. 12, (1970) 551-557
    [87] Bayard S. Holmes and David C. Erlich, Surface pressures from laser-supported detonations, J. Appl. Phys. 48(6), 2396-2403 (1977)
    [88] James G. Lunney and Rory Jordan, Pulsed laser ablation of metals, Appl. Surf. Sci., 127-129(1998) 941-946
    [89] Jordan R., D. Cole, J. G. Lunney, Pulsed laser ablation of copper, Appl. Surf. Sci., 86(1995) 24-28
    [90] Knight R. D., Storage of ions from laser-produced plasmas, Appl. Phys. Lett. 38(4), (1981) 221-226
    [91] Knight Charles J., Theoretical Modeling of Rapid Surface Vaporization with Back Pressure, AIAA Journal, 17(5): (1979) 519-525
    [92] Jordan R. and Lunney J. G., Investigation of excimer laser ablation of irons, Appl. Surf. Sci., 127-129(1998) 968-972
    [93] Aden M., E. Beyer, G. Herziger and H. Kunze, Laser-induced vaporization of a metal surface, J. Phys. D: Appl. Phys. 25 (1992) 57-65
    [94] Burnett N. H., G. Josin, B. Ahlborn, and R. Evans, Generation of shock waves by hot electron explosions driven by a CO2 laser, Appl. Phys. Lett. 38(4), (1981) 226-228
    [95] Hettche L. R., Schriempf J. T. and Stegman R. L., Impulse reaction resulting from the in-air irradiation of aluminum by a pulsed CO_2 laser, J. Appl. Phys., Vol.44, 9(1973) 4079-4085
    [96] Nebolsine P. E., Pirri A.N., Pulsed Laser Propulsion, AIAA J. , 1981, 19(1): 127-128
    [97] Lippert T., C. David, M. hauer, Polymers for UV and near-IR irradiation, J. Photochemistry and photobiology A: Chemistry 145 (2001) 87-92
    [98] B. Luk' yanchuk, N. Bityurin, A. Malyshev, S. Anisimov, N. Arnold, D. Bauerle, Photo-physical ablation, High-Power Laser Ablation Conference, SPIE 3343 (1998) 58-68
    [99] Bulgakov A. V. and N. Bulgakova M., Dynamics of laser-induced plume expansion into an ambient gas during film deposition, J. Phys. D: Appl. Phys., 28(1995) 1710-1718
    [100] Manheimer W. M. and Colombant D. G., Steady-state planar ablative flow, Phys. Fluids 25(9), 1644-1652(1982)
    [101] Thareja R. K., Misra A. and Franklin S. R., Investigation of laser ablated metal and polymer plasmasin ambient gas using fast photography, Spectrochimica ACTA part B, 53, 1919-1930, 1998
    [102] Tae Y. Choi and Costas Grigoropoulos P., Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon, J. Appl. Phys., 92, (2002) 4918-4925
    [103] Bulgakov A. V. and N. M. Bulgakova, Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an under-expanded jet, J. Phys. D: Appl. Phys., Vol. 31, 693-703, 1998
    [104] Arnold N., B. Luk' yanchuk, N. Bityurin, and D. Bauerle, Modeling of NS-Laser Ablation: Calculations Based on a Non-stationary Averaging Technique (Spatial Moments), High-Power Laser Ablation Conference, SPIE 3343 (1998) 484-504
    [105] Boardman A. D., Cresswell B. and Anderson J., An analytical model for the laser ablation of materials, Applied Surface Science, 96-98(1996) 55-60
    [106] Gusarov A. V. and Gnedovets A. G., Gas dynamics of laser ablation: Influence of ambient atmosphere, J. Appl. Phys., 88(7), 2000 4352-4364
    [107] Gusarov A. V. and I. Smurov, Target-vapor interaction and atomic collisions in pulsed laser ablation, J. Phys. D: Appl. Phys., Vol. 34, 1147-1156, 2001
    [108] Gasarov A. V. and I. Smurov, Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer, J. Appl. Phys. Vol. 97, 014307, 2005 1-13
    [109] Itina T. E., Marine W. and Autric M., Mathematical modeling of pulsed laser ablated flows, Appl. Surf. Sci., 154-155(2000) 50-65
    [110] Lee K., Forslund D. W., J. M. Kindel, and E. L. Lindman, Theoretical derivation of laser induced plasma profiles, The Physics of Fluids, 20 (1) (1977) 51-54
    [111] Liu C. L., Leboeuf J. N., R. F. Wood, Computational modeling of physical processes during laser ablation, Materials Science and Engineering B47 (1997) 70-77
    [112] Mori K., Katsurayama H., Y. Uirooka, K. Komurasaki, and Y. Arakawa, Conversion of Blast Wave to Impulse in a Pulsed-Laser Thruster. First international Symposium on Beamed Energy Propulsion, 2002, 95~104
    [113] 倪晓武,王文中,陆建,沈中华,强激光致空气击穿过程的数值模拟,兵工学报,1998,Vol.19.134-138
    [114] Vidal F., Laville S., T. W. Johnston et al., Numerical simulations of ultra-short laser pulse ablation and plasma expansion in ambient air, Spentrochimica Acta Part B 56 (2001) 973-986
    [115] H. C. Le, J. Vuillon, D. Zeitoun et al., 2D modeling of laser-induced plume expansion near the plasma ignition threshold, Applied Surface Science 96-98 (1996) 76-81
    [116] Zhuowei Gu, Chengwei Sun, Jianheng Zhao et al., One-dimensional numerical simulation of laser-driven flyer plates, J. Appl. Phys., 96(6), 3486-3489 (2004)
    [117] Mckay J. A., Laufer P. M. AD-A197313, 1987
    [118] S. L. Thompson, H. S. Lauson, SC-RR-70-28, Sandia Laboratories reports
    [119] J. P. Christiansen, D. E. T. F. Ashby and K. V. Roberts, A one-dimensional laser fusion code, Computer Physics Communications 7(1974) 271-287
    [120] 刘成海,激光与靶蒸气相互作用的二维物理模型,北京应用物理与计算数学研究所报告,1989
    [121] 谷卓伟,激光驱动高速飞片的实验和理论研究.博士论文,中国工程物理研究院,2002
    [1] Kantrowitz A., Propulsion to orbit by ground-based Laser, Astronautics and Aeronautics, 10(5), 74-77 (1972)
    [4] Pirri A. N. et al, Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA Journal. 1978, 16(12): 1296~1304
    [5] Pirri A. N., Theory for momentum transfer to a surface with a high-power laser, Phys. Fluids 16(9), 1435 (1973)
    [6] Pirri A. N., Analytic solutions for laser-supported combustion wave ignition above surfaces, AIAA Journal 15(1), 83 (1977)
    [7] Pirri A. N., Theory for laser simulation of hypervelocity impact, Phys. Fluids 20 (2), 221 (1977)
    [8] Phipps C. R., Impulse coupling to targets in vacuum by KrF, HF, and CO_2 single-pulse lasers, J. hppl. Phys. 64 (3), 1083 (1988)
    [9] Phipps C. R., Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths, Laser and Particle Beams 8 (1-2), 281 (1990)
    [10] Phipps C. R., Optimum parameters for laser launching objects into low earth orbit, Laser and Particle Beams 18, 661 (2000)
    [11] Phipps C. R., LISP: laser impulse space propulsion, Laser and Particle Beams 12 (1), 23 (1994)
    [12] Rosen D. I., J. Mitteldorf, G. Kothandaraman, A. N. Pirri, and E. R. Pugh, Coupling of pulsed 0.35-μm laser radiation to aluminum alloys, J. Appl. Phys. 53 (4), 3190 (1982)
    [13] Rosen D. I., D. E. Hastings, and G. M. Weyl, Coupling of pulsed 0.35-μm laser radiation to titanium alloys, J. Appl. Phys. 52 (8), 5882 (1982)
    [14] Thomas P. D., Laser absorption wave formation, AIAA Journal 13 (10), 1279 (1975)
    [15] Walters C. T., Initiation of laser-supported-detonation (LSD) waves, J. Appl. Phys. 49 (5), 2937 (1978)
    [16] Holmes B. S., Laser-target interaction near the plasma-formation threshold, J. Appl. Phys. 51 (11), 5699 (1980)
    [17] Ferriter N. and Maiden D. E., AIAA Journal 15, 1597 (1977)
    [18] 袁钢,强激光作用下金属材料在等离子体点燃阈值附近力学效应研究.硕士论文,中国科技大学,1988
    [19] 龚平,大气呼吸模式激光推进的研究.博士论文,中国科学技术大,2004
    [20] 孙承纬,激光辐照效应,国防工业出版社,2002
    [1] Mckay J. A., Laufer P. M. AD-A197313, 1987
    [2] S. L. Thompson, H. S. Lauson, SC-RR-70-28, Sandia Laboratories
    [3] J. P. Christiansen, D. E. T. F. Ashby and K. V. Roberts, A one -dimensional laser fusion code, Computer Physics Communications 7(1974) 271-287
    [4] 刘成海,激光与靶蒸气相互作用的二维物理模型,北京应用物理与计算数学研究所报告,1989
    [5] 谷卓伟,激光驱动高速飞片的实验和理论研究.博士论文,中国工程物理研究院,2002
    [6] Charles J. Knight, Theoretical Modeling of Rapid Surface Vaporization with Back Pressure, AIAA Journal., 17(5): 519 (1979)
    [7] Phipps C. R., Impulse coupling to targets in vacuum by KrF, HF, and CO_2 single-pulse lasers, J. Appl. Phys. 64 (3), 1083 (1988)
    [8] 孙承纬,激光辐照效应,国防工业出版社,2002
    [1] 李世昌,高温辐射物理与量子辐射理论,国防工业出版社,北京,1992
    [2] Zel' dovich Y. B., and Raizer Y. P., "Physics of shock waves and high-temperature hydrodynamic phenomina", Edited by Hayes W. D., and Probstein R. F., Academic Press, New York, 1966
    [3] 王福恒,王嵩薇,近代科学技术中的原子分子辐射理论,成都科技大学出版社,成都,1991
    [4] 白铭夏,陈建华,田成林,高等量子力学Ⅱ,国防科技大学出版社,长沙,1994
    [5] 曾交龙.使用细致谱项模型研究铝等离子体的辐射不透明度.博士论文.国防科学技术大学.2001
    [6] G. Faussurier, C. Blancard, and A. Decoster, Statistical mechanics of highly charged ion plasmas in local thermodynamics equilibrium, Phys. Rev. E 56, 3474(1997)
    [7] 陈栋泉,陈湘涛.高温气体电离度的近似计算方法[J].计算物理,2(2),148-160,1985
    [8] S. L. Thompson, H. S. Lauson, Improvements in the Chart-D radiation-hydrodynamic code Ⅲ: revised analytic equations of state, SC-RR-71074, Sandia Laboratories 1972
    [1] Itina T. E., W. Marine and M. Autric, Mathematical modeling of pulsed laser ablated flows, Applied Surface Science, 154-155(2000), 60-65
    [2] Glimm J., Comm. Pure. Appl. Math., 1965, 18: 695
    [3] Harten A., High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 1983, 49: 357-393
    [4] Harten A., ENO schemes with subcell resolution. J. Comput. Phys., 1989, 83: 148
    [5] Harten A., On high-order accurate interpolation for non-oscillatory shock capturing schemes, in Oscillation Theory, Computation and Methods of Compensated Compactness, C. Dafermos et al eds. Springer-Verlag, New York, 71-105, 1986
    [6] Harten A., B. Engquist, S. Osher and Chakaravathy S., Some results on uniformly high order essentially non-oscillatory schemes, Appl. Numer. Math., 347-377, 1986
    [7] Harten A., B. Engquist, S. Osher and Chakaravathy S,, Uniformly high order accurate essentially non-oscillatory schemes Ⅲ, J. Comput. Phys., 231-303, 1987
    [8] Cai and C.-W. Shu, Uniform high-order spectral methods for one- and two-dimensional Euler equations. Journal of Computational Physics, vol. 104, 427-443, 1993
    [9] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys., 1999, 150: 97-127
    [10] D. Balsara and C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order accuracy. J. Comput. Phys., 2000, 160: 405-452
    [11] 侯中喜,梁剑寒,王承尧.WENO格式在稳态问题中的应用.空气动力学学报,2001,19:75-82
    [12] 徐振礼,高阶精度的数值格式研究,中国科学技术大学硕士学位论文,2003
    [13] 水鸿寿,一维流体力学差分方法,国防工业出版社,1998
    [1] Charles J. Knight, Theoretical Modeling of Rapid Surface Vaporization with Back Pressure, AIAA Journal., 17(5): 519 (1979)
    [2] 孙承纬,激光辐照效应,国防工业出版社,2002
    [3] D. W. Gregg and S. J. Thomas, J. Appl. Phys. 37, 2787 (1966)
    [4] A. N. Pirri et al, Plasma energy transfer tometal surfaces irradiated by pulsed lasers. AIAA Journal. 1978, 16(12): 1296~1304
    [5] A. N. Pirri, Theory for momentum transfer to a surface with a high-power laser, Phys. Fluids 16(9), 1435 (1973)
    [6] A. N. Pirri, Analytic solutions for laser-supported combustion wave ignition above surfaces, AIAA Journal 15(1), 83 (1977)
    [7] A. N. Pirri, Theory for laser simulation of hypervelocity impact, Phys. Fluids 20 (2), 221 (1977)
    [8] C. R. Phipps et al, Impulse coupling to targets in vacuum by KrF, HF, and CO_2 single-pulse lasers, J. Appl. Phys. 64 (3), 1083 (1988)
    [9] C. R. Phipps et al, Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths, Laser and Particle Beams 8 (1-2), 281 (1990)
    [10] C. R. Phipps et al, Optimum parameters for laser launching objects into low earth orbit, Laser and Particle Beams 18, 661 (2000)
    [11] C. R. Phipps et al, LISP: laser impulse space propulsion, Laser and Particle Beams 12 (1), 23 (1994)
    [12] D. I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, and E. R. Pugh, Coupling of pulsed 0.35-μm laser radiation to aluminum alloys, J. Appl. Phys. 53(4), 3190 (1982)
    [13] D. I. Rosen, D. E. Hastings, and G. M. Weyl, Coupling of pulsed 0.35-μm laser radiation to titanium alloys, J. Appl. Phys. 53 (8), 5882 (1982)
    [14] P. D. Thomas, Laser absorption wave formation, AIAA Journal 13 (10), 1279 (1975)
    [15] Bulgakov A. V. and N. M. Bulgakova, Dynamics of laser-induced plume expansion into an ambient gas during film deposition, J. Phys. D: Appl. Phys., Vol. 28, 1710-1718, 1995
    [16] Gusarov A. V. and I. Smurov, Target-vapor interaction and atomic collisions in pulsed laser ablation, J. Phys. D: Appl. Phys., Vol. 34, 1147-1156, 2001
    [17] Gasarov A. V. and I. Smurov, Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer, J. Appl. Phys. Vol. 97, 014307, 2005
    [18] R. K. Thareja, A. Misra and S. R. Franklin, Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography, Spectrochimica ACTA part B, 53, 1919-1930, 1998
    [19] Zel' dovich Y. B., and Raizer Y. P., "Physics of shock waves and high-temperature hydrodynamic phenomina" , Edited by Hayes W. D., and Probstein R. F., Academic Press, New York, 1966
    [1] Kantrowitz A. Propulsion to orbit by ground-based laser. Astronautics and Aeronautics, 1972, 10(5): 74-76
    [3] Pirri A N, et al. Propulsion by absorption of laser radiation. AIAAJ, 1974, 12(9): 1254-1261
    [3] Pirri A N, et al. Analytic Solutions for Laser-Supported Combustion Wave Ignition above Surfaces. AIAAJ, 1977, 15(1): 83-91
    [4] Pirri A N, Root R G, et al. Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAAJ, 1978, 16(12): 1296-1304
    [5] R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laser-produced plasma in confined geometry, J. Appl. Phys. 68(2), 775(1990)
    [5] Myrabo L N. The Apollo lightcraft project, NASA/USRA advanced design program. Rensselaer Polytech. Institute, 1989
    [6] Phipps C R, Luke J R, Diode laser-driven micro-thrusters: A new departure for micro-propulsion. AIAAJ, 2002, 40(2): 310-318
    [7] Lippert T, Dickinson J T, Chemical and spectroscopic aspects of polymer ablation. Chem. Rev., 2003, 103(2): 453-485
    [8] Phipps C R, Harrison Jr R F, Turner T P, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO_2 single-pulse lasers. J. Appl. Phys. 1988, 64(3): 1083
    [9] Phipps C R, Luke J, Micro laser plasma thrusters for small satellites. Proceeding of SPIE, 2000, 4065: 801
    [10] Phipps C R, Luke J, Lippert T, et al. Micropropulsion using laser ablation. Appl. Phys. A 2004, 79: 1385-1389
    [11] Phipps C R, Luke J, Lippert T, et al. Laser ablation of organic coatings as a basis for micro-propulsion. Thin Solid Films, 2004, 453-454: 573-583
    [12] Phipps C R, Harrison Jr R F, et al. Laser and Particle Beams, 1990(8): 281-298
    [13] Bass M, Nassar M A, Swimm R T, Impulse coupling to aluminum resulting from Nd: glass laser irradiation induced material removal. J. Appl. Phys., 1987, 61(3): 1137-1144
    [14] C. R. Phipps, Daniel B. Seibert Ⅱ et al. Very High Coupling Coefficients at Low Laser Fluence with a Structured Target. Proceedings of SPIE. 2000, 4065: 931
    [15] Andrew V. Pakhomov, M. Shane Thompson et al. Ablative Laser Propulsion: Specific Impulse and Thrust Derived from Force Measurements. AIAA J., 2002, 40(11): 2305
    [16] W. O. Schall et al. Laser propulsion experiments with high-power pulsed CO2-laser. Proceedings of SPIE. 2003, 5120: 619
    [17] C. R. Phipps, J. R. Luke et al. Measurements of Laser Impulse Coupling at 13Ofs. Proceedings of SPIE. 2004, 5448: 1201
    [18] Schall W O., Bohn W L, Eckel H-A, et al. Lightcraft experiments in Germany[A]. Phipps C R. High-power laser ablation Ⅲ, Proc. Of SPIE. 2000: 472
    [19] 许德胜,郭振华,辜建辉.论光动力飞行器.激光技术,1999,23(2):86-90.XU De-sheng, GUO Jian-hui. On lightcraft. Laser Technology, 1999, 23 (2): 86-90
    [20] Jing Li, Huifeng Tong, et al, Multi-use laser impulse pendulum and laser propulsion parameters measurement, CHINESE OPTICS LETTERS, 2004. 11, Vol. 2. No. 11, 650-653
    [21] 唐志平,童慧峰,郭大浩,等.用激光推进轻型飞行器的初步实验研究.激光的热和力学效应学术会议论文集[C].四川绵阳,2001:120-124.
    [22] 龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击,2003,23(6):501-507
    [23] 童慧峰,唐志平,等.“烧蚀模式”激光推进的实验研究.强激光与粒子束,2004,16(11):1380-1384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700