生物型体竞争模型的高分辨率高精度方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物型体竞争模型(Hierarchical size-structured population model)是生物数学中一类非常重要的竞争模型,这一类模型通过生物以型体大小为基础的相互竞争关系描述了生物总数量随时间演变的规律,具有重要而广泛的应用价值,比如森林中各种植物对阳光的竞争模型、动物之间争夺食物与生殖优势的竞争模型等等。计算此类模型的主要难点在于方程的一些系数与边界条件中包含生物密度函数的全局积分,以及方程中包含的非线性的生长率、死亡率和繁殖率等函数。
     本文主要对此类型体竞争模型进行了细致的研究分析,构造发展了一系列便于计算的数值计算格式,包括一阶显式迎风有限差分格式、二阶显式高分辨率有限差分格式和五阶显式高精度有限差分WENO(weighted essentially non-oscillatory)格式,并通过理论分析与大量数值算例证明了这些格式在数值计算这类模型方程中的良好性质与优越性。
     对于一阶迎风格式和二阶高分辨率格式,我们证明了其具有总变差有界即TVB(Total Variation Bounded)性质,进而证明了这两种数值格式的稳定性与收敛性。同时我们分别给出了光滑解和间断解的数值算例验证了这两种数值格式的良好性质。
     针对生物型体竞争模型的具体特点,我们又构造了相应的高阶精度的WENO差分格式,并通过大量数值算例验证了该格式的优异性质。对比一阶迎风格式、二阶高分辨率格式和其他已有的一阶与二阶差分格式,我们的高阶WENO格式展现了其显著的卓越性,在所有计算模型方程的光滑解和间断解的数值算例中,高阶WENO格式都可以使用少得多的格点数来得到更为优异精确的结果。我们又将其应用于食蚊鱼的型体竞争模型(Gambussia affinis),进一步展现了高阶WENO格式的计算优越性。
Hierarchical size-structured population model is an important structured population model in mathematical biology. This model mainly describes the evolution of hierarchically size-structured population at a given time. Hierarchical size-structured population model has been used in modeling many biology problems such as modeling the competition for sunlight in a forest and modeling the competition for food and the advantage of reproduction among some kind of animals. The main technical complication is the existence of global terms in the coefficient and boundary condition for this model with nonlinear growth, mortality and reproduction rates.
     In this paper we develop and discuss three explicit finite difference schemes, namely a first order upwind scheme, a second order high resolution scheme and a fifth order weighted essentially non-oscillatory (WENO) scheme for solving the hierarchical sizestructured population model with nonlinear growth, mortality and reproduction rates.
     For the first order upwind scheme and the second order high resolution scheme, we prove their TVB (Total Variation bounded) property. Then we prove stability and convergence for both schemes and provide numerical examples to demonstrate their capability in solving smooth and discontinuous solutions.
     Secondly we develop a high order explicit finite difference WENO scheme for solving the model. We carefully design approximations to these global terms and boundary conditions to ensure high order accuracy. Comparing with the first order monotone and second order total variation bounded schemes for the same model, the high order WENO scheme is more efficient and can produce accurate results with far fewer grid points. Numerical examples including one in computational biology for the evolution of the population of Gambussia affinis, are presented to illustrate the good performance of the high order WENO scheme.
引文
[1] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. Journal of Computational Physics, 114:45-58, 1994.
    [2] L. M. Abia, O. Angulo, and J. C. Lopez-Marcos. Size-stuctured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical System, Ser. B 4:1203-1322, 2004.
    [3] L. M. Abia, O. Angulo, and J. C. Lopez-Marcos. Age-stuctured population dynamics models and their numerical solutions. Ecological Modeling, 188:112-136, 2005.
    [4] A. S. Ackleh, H. T. Banks, and K. Deng. A finite difference approximation for a coupled system of nonlinear size-structured populations. Nonlinear Analysis, 50:727-748, 2002.
    [5] A. S. Ackleh, K. Deng, and S. Hu. A quasilinear hierarchical size structured model: well-posedness and approximation. Applied Mathematics and Optimization, 51:35-59, 2005.
    [6] A. S. Ackleh and K. Ito. An implicit finite difference scheme for the nonlinear size-structured population model. Numerical Functional Analysis and Optimization, 18:865-884, 1997.
    [7] N. Adams and K. Shariff. A high-resolution hybrid compaet-ENO scheme for shockturbulence interaction problems. Journal of Computational Physics, 127:27-51, 1996.
    [8] O. Angulo, A. Duran, and J. C. Lopez-Marcos. Numerical study of size-structured population models: A case of gambussia affinis. Comptes Rendus Biologies, 328:387-402, 2005.
    [9] O. Angulo and J. C. Lopez-Marcos. Numerical integration of autonomous and nonautonomous nonlinear size-structured population models. Mathematical Biosciences, 177:39-71, 2002.
    [10] O. Angulo and J. C. Lopez-Marcos. Numerical integration of fully nonlinear sizestructured models. Applied Numerical Mathematics, 50:291-327, 2004.
    [11] D. S. Balsara and C.-W. Shu. Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160:405-452, 2000.
    [12] G. I. Bell and E. C. Anderson. Cell growth and division I. A mathematical model with applications to cell volume disturbution in mammalian suspension cultures. Biophysical Journal, 7:329-351, 1967.
    [13] B. Bihari and A. Harten. Application of generahzed wavelets: an adaptive multiresolution Euler equations. Journal of Computational and Applied Mathematics, 61:275-321, 1995.
    [14] K. W. Blayneh. Hierarchical size-structured population model. Dynamical Systems and Applications, 9: 527-540, 2002.
    [15] J. P. Boris and D. L. Book. Flux corrected transport I, SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11:38-69, 1973.
    [16] L. W. Bostford, B. Vondracck, T. C. Wainwright, A. L. Linden, R. G. Kope, D. E. Reed, and J. J. C. Jr. Population development of the mosquitofish, Gambussia affinis, in rice fields. Environmental Biology of Fishes, 2:143-154, 1987.
    [17] W. Cai and C.-W. Shu. Uniform high-order spectral methods for one- and two- dimen- sional eulcr equations. Journal of Computational Physics, 104:427-443, 1993.
    [18] A. Calsina and J. Saldana. Asymptotic behavior of a model of hierarchically structured population dynamics. Journal of Mathematical Biology, 35:967-987, 1997.
    [19] J. Casper and H. Atkins. A finite-volume high-order ENO scheme for two dimensional hyperbolic systems. Journal of Computational Physics, 106:62-76, 1993.
    [20] S. Christofi. The study of building blocks for ENO schemes. PhD thesis, Brown University, 1995.
    [21] P. Colella. A direct eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Computing, 6:104-117, 1985.
    [22] P. Colella and P. Woodward. The piecewise-parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54:174-201, 1984.
    [23] M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Mathematics of Computation, 34:1-21, 1980.
    [24] J. M. Cushing. The dynamics of hierarchical age-structured population. Journal of Mathematical Biology, 32:705-729, 1994.
    [25] J. M. Cushing. An introduction to structured populations dynamics. In CMB-NSF Regional Conference Series in Applied Mathematics. SIAM, 1998.
    [26] J. M. Cushing and J. Li. Juvenile versus adult competition. Journal of Mathematical Biology, 29:457-473, 1991.
    [27] A. Dolezal and S. Wong. Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 120:266-277, 1995.
    [28] R. Donat and A. Marquina. Capturing shock reflections: an improved flux formula. Journal of Computational Physics, 125:42-58, 1996.
    [29] W. E and C.-W. Shu. A numcrical resolution study of high order essentially nonoscillatory schemes applied to incompressible flow. Journal of Computational Physics, 110:39-46, 1994.
    [30] G. Erlebacher, Y. Hussaini, and C.-W. Shu. Interaction of a shock with a longitudinal vortex. Journal of Fluid Mechanics, 337:192-153, 1997.
    [31] A. J. Fabens. Properties andfitting of the von bertalanffy growth curve. Growth, 29:192-153, 1965.
    [32] E. Fatemi, J. Jerome, and S. Osher. Solution of the hydrodynamic device model using high order non-oscillatory shock capturing algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10:232-244, 1991.
    [33] F. Filbet and C.-W. Shu. Approximation of hyperbolic models for chemosensitivc movement. SIAM Journal on Scientific Computing, 27:850-872, 2005.
    [34] O. Friedrichs. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. Journal of Computational Physics, 144:194-212, 1998.
    [35] J. B. Goodman and R. J. LeVeque. A geometric approach to high resolution TVD schemes. SIAM Journal on Numerical Analysis, 25:268-284, 1988.
    [36] S. Gottlieb and C.-W. Shu. Total variation diminishing runge-kutta schemes. Mathematics of Computation, 67:73-85, 1998.
    [37] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability preserving high order time discretization methods. SIAM Review, 43:89-112, 2001.
    [38] M. E. Gurtin and R. C. MacCamy. Nonlinear age-dependent population dynamics. Archive for Rational Mechanics and Analysis, 54:281-300, 1974.
    [39] E. Harabetian, S. Osher, and C.-W. Shu. An eulerian approach for vortex motion using a level set regularization procedure. Journal of Computational Physics, 127:15-26, 1996.
    [40] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49:357-393, 1983.
    [41] A. Harten. ENO schemes with subcell resolution. Journal of Computational Physics, 83:148-184, 1989.
    [42] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate essentially schemes, Ⅲ. Journal of Computational Physics, 71:231-303, 1987.
    [43] A. Harten and S. Osher. Uniformly high order accurate essentially schemes, Ⅰ. Journal of Computational Physics, 34:755-772, 1996.
    [44] A. Harten, S. Osher, B. Engquist, and S. Chakravarthy. Some results on uniformly highorder accurate essentially nonoscillatory schemes. Applied Numerical Mathematics, 2:347-377, 1986.
    [45] A. Harten and G. Zwas. Self-adjusting hybrid schemes for shock computations. Journal of Computational Physics, 9:568-583, 1972.
    [46] S. M. Henson and J. M. Cushing. Hierarchical models of intra-specific competition: scramble versus contest. Journal of Mathematical Biology, 34:755-772, 1996.
    [47] C. Hu and C.-W. Shu. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of Computational Physics, 150:97-127, 1999.
    [48] M. Ianelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs. Giardini Editori e Stampatori, Pisa, 1995.
    [49] A. Iske and T. Soner. On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numerische Mathematik, 74:177-201, 1996.
    [50] J. Jerome and C.-W. Shu. Energy models for one-carrier transport in semiconductor devices. In P. L. W. Coughran, J. Cole and J. White, editors, IMA Volumes in Mathematics and Its Applications, volume 59, pages 185-207. Springer-Verlag, 1994.
    [51] J. Jerome and C.-W. Shu. Transport effects and characteristic modes in the modeling and simulation of submicron devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14:917-923, 1995.
    [52] G. Jiang and D. Peng. Weighted ENO schemes for hamilton-jacobi equations. SIAM Journal on Scientific Computing, 21:2126-2143, 2000.
    [53] G. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126:202-228, 1996.
    [54] E. A. Kraev. Existence and uniqueness for height structured hierarchical population models. Natural Resource Modeling, 14:45-70, 2001.
    [55] L. A. Krumholtz. Reproduction in the western mosquitofish, gambusia affinis (baird and girard), and its use in mosquito control. Ecological Monographs, 18:1-43, 1948.
    [56] F. Ladeinde, E. O'Brien, X. Cai, and W. Liu. Advection by polytropic compressible turbulence. Physics of Fluid, 7:2848-2857, 1995.
    [57] F. Lafon and S. Osher. High-order 2-dimensional nonoscillatory methods for solving hamilton-jacobi scalar equations. Journal of Computational Physics, 123:235-253, 1996.
    [58] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel, 1990.
    [59] D. Levy, G. Puppo, and G. Russo. Central WENO schemes for hyperbolic systems of conservation laws. Mathematical Modelling and Numerical Analysis, 33:547-571, 1999.
    [60] D. Levy, G. Puppo, and G. Russo. compact central WENO schemes for multidimensional conservation laws. SIAM Journal on Scientific Computing, 22:656-672, 2000.
    [61] D. Levy, G. Puppo, and G. Russo. A third order central WENO scheme for 2D conservation laws. Applied Numerical Mathematics, 33:415-421, 2000.
    [62] R. Liska and B. Wendroff. Composite schemes for conservation laws. SIAM Journal on Numerical Analysis, 35: 2250-2271, 1998.
    [63] R. Liska and B. Wendroff. Two-dimensional shallow water equations by composite schemes. SIAM Journal on Numerical Analysis, 30:461-479, 1999.
    [64] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115:200-212, 1994.
    [65] J. A. J. Metz and E. O. Diekmann. The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics. Springer, Heidelberg, 1986.
    [66] L. F. Murphy. A nonlinear growth mechanism in size-structured population dynamics. Journal of Theoretical Biology, 104:493-506, 1983.
    [67] S. Osher. Convergence of generalized MUSCL schemes. SIAM Journal on Numerical Analysis, 22:947-961, 1985.
    [68] S. Osher and S. Chakravarthy. High resolution schemes and the entropy condition. SIAM Journal on Numerical Analysis, 22:955-984, 1984.
    [69] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulation. Journal of Computational Physics, 79:12-49, 1988.
    [70] S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for hamiltonjacobi equations. SIAM Journal on Numerical Analysis, 28:907-922, 1991.
    [71] P. L. Roe. Numerical algorithms for the linear wave equation. Royal Aircraft Establishment Technical Report 81047, 1981.
    [72] J. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Dynamics, Computer Vision, and material Science. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, 1996.
    [73] J. Shen, C.-W. Shu, and M. Zhang. A high order WENO scheme for a hierarchical size-structured model. Submitted to Journal of Scientific Computing.
    [74] J. Shen, C.-W. Shu, and M. Zhang. High resolution schemes for a hierarchical sizestructured model. SIAM Journal on Numerical Analysis, 45:352-370, 2007.
    [75] J. Shi, C. Hu, and C.-W. Shu. A technique of treating negative weights in WENO schemes. Journal of Computational Physics, 175:108-127, 2002.
    [76] C.-W. Shu. TVB uniformly high-order schemes for conservation laws. Mathematics of Computation, 49:105-121, 1987.
    [77] C.-W. Shu. Total-variation-diminishing time discritizations. SIAM Journal on Scientific and Statistical Computing, 9:1073-1084, 1988.
    [78] C.-W. Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes. Journal of Scientific Computing, 5:127-149, 1990.
    [79] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In A. Quarteroni, editor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume 1697 of Lecture Notes in Mathematics, pages 325-432. Springer, 1998.
    [80] C.-W. Shu. High-order finite difference and finite volume WENO schemes and discontinuous galerkin methods for CFD. International Journal of Computational Fluid Dynamics, 17:107-118, 2003.
    [81] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shockcapturing schemes. Journal of Computational Physics, 77:439-471, 1988.
    [82] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ. Journal of Computational Physics, 83:32-78, 1989.
    [83] C.-W. Shu, Y. Zang, G. Erlebacher, D. Whitaker, and S. Osher. High order ENO schemes applied to two and three dimensional compressible flow. Applied Numerical Mathematics, 9:45-71, 1992.
    [84] C.-W. Shu and Y. Zeng. High order essentially non-oscillatory scheme for viscoelasticity with fading memory. Quarterly of Applied Mathematics, 55:459-484, 1997.
    [85] K. Siddiqi, B. Kimia, and C.-W. Shu. Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Computer Vision Graphics and Image Processing: Graphical models and Image Processing (CVGIP:GMIP), 1997.
    [86] J. W. Sinko and W. Streifer. A new model for age-size structure of a population. Ecology, 48:910-918, 1967.
    [87] J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, New York, 1994.
    [88] G. A. Sod. Numerical Methods in Fluid Dynamics. Cambridge University Press, Cambridgc University Press, 1985.
    [89] D. Sulsky. Numerical solution of structured population models Ⅰ. age structure. Journal of Mathematical Biology, 31:817-839, 1993.
    [90] D. Sulsky. Numerical solution of structured population models Ⅱ. mass structure. Journal of Mathematical Biology, 32:491-514, 1994.
    [91] B. van Leer. Towards the ultimate conservative difference scheme Ⅰ. the quest of monotonicity. Springer Lecture Notes in Physics, 18:163-168, 1973.
    [92] B. van Leer. Towards the ultimate conservative difference scheme Ⅱ. monotonicity and conservation combined in a second order scheme. Journal of Computational Physics, 14:361-370, 1974.
    [93] B. van Leer. Towards the ultimate conservative difference scheme Ⅲ. upstreamcentered finite-difference schemes for ideal compressible flow. Journal of Computational Physics, 23:263-275, 1977.
    [94] B. van Leer. Towards the ultimate conservative difference scheme Ⅳ. A new approach to numerical convection. Journal of Computational Physics, 23:276-299, 1977.
    [95] B. van Leer. Towards the ultimate conservative difference scheme Ⅴ. A second order sequel to godunov's method. Journal of Computational Physics, 32:101-136, 1979.
    [96] F. Walsteijn. Robust numerical methods for 2d turbulence. Journal of Computational Physics, 114:129-145, 1994.
    [97] G.F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York, 1985.
    [98] J. Weiner and S. X. Thomas. Size variability and competition in plant monoculturcs. Oikos, 47:211-222, 1986.
    [99] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54:115-173, 1984.
    [100] H. Yang. An artificial compression method for ENO schemes. Journal of Computational Physics, 89:125-160, 1990.
    [101] S. T. Zalesak. Fully multidimensional flux corrected transport algorithms for fluids. Journal of Computational Physics, 31:335-362, 1979.
    [102] S. T. Zalesak. A preliminary comparision of modern shock-capturing schemes: linear advection. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations, volume Ⅵ, pages 15-22. IMACS, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700