胶东乳山英格庄金矿成因矿物学与深部远景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
英格庄金矿位于胶东牟平-乳山金成矿带南部,产出于荆山群与昆嵛山杂岩体接触带内,为黄铁矿石英脉型金矿。该金矿主要包括4条矿脉,矿体受NNE向金牛山主断裂构造控制,平均金品位4.32×10-6。
     矿石类型以石英黄铁矿和多金属硫化物矿石为主。矿石矿物组成为黄铁矿等金属硫化物矿物、石英和碳酸盐矿物等。矿石结构以粒状结构和碎裂结构为主,矿石构造以块状构造、浸染状构造和脉状构造为主。金矿物包括银金矿和金银矿,以包裹金、粒间金和裂隙金为主要赋存形式。成矿作用划分为黄铁矿石英、石英黄铁矿、多金属硫化物和石英碳酸盐4个阶段。围岩蚀变类型包括钾长石化、钠长石化、绢云母化、绢英岩化、硅化、黄铁矿化、碳酸岩化和绿泥石化。
     本区黄铁矿晶形以五角十二面体及其与立方体以及八面体的聚形为主,由浅至深,由成矿早阶段至主成矿阶段,聚形晶发育且晶形变复杂,表明体系硫逸度升高,温度相对升高。主量元素分析结果为黄铁矿成分总体贫硫,黄铁矿以热液成因为主。微量元素分析揭示英格庄金矿成矿热液以岩浆热液为主,成矿早阶段有围岩老地层的参与作用。稀土元素地球化学分析结果为黄铁矿稀土配分模式为右倾型,主成矿阶段黄铁矿稀土元素配分模式基本一致。黄铁矿热电系数范围为-346.1~342.7μν/℃,热电导型多为P型与N型混合型,P型出现率平均为64%。南、北井黄铁矿P型出现率表明矿床南部相对抬升。P型和N型黄铁矿结晶温度均值分别为148.9℃和349.1℃。根据本区黄铁矿P型出现率与金品位的变化一致性,推测I号矿体由南向北P型出现率的凹陷区深部,II-1矿体和II-3矿体深部成矿前景良好。
     本区矿石矿物稳定同位素(He、Pb和S)分析结果显示成矿流体是以壳源为主的壳幔混合流体,成矿物质主要来源于下地壳和少量幔源物质,并有围岩荆山群地层的加入。石英H-O同位素分析表明成矿流体为岩浆水与大气水的混合流体。石英流体包裹体的分析测试表明英格庄金矿为中浅成中低温低盐度热液金矿,成矿流体总体属Na+(K+)-(Ca2+)-Cl-(SO42-)型,气相成分以气相水为主,其次为CO2、H2及少量CO、CH4和N2,主成矿阶段成矿流体为弱酸性,呈还原性质。
The Yinggezhuang gold deposit which is a pyrite-quartz vein gold deposit is located in the south of Mouping-Rushan gold-deposit belt of Jiaodong Peninsular,occuring in the contact zone of the Jingshan group and the Kunyushan granitic complex body.The gold deposit is controlled by the Jinniushan fault which strikes in NNE,including 4 gold lodes whose average gold grade is 4.32×10-6.
     The ore types are mainly quartz-pyrite ores and polymetallic sulfide ores,composed of metal sulfide minerals,quartz and carbonate minerals.The textures of ores are dominated by granular texture and cataclastic texture.The structures of ores are predominant in massive structure , dense disseminated structure and vein structure.The gold minerals including kustelite and electrum occur in the form of enclosed gold,intergranular gold and fissure gold.The mineralization stages contain pyrite-quartz,quartz-pyrite,polymetallic sulfides and quartz-carbonate stages.The types of wall rock alteration include potassic alteration,albitization,sericitization,sericite-quartz alteration , silicification , pyritization , carbonatization and chloritization.
     The morphological characteristic of pyrite is mainly pentagonal dodecahedron and the combination form of pentagonal dodecahedron,cube and octahedral.The phenomenon that the combination form grows and the crystal shape becomes complicated during the major ore forming stage or in the deeper part shows the fugacity of sulfur and the temperature are increased in these conditions.The fact that the composition of pyrite is depleted in sulfur on the analysis of major element demonstrates that pyrite are magmatic origin.The analysis of trace element indicates that the ore forming fluid are maily magmatic hydrothermal and in the early metallogenic stage the country rocks work in the metallogeny.The analysis of REE reveals that the REE distribution pattern of pyrite is right deviation pattern and is unanimous in the samples of major metallogenic stage.The thermoelectric coefficient of pyrite ranges from -346.1μν/℃to 342.7μν/℃.The conduction type is mainly mixture of type P and type N and the average appearace rate of type P is 64%.The difference of the appearace of type P between the south and north mine shows that the south of gold deposit is higher uplifted.The crystallization temperatures of pyrite of type P and type N are 148.9℃and 349.1℃.On the basis of the accordance of gold grade and the occurrence of type P good ore forming prospects of the concave field of the occurrence of type P mapping and the deep part of II-1 and II-3 ore bodies are presumed.
     The analysis of stable isotopes of ore mineral(sHe,Pb and S)suggest that the ore forming fluid is the mixture of crust origin and mantle origin fluid,mainly of crust,and the metallogenic materials are originated from the lower crust with a little mantle material and the Jingshan group.The hydrogen-oxygen isotope analysis of quartz demonstrates that the ore forming fluid is a mixture of magma fluid and meteoric water.The measurements and analysis of quartz fluid inclusions show that the gold deposit is a hydrothermal gold deposit formed in mid-shallow,mid-low temperature,low salinity condition.The ore forming fluid is the type of Na+(K+)-(Ca2+)-Cl-(SO42-)on the basis of the liquid phase composition of quartz fluid inclusion and the gas phase composition of quartz fluid inclusion is minaly H2O,as well as CO2,H2,CO,CH4 and N2.On the calculation of the liquid and gas phase composition of quartz fluid inclusion the ore forming fluid of the main ore forming stage is in weak acid and reduction conditions.
引文
Abdulkader M Afifi,William C Kelly and Eric J Essene.1988.Phase Relations among Tellurides,Sulfides,and Oxides:II.Applications to Telluride-Bearing Ore Deposits.Economic Geology,83:395-404.
    Bajwah Z U,Seccombe P K,Offler R.1987.Trace element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia.Mineral Deposita,22:292-300.
    Baptiste P J,Fouquet Y,1996.Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N.Geochimica et Cosmochimica Acta,60:87-93.
    Bodnar R J. Pressures-volume-temperature-composition (PVTX) properties of the system H2O-NaCl at elevated temperatures and pressures:[Ph.D.dissertation].:Penn.State Univ.,1985.
    Boynton W V.1984.Geochemistry of the rare earth elements:meteorite studies.In:Henderson P.(ed.).Rare earth element geochemistry.Elsevier,pp.63-114.
    Brill B A.1989.Trace-element contents and partitioning of elements in ore minerals fro the CSA Cu-Pb-Zn deposit,Australia.Can Mineral 27:263-274.
    Claton R N,O’Neil J R and Mayeda T K.1972.Oxygen isotope exchange between quartz and water.of Hydrothermal Alteration and Ore Deposition.Economic Geology,69:843-883.
    James A Grant.1986.The Isocon Diagram-A Simple Solution to Gresens’Equation for Metasomatic Alteration.Econimic Geology,81:1976-1982.
    Koppers A A P,Morgan J P,Morgan J W,et al.2001.Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails.Earth and Planetary Science letters,185(3-4):237-252.
    Koppers A A P,Staudigel H and Duncan R A.2003.High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin . Geochemistry Geophysics Geosystems, 4(11):8914.
    Li Q L,Chen F K,Yang J H,et al.2008.Single grain pyrite Rb-Sr dating of the Linglong gold deposit,eastern China.Ore Geology Reviews,34(3):263-270.
    Mamyrin B A , Tolstikhin I N . 1984 . Helium isotopes in nature , In : Fyfe W S ,(ed.).Developments in geochemistry.Elsevier,Amsterdam,273.
    Mao J W,Wang Y T,Zhang Z H,et al.2003.Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas(Implication from the highly precise and accurate ages of metal deposits).Sci.China Ser.D,45:833-851.
    Mark H Reed and James Palandri.2006.Sulfide Mineral Precipitation from Hydrothermal Fluids.Reviews in Mineralogy & Geochemistry,61(11):609-631.
    Mills R A and Elderfield H.1995.Rare earth element geochemistry of hydrothermal deposits from the active TSG Mond,26°N MidAtlantic Ridge.Geochim.Cosmochim.Acta,59:3511-3524.
    Murowchick J B,Barnse H L.1987.Effects of temperature and degree of supersaturation on pyrite morphology.Am Miner,72:1241-1250.
    Ohmoto H . 1972 . Systematic of sulfur and carbon isotopes in hydrot hermal ore deposits.Economic Geology,67:551-578.
    Oreskes N and Einaudi M T.1990.Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit,Roxby Downs,South Australia.Econ.Geol.,85:1-28.
    Pirajno F,Bagas L.2002.Gold and silver metallogeny of the South China Fold Belt:a consequence of multiple mineralizing events?.Ore Geol.Rev.,20:109-126.
    Podosek K A,Bernatowica T J,Kramer F E.1980.Absorption of xenon and krypton on shales.Geochimica et Cosmochimica Acta,45:2401-2415.
    Rodder E.1992.Fluid inclusion evidence for immiscibility in magmatic differentiation.Geochim Cosmochim Acta,56:5- 20.
    Romberger S B.1990.The transport and deposition of gold in hydrothermal systems In:Greenstone Gold and Crustal evolution NUNA Conference volume,61-66.
    Seward T M.1973.Thio complexes of gold and the transport of gold in hydrothermal ore solutions,Geochim et.Cosmochim.Acta,37:379-399.
    Seward T M.1991.The hydrothermal geochemistry of gold.In:Groves D I,(ed.).Gold Metallogeny and Exploration Glasgow:Blackie,37-62.
    Shanon R D.1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst.,A32,751-767.
    Sillitoe R H . 1989 . Gold deposits in western Pacific island arcs : the magmatic connection.Econ.Geol.,Monograph 6:274-291.
    Simmons S F,Sawkins F J,Schlutter D J.1987.Mantle-derived helium in two Peruvian hydrothermal ore deposits.Nature,329:429-432.
    Stuart F M,Burnard P G,Taylor R P,et al.1995.Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation,South Korea.Geochim Cosmochim Acta,59:4663-4673.
    Stuart F M,Turner G,Duckworth R C,et al.1994.Helium isotopes as tracers of trapped hydrothermal fluids in ocean floor sulfides.Geology,22:823-826.
    Sun W D,Ding X,Hu Y H,et al.2007.The golden transformation of the Cretaceous plate subduction in the west Pacific.Earth and Planetary Science Letters,262(3-4):533-542.
    Sun W D,Li S G,Chen Y D,et al.2002.Timing of synorogenic granitoids in the South Qinling,Central China:Constraints on the evolution of the Qinling-Dabie orogenic belt.J.Geol.,110:457-468.
    Trull T W,Kurz M D,Jenkins W J.1991.Diffusion of cosmogenic 3He in olivince and quartz:Implications for surface exposure dating.Earth and Planetary Science Letters,103:241-251.
    Turner G,Stuart F.1992.Helium/heat rations and deposition temperatures of sulfides from the ocean floor.Nature,375:581-583.
    Wessel P,Kroenke L.1997.A geometric technique for relocating hotspots and refining absolute plate motions.Nature,387(6631):365-369.
    Xu G.1998.Geochemistry of sulphide minerals at Dugald River, NW Queensland,with reference to ore genesis.Mineralogy and Petrology,63:119-139.
    Yang J H,Wu F Y and Wilde S A.2003.A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning.Ore Geol.Rev.,23:123-152.
    Yang J H,Zhou X H.2001.Rb-Sr,Sm-Nd,and Pb isotope systematics of pyrite:implications for the age and genesis of lode gold deposits.Geology,29:711-714.
    Yin A,Nie S Y.1996.A Phanerozoic paliinspastic reconstruction of China and its neighboring regions.In:Yin A,Harrison T M(eds.).The Tectonic Evolustion of Asia.Cambridge:Cambridge Univ.Press,442-485.
    Zartman R E,Doe B R.1981.Plumbotectonics-the model.Tectonophysic,75:135-162.
    Zhai M G,Yang J H,Fan H R,et al.2002.A large-scale cluster of gold deposits and metallogenesis in the eastern China craton.International Geol.Rev.,44:458-476.
    Zhai M G,Yang J H and Liu W J.2001.Large clusters of gold deposits and large-scale metallogenesis in the Jiaodong Peninsula,eastern China.Sci.China Ser.D,44:758-768.
    Zhou T H,Goldfarb R J,Philips G N.2002.Tectonics and distribution of gold deposits in China—an review.Miner.Dep.,37:249-282.
    Zhou T H,Lu G X.2000.Tectonics,granitoids and Mesozoic gold deposits in East Shandong,China.Ore Geol.Rev.,16:71-90.
    安家桐,于东斌,沈昆,等.1988.山东牟平-乳山地区金矿控矿条件的研究,见:沈阳地
    矿所,中国金矿主要类型区域成矿条件文集(5,胶东地区).北京:地质出版社,33.
    B.A格里年科,Л.Н格里年科.1980.硫同位素地球化学.北京:科学出版社,131.
    毕献武,胡瑞忠,彭建堂,等.2004.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示.矿物岩石地球化学通报,23(1):1-4.
    
    陈光远,孙岱生,周珣若,等.1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版社,9,84.
    陈光远,孙岱生,邵岳.1996.胶东昆嵛山二长花岗岩副矿物成因矿物学研究.现代地质,10(2):175-186.
    陈懋弘,吴六灵,Phillip J.Uttley,等.2007.贵州锦丰(烂泥沟)金矿床含砷黄铁矿和脉石英及其包裹体的稀土元素特征.岩石学报,23(10):2423-2433.
    陈衍景,Franco PIRAJNO,赖勇,等.2004.胶东矿集区大规模成矿时间和构造环境.岩石学报,20(4):907-922.
    杜乐天,刘若新,邓晋福.1996.地幔流体与软流层(体)地球化学.北京:地质出版社,456-457.
    范蔚茗,郭峰.2005.华北地区晚中生代镁铁质岩浆作用及其地球动力学背景.大地构造与成矿学,29(1):44-45.
    郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21 (4) :1281-1301.
    贺振,张学仁.2006.山东英格庄金矿床构造控矿特征及深部预测.矿床地质,25(2):175-182.
    侯增谦,杜安道,孙卫东.2001.黑矿型矿床成矿物质来源:日本上向黑矿铼-锇和氦同位素证据.地质学报,75(1):97-105.
    姜能,张文淮.1996.内蒙古赤峰莲花山金矿床成矿物理化学条件及成矿机理.地球化学,25(1):73-83.
    胡芳芳,范宏瑞,杨进辉,等.2004.胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定.科学通报,49(12):1191-1198.
    胡芳芳,范宏瑞,杨进辉,等.2006.胶东乳山金矿蚀变岩中绢云母40Ar/39Ar年龄及其对金矿成矿事件的制约.矿物岩石地球化学通报,25(2):109-114.
    胡芳芳,范宏瑞,杨奎峰,等.2007.胶东牟平邓格庄金矿床流体包裹体研究.岩石学报,23(9):2155-2164.
    胡受奚,孙景贵,凌洪飞,等.2001.中生代苏-鲁活动大陆边缘榴辉岩、煌斑岩、金矿及富集地幔间的成因联系.岩石学报,17(3):425-435.
    胡受奚,王鹤年,王德滋,等.1998.中国东部金矿地质学及地球化学.北京:科学出版社,343.
    胡受奚,赵懿英,徐金方,等.1997.华北地台金矿地质.北京:科学出版社,220.
    胡文瑄,孙国曦,张文兰,等.2005.山东乳山金矿中金-银碲化物的矿物学特征与沉淀机理.矿物学报,25(2):177-182.
    寇大明,黄菲,姚玉增,等.2009.黄铁矿晶体形貌学研究进展.矿物学报,29(3):333~337.
    李秉伦.1986.矿物中包裹体气体成分的物理化学参数图解.地球化学,15(2):126-137.
    李国华,王大伟,黄志良.2001.黄铁矿含金机理探讨.地质与资源,10(2):102-105.
    李红兵,曾凡治.2005.金矿中的黄铁矿标型特征.地质找矿论丛,20(3):199-203.
    李胜荣,陈光远,邵伟,等.1996.胶东乳山金矿田成因矿物学.北京:地质出版社,1-24.
    李士先,刘长春,安郁宏,等.2007.胶东金矿地质.北京,地质出版社:12-13,229.
    黎彤.1976.化学元素的地球丰度.地球化学,5(3):167-174.
    李兆龙,杨敏之,等.1993.胶东金矿床地质地球化学,天津:天津科学技术出版社,38.
    梁崇标.胶东东部金牛山断裂内初家沟及其南部金矿床找矿矿物学与成矿机理的研究:[博士学位论文].北京:中国地质大学(北京),1993.
    刘斌.1999.流体包裹体热力学.北京:地质出版社,260.
    刘英俊,马东升.1991.金的地球化学.北京:科学出版社,48,247-248.
    卢焕章,范宏瑞,倪培,等.2004.流体包裹体.北京:科学出版社,205-208.
    路远发.2004.Geo Kit:一个用VBA构建的地球化学工具软件包.地球化学,33(5):459-464.
    栾世伟.1987.金矿地质及找矿方法.成都:四川科学技术出版社,78-84.
    毛光周,华仁民,高剑峰,等.2006.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征,矿床地质, 25(4):412-426.
    孟繁聪,孙岱生,李胜荣,等.2001.山东烟台南张家金矿黄铁矿的标型特征.现代地质,15(2):231-237.
    裴玉华,严海麒.2006.河南省嵩县前河金矿床黄铁矿的标型特征及其意义,地质与勘探, 42(3):56-60.
    裘有守,王孔海,崔克英,等.1988.山东牟平-乳山地区变质岩和花岗岩含金性及其与金矿成矿关系,见:沈阳地矿所,中国金矿主要类型区域成矿条件文集(5,胶东地区).北京:地质出版社,156.
    邵洁涟.金矿找矿矿物学[M].武汉:中国地质大学出版社,1988:38-45.
    邵洁涟,梅建明.1984.河北平泉某次火山型金矿床的黄铁矿研究.黄金,5(5):1-6.
    邵伟,陈光远,孙岱生.1990.黄铁矿热电性研究方法及其在胶东金矿的应用.现代地质, 4(1):46-57.
    孙丰月,金巍,李碧乐,等.2000.关于脉状热液金矿成矿深度的思考.长春科技大学学报(专辑),(30):27-30.
    孙晓明,徐克勤,任启江.1992.吉林省夹皮沟金矿区两类不同金矿床的发现及其在华北地台上的普遍意义.科学通报,(14):1299-1301.
    孙卫东,凌明星,汪方跃,等.2008.太平洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学通报,27(3):218-225.
    盛继福,李岩,范书义,1999,大兴安岭中段铜多金属矿床矿物微量元素研究,矿床地质,18(2):153~160.
    涂光炽,高振敏,胡瑞忠,等.2004.分散元素地球化学及成矿机制.北京:地质出版社,268-317.
    王濮.1987.系统矿物学.北京:地质出版社,231-501.
    王义文,朱奉三,宫润谭.2002.构造同位素地球化学——胶东金矿集中区硫同位素再研究.黄金,23 (4):1-16.
    王勇,莫宣学,董方流,等.2004.云南巍山-永平矿集区碰撞成矿流体系统成矿物理化学条件分析,矿物岩石,24(3):72-81.
    王真光,张姿旭.1991.矿物包裹体成分物理化学参数的计算程序.地质与勘探,27(7):22-27.
    魏存弟.2001.辽宁五龙金矿黄铁矿标型特征.地质找矿论丛,16(2):136-138.
    邢树文,孙景贵,李东旭,等.2003.胶东晚中生代金矿成矿的硫同位素组成及热动力源.吉林大学学报(地球科学版,33(2):141-146.
    徐洪林,张德全,孙桂英.1997.胶东昆嵛山花岗岩的特征、成因及其与金矿的关系.岩石矿物学杂志,16(2):131~143.
    薛春纪,陈毓川,王登红,等.2003.滇西北金顶和白秧坪矿床:地质和He,Ne,Xe同位素组成及成矿时代.中国科学(D辑),33(4):315-322.
    杨忠芳,徐景奎,赵伦山,等.1998.胶东区域地壳演化与金成矿作用地球化学.北京:地质出版社,33~53.
    叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质谱分析,岩矿测试,20(3):174-178.
    余宇星.山东乳山英格庄金矿矿物学填图与深部预测:[学士学位论文].北京:中国地质大学(北京),2009.
    袁见齐,朱上庆,翟裕生.1985.矿床学.北京:地质出版社,92-98.
    翟明国,朱日祥,刘建明,等.2003.华北中生代构造体制转折的关键时限.中国科学(D),33(10):913-920.
    翟明国,范宏瑞,杨进辉,等.2004.非造山带型金矿——胶东型金矿的陆内成矿作用.地学前缘,11(1):85-98.
    翟裕生,苗来成,向运川,等.2002.华北克拉通绿岩带型金成矿系统初析.地球科学-中国地质大学学报,27(5):522-531.
    张复新,申萍.1996.陕西镇安丘岭微细浸染型金矿床成矿物理化学条件及成矿机制研究.地质与勘探,32(5):8-15.
    张国伟,张本仁,袁学诚,等.2001.秦岭造山带与大陆动力学.北京:科学出版社,855.
    张华峰,翟明国,何中甫,等.2004.胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义.岩石学报,20(3):369-380.
    张华锋,翟明国,童英,等.2006.胶东半岛三佛山高Ba-Sr花岗岩成因.地质论评,52(1):43–53.
    张华锋,李胜荣,翟明国,等.2006.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义.岩石学报,22(2):285-295.
    赵洁心,鲍明学.焦家金矿床黄铁矿标型特征及含金性分析,黄金,2007,9(28):19~23.
    郑建平.1999.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社,110-112.
    郑明华,张寿庭,刘家军,等.2001.西南天山穆龙套型金矿床产出地质背景与成矿机制.北京:地质出版社,84-89.
    朱炳泉.1998.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.北京:科学出版社,225-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700