~(131)Ⅰ标记抗胃泌素释放肽前体单链抗体scFv的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:研究(131)~I标记抗胃泌素释放肽前体( Pro-gastrin-releasing peptide(31-98), ProGRP_((31-98)))单链抗体scFv在正常昆明小鼠及荷小细胞肺癌裸鼠的体内分布规律,并对荷小细胞肺癌裸鼠进行初步显像,探讨(131)~I-anti-ProGRP_((31-98)) scFv作为特定肿瘤显像剂的可能性。
     研究方法:
     1.利用流式细胞仪和免疫组化两种方法分别检测小细胞肺癌NCI-H446、宫颈癌Hela、大细胞肺癌H460和肺腺癌A549细胞株及其组织中的ProGRP表达情况。
     2.采用氯胺-T法标记制备(131)~I-anti-ProGRP_((31-98)) scFv;凝胶柱分离法分离纯化标记产物;纸层析法测定标记产物的标记率、放化纯;将(131)~I-anti-ProGRP_((31-98))scFv分别置于37℃水浴箱及与正常人血清混合后在不同时间点测定放化纯以了解其稳定性;通过细胞结合分析法测定标记产物的免疫活性。
     3.自正常昆明小鼠尾静脉注射(131)~I-anti-ProGRP_((31-98)) scFv后,于不同时间点剪断颈动脉处死小鼠,取血液及各主要脏器组织标本,计算每克组织注射百分剂量率(%ID/g)。利用NCI-H446细胞建立人小细胞肺癌荷瘤裸鼠模型,自尾静脉注射(131)~I-anti-ProGRP_((31-98)) scFv后,于不同时间点处死裸鼠并取血液、移植瘤及各主要脏器组织标本,计算不同时间点各脏器组织的%ID/g和瘤体/非瘤体组织放射性计数比值(T/NT值)。
     4.对小细胞肺癌荷瘤裸鼠模型进行(131)~I-anti-ProGRP_((31-98)) scFv初步显像,观察移植瘤的大体显像情况,利用ROI技术在显像图上勾画移植瘤轮廓并计算瘤体与对侧相同部位的T/B值。
     研究结果:
     1.流式细胞仪检测显示NCI-H446、Hela、H460及A549细胞株ProGRP的表达率分别为95%、77%、53%和4%。免疫组化检测结果显示,小细胞肺癌、宫颈癌及大细胞肺癌组织切片的细胞胞浆内均有二氨基联苯胺(DAB)染色阳性颗粒分布,而肺腺癌组织切片中未见明显染色阳性细胞。
     2. (131)~I-anti-ProGRP_((31-98)) scFv标记率为93.35±0.67%,标记产物纯化后即刻放化纯为98.49±1.21%;在37℃水浴箱中放置24 h后放化纯为94.30±0.41%,48 h后测定仍大于90%,与正常人血清充分混合在37℃水浴箱中放置24 h后放化纯为83.61±2.19%,48 h测定大于80%;(131)~I-anti-ProGRP_((31-98)) scFv对NCI-H446和A549细胞株的免疫结合率分别为85.36%、21.02%。
     3. (131)~I-anti-ProGRP_((31-98)) scFv在正常昆明小鼠和小细胞肺癌荷瘤裸鼠体内主要通过肝脏、肾脏代谢,血液及各主要脏器组织的清除速度快,脑组织和肌肉组织摄取不明显,符合单链抗体在机体内的一般代谢分布规律。注射12 h后移植瘤体的%ID/g高于其他脏器及组织,24 h达到最高为5.38±0.92%。T/NT值随时间的延长逐渐升高,至注射后24 h基本达到最高。
     4.注射(131)~I-anti-ProGRP_((31-98)) scFv 1 h后,小细胞肺癌移植瘤部位出现放射性浓聚,随时间延长移植瘤部位的放射性浓聚程度逐渐增强,至24 h最为清晰。
     结论:
     1. (131)~I-anti-ProGRP_((31-98)) scFv标记简便,标记率及放化纯高,体内外稳定性好,主要通过肝肾代谢,血液及各主要脏器廓清速度较快。
     2. (131)~I-anti-ProGRP_((31-98)) scFv在小细胞肺癌荷瘤裸鼠体内的分布结果表明,它可在移植瘤组织内积聚,瘤体与主要器官的T/NT值随时间延长而上升,至24 h到达最高值。
     3. (131)~I-anti-ProGRP_((31-98)) scFv有望成为一种新型的小细胞肺癌放射免疫显像剂,值得进一步深入的研究。
Objective:
     To evaluate the biodistribution of (131)~I labeled anti-ProGRP_((31-98)) scFv in healthy Kunming mice, tumor-bearing mice and primarily perform the imaging in nude mice bearing human small cell lung cancer so as to investigate the feasibility of (131)~I- anti- ProGRP_((31-98)) scFv as a new tumor tracer for diagnosing of certain tumors.
     Methods:
     1. The ProGRP expression in NCI-H446, Hela, H460 and A549 cell lines was detected respectively by flow cytometry and its expression in these tumor tissues was estimated by immunohistochemistry.
     2. Chloramine-T method was used for (131)~I labeling anti-ProGRP_((31-98)) scFv; (131)~I-anti-ProGRP_((31-98)) scFv was purified by gel column separation method; Labeling efficiency and radiochemical purity were measured by paper chromatography; (131)~I-anti-ProGRP_((31-98)) scFv was incubated with healthy serum at 37℃, and radiochemical purity was measured at different time to determine the stability of labeled product; Immunocompetence of labeled product was determined with cell conjugation assay. 3. Biodistribution study was performed following an i.v.injection (given via the tail
     vein) of (131)~I-anti-ProGRP_((31-98)) scFv. Healthy Kunming mice were sacrificed by cutting off carotid artery at designated time points in group, and the blood and major organs were removed, weighed, and counted in a gamma scintillation counter to determine the %ID/g (percentage of injected dose related to the organ weight) for each radioactive substance. In the same way, major organs and transplanted tumor tissues of nude mice bearing human small cell lung cancer were sampled for calculating %ID/g and tumor/non-tumor (T/NT) ratios.
     4. After injection of (131)~I-anti-ProGRP_((31-98)) scFv, continuous images of the nude mice bearing SCLC were initially carried out at different time, and then tumor/base(T/B)ratios were calculated.
     Results:
     1. The expression rates of ProGRP in NCI-H446, Hela, H460, A549 cell lines were 95%, 77%, 53% and 4% respectively. The results of immunohistochemistry showed that positive granules (DAB staining) were distributed in intracytoplasm of small cell lung cancer, cervical cancer and large cell lung cancer, no obvious staining cells were found in lung adenocarcinoma.
     2. The labeling rate of (131)~I-anti-ProGRP_((31-98)) scFv was 93.35±0.67%, and the radiochemical purity was 98.49±1.21%. After incubation at 37οC for 24 h, the radiochemical purity was 94.30±0.41%, and still maintained above 90% at 48 h. Meanwhile, after incubation with healthy human serum for 24 h, the radiochemical purity was 83.61±2.19%, and still maintained above 80% at 48 h. The immunobinding rates of NCI-H446 cell and A549 cell were 85.36% and 21.02%.
     3. The vivo distribution of (131)~I-anti-ProGRP_((31-98)) scFv in the normal Kunming mice and nude mice bearing human small cell lung cancer showed that the metabolism of (131)~I-anti-ProGRP_((31-98)) scFv mainly depended on liver and kidney with rapid elimination in blood and other main organs, the brain and muscle did not uptake much, and it was consistent with general scFv. The %ID/g of tumor was obviously higher than that of other organs at 12 h and arrived at top 5.38±0.92% at 24 h post-injection. The T/NT ratio increased gradually and arrived at top at 24 h.
     4. The tumor of nude mice bearing SCLC was visualized at 1 h after injection of (131)~I-anti-ProGRP_((31-98)) scFv, The radioactivity in tumor site accumulated gradually and the tumor image became the clearest at 24 h post-injection.
     Conclusions:
     1. Labeling of (131)~I-anti-ProGRP_((31-98)) scFv is easy, it not only has high labeling efficiency and radiochemical purity, but also has good stability in vitro and in vivo. (131)~I-anti-ProGRP_((31-98)) scFv was metabolized mainly in kidney and liver, the blood and other major organs radioactivity of (131)~I-anti-ProGRP_((31-98)) scFv decreased rapidly.
     2. The biodistribution in SCLC tumor-bearing mice showed that (131)~I-anti-ProGRP_((31-98)) scFv can be accumulated in tumor, the ratios of T/NT increased as time prolongs and arrived at top at 24 h.
     3. (131)~I-anti-ProGRP_((31-98)) scFv has the potential to become radioimmunoimaging agent of SCLC. It deserves further study.
引文
1.范理虹,陈岗,陆舜,等.神经内分泌分化在非小细胞肺癌新辅助化疗疗效中的价值[J].中国癌症杂志,2006,16(2):116-119.
    2. Kazuhiro Uchida, Akira Kojima, Nasa Morokawa, et al. Expression of progastrin- releasing peptide and gastrin-releasing peptide receptor mRNA transcripts in tumor cells of patients with small cell lung cancer [J]. J Cancer Res Clin Oncol, 2002, 128 (12):633-640.
    3. McDonald TJ, Ghatei MA, Bloom SR, et al. A qualitative comparison of canine plasma gastroenteropancreatic hormone response to bombesin and the porcine gastrin-releasing peptide (GRP) [J]. Regul Pept, 1981, 2(5):293-304.
    4. Hans-Jürg Monstein, Niclas Grahn, Mikael Truedsson, et al. Progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA expression in non-tumor tissues of the human gastrointestinal tract [J]. World J Gastroenterol, 2006, 12(16):2574-2578.
    5. Van de Wiele C, Phonteyne P, Pauwels P, et al. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry [J]. Journal of Nuclear medicine, 2008, 49(2):260-264.
    6. Taglia L, Matusiak D, Matkowskyj KA, et al. Gastrin-releasing peptide mediates its morphogenic properties in human colon cancer by upregulating intracellular adhesion protein-1 (ICAM-1) via focal adhesion kinase [J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(1):G182-G190.
    7. Visser M, Weerden WM, Ridder CM, et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts [J]. Journal of Nuclear Medicine, 2007, 48(1):88-93.
    8. Charitopoulos KN, Lazaris AC, Aroni K, et al. Immunodetection of gastrin-releasing peptide in malignant melanoma cells [J]. Melanoma Res, 2000, 10(4):395-400.
    9. Cornelio DB, Meurer L, Roesler R, et al. Gastrin-releasing peptide receptor expression in cervical cancer [J]. Oncology, 2007, 73(5/6):340-345.
    10. Knigge U, Holst JJ, knuhtsen S, et al. Gastrin-releasing peptide: pharmacokinetics andeffects on gastro-entero-pancreatic hormones and gastricsecretioninnormalmen [J]. JClinEndocrinolMetab, 1994, 59:310-315.
    11.张家祺,王迎难.胃泌素释放肽前体在小细胞肺癌诊断及预后的临床价值[J].国际肿瘤学杂志, 2007,34(3):216.
    12. Oremek GM, Sapoutzis N. Pro-gastrin-releasing peptide (Pro-GRP), a tumor marker for small cell lung cancer [J]. Anticancer Res, 2003, 23(2A):895-898.
    13.马可,王欣,于洋.胃泌素释放肽前体对小细胞肺癌检出的诊断价值[J].中国实验诊断学,2010,14(12):2016-2017.
    14.徐巧玲,周小林,石怡珍,等.抗ProGRP(31-98)单克隆抗体E-B5的131I标记及体内生物学分布研究[J].中华核医学杂志,2009,29(4):274-278.
    15.石怡珍,周小林,徐巧玲,等.131I-抗ProGRP(31-98)单克隆抗体E-B5放射免疫显像及放射免疫治疗实验研究[J].中华核医学杂志,2010,30(2):110-115.
    16.陈传新,石怡珍,杨仪,等.抗ProGRP(31-98)单克隆抗体D-D3的131I标记及其体内生物学研究分布[J].重庆医学,2011,40(8):752-754.
    17. Davda JP, Jain M, Batra SK, et al. A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs [J]. Int Immunopharmacol, 2008, 8(3):401-413.
    18.孙艳,茹炳根.疾病的导向显像研究[J].生物工程进展,1999,19(1):42-47.
    19. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli [J]. Proc.Natl.Acad.Sci.USA, 1988, 85(16):5879-5883.
    20.王新峰,王俊玲,吴艳华. Pro-GRP、NSE、CYFRA21-1、CEA联合检测在肺癌诊断中的应用研究[J].医学检验与临床,2009,20(4):57-59.
    21.高晓天,周小林,梁克,等.抗胃泌素释放肽单克隆抗体在小细胞肺癌诊断应用[J].中国热带医学,2009,9(1):51-52.
    22. Maruno K, Yamaguchi K, Abe K, et al. Immunoreactive gastrin-releasing peptide as a specific tumor marker in patiens with small cell lung carcinoma [J]. Cancer Res, 1989, 49(2):629-632.
    23. Miyake Y, Kodama T, Yamaguchi K, et al. Progastrin-releasing peptide (31-98) is aspecific tumor marker in patients with small cell lung carcinoma [J]. Cancer Res, 1994, 54(8):2136-2140.
    24.余文聘,郑小河,吴洁文,等.胃泌素释放肽前体在小细胞肺癌诊断中的研究进展[J].汕头大学医学院学报,2004,17(2):127-129.
    25. Nordlund MS, Fermer C, Nilsson O, et al. Production and characterization of monoclonal antibodies for immunoassay of the lung cancer marker ProGRP [J]. Tumour Biol, 2007, 28(2):100-110.
    26.魏莉,罗荣城.放射性核素标记抗CD20单克隆抗体治疗B细胞淋巴瘤的研究进展[J].国际放射核医学杂志医学,2006,30(3):153-157.
    27.范我,强亦忠主编.核药学教程[M].哈尔滨:哈尔滨工程大学出版,2005:74-76.
    28.王世真.分子核医学.第2版.北京:中国协和医科大学出版社,2004:253-256.
    29.刘长征,张汝森.氯胺-T法和Iodogen法碘标记抗体的比较[J].中山医科大学学报, 1995, 16(3):43-46.
    30. Goel A, Augustine S, Baranowska- Kortylewicz J, et al. Single-Dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using
    131I-labeled multivalent CC49 single-chain fvs [J]. Clin Cancer Res, 2001, 7(1): 175- 184.
    31.张长英,成文彩.人卵巢癌裸鼠皮下移植瘤模型的建立[J].武汉科技大学学报(自然科学版),2001,24(1):97-98.
    32.杨卫东,李彪,朱承谟,等.抗癌胚抗原单链抗体与核心链霉亲和素融合蛋白在荷瘤裸鼠体内的预定位显像[J].中华核医学杂志, 2006, 22(6):328-330.
    33.张歌萌,乔宏庆,刘彦仿,等.抗肝癌抗原单链抗体在荷人肝癌裸鼠体内的放射免疫显像效果[J].第四军医大学学报, 2003, 24(14):1253-1255.
    34. Todorovska A, Roovers RC, Dolezal O, et al. Design and application of diabodies, triabodies and tetrabodies for cancer targeting [J]. J Immunol Methods, 2001, 248(1-2):47-66.
    35. Kipriyanov SM, Little M. Generation of recombinant antibodies [J]. Mol Biotechnol, 1999, 12(2):173-201.
    1. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immuno- conjugates [J]. Nat Biotechnol, 2005, 23 (9):1137-1146.
    2. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains [J]. Nat Biotechnol, 2005, 23(9):1126-1136.
    3. Weibo Cai, Tove Olafsen, Xiangzhong Zhang, et al. PET Imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti–carcinoembryonic antigen diabody [J]. Journal of Nuclear Medicine, 2007, 48(2):304-310.
    4. Chames P, Baty D. Antibody engineering and its applications in tumor targeting and inracellular immunization [J]. FEMS Microbiol Lett, 2000, 189(1):1-8.
    5.庞华,罗弋,李少林.人源肺腺癌单链抗体基因文库的构建[J].重庆医科大学学报, 2008, 33(11): 1284-1287.
    6. Ulrich B. Recombinant antibody fragments and immunotoxin fusions for cancer therapy [J]. In Vivo, 2000, 14(1):21-28.
    7. Kuan CT, Reist CJ, Foulon CF, et al. 125I-labeled anti-epidermal growth factor receptor-vIII single chain Fv exhibits specific and high-level targeting of glioma xenografts [J]. Clin Cancer Res, 1999, 5(6):1539-1549.
    8. Davda JP, Jain M, Batra SK, et al. A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs [J]. International Imunopharmacology, 2008, 8(3):401-413.
    9. Ferl GZ, Kenanova V, Wu AM, et al. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments [J]. Molecular Cancer Therapeutics, 2006, 5(6):1550-1558.
    10. Jain M, Chauhan SC, Singh AP, et al. Penetratin improves tumor retention of single- chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors [J]. Cancer Res, 2005, 65(17):7840-7846.
    11. Mayer A, Tsiompanou E, Boxer GM, et al. Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody [J]. Clin Cancer Res, 2000, 6(5):1711-1719.
    12. Pavlinkova G, Booth BJM, Batra SK, et al. Radioimmunotherapy of human colon cancer xenografts using a dimeric single-chain Fv antibody construct [J]. Clin Cancer Res, 1999, 5(9):2613-2619.
    13. Svecova H, Kleinova V, Seifert D, et al. Radioiodination of mouse anti-IIIβ-tubulin antibodies and their evaluation with respect to their use as diagnostic agents for peripheral neuropathies [J]. Applied Radiation and Isotopes, 2008, 66(3):310–316.
    14. Grillo-Lopez AJ. Zevalin: the first radioimmunotherapy approved for the treatment of lymphoma [J]. Expert Review of Anticancer Therapy, 2002, 2(5):485-493.
    15. Shaw DM, Embleton MJ, Westwater C, et al. Isolation of a high affinity scFv from a monoclonal antibody recognizing the oncofoetal antigens 5T4 [J]. Biochim Biophys Acta, 2000, 1524(2-3):238-246.
    16. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli [J]. Proc Natl Acad Sci, 1988, 85(16):5879-5883.
    17. Hudson PJ, Sourian C. Engineered antibodies [J]. Nature Med, 2003, 1:129-134.
    18. Fan D, Yano S, Shinohara H, et al. Targeted therapy against human lung cancer in nude mice by high-affinity recombinant antimesothelin single-chain Fv immunotoxin [J]. Mol Cancer Ther, 2002, 1(8):595-600.
    19. Rubio Demirovic A, Marty C, Console S, et al. Targeting human cancer cells with VEGF receptor-2-directed liposomes [J]. Oncol Rep, 2005, 13(2):315-324.
    20. Ueno A, Arakawa F, Abe H, et al. T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody [J]. Anticancer Res, 2002, 22(2A):769-776.
    21. Bucheit AD, Kumar S, Grote D M, et al. An oncolytic measles virus engineered to enter cells through the CD 20 antigen [J]. Mol Ther, 2003, 7:62-72.
    22. Shaw DM, Embleton MJ, Westwater C, et al. Isolation of a high affinity scFv from a monoclonal antibody recognizing the oncofetal antigens 5T4 [J]. Biochimica et Biophys Acta, 2000, 1524(2-3):238-246.
    23. Wang FQ, Shang BY, Zhen YS. Antitumor effects of the molecule-downsized immunoconjugate composed of lidamycin and Fab’fragment of monoclonal antibody directed against type IV collagenase [J]. Science in China Series C: Life Sciences, 2004, 47(1):66-73.
    24. Cornelia M, Zuzana LM, Saodra S, et al. Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1(TEMl), a new reagent for targeted tumor therapy [J]. Cancer Lett, 2006, 235(2):298-308.
    25. Kenanova V, Olafsen T, Williams LE, et al. Radioiodinated versus radiometal-labeled anti–carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy [J]. Cancer Res, 2007, 67(2):718-726.
    26.包贺菊,李亚明,于彤,等. 99Tcm标记的ND1重组单链抗体在荷人结肠癌裸鼠体内分布及放射免疫显像研究[J].中国临床医学影像杂志, 2006, 17(Suppl):41-43.
    27.李彪,朱承谟,杨卫东,等.抗癌胚抗原单链抗体在荷人结直肠癌裸鼠体内的分布和放免显像[J].中华核医学杂志,1999,19(3):143-145.
    28.王军伟,师建国,汪静,等. 99mTc螯合两种抗肝癌单链抗体的标记条件[J].第四军医大学学报, 2006,27(15):1391-1394.
    29.袁清安,俞炜源.肝癌特异性鼠源及人源化单链抗体基因的构建及在大肠杆菌中的表达[J].生物工程学报, 2000,16(1):86-90.
    30.赵君,孙志伟,刘彦仿.二硫键稳定的抗肝癌单链抗体-PE38融合基因的构建、表达与功能检测[J].细胞与分子免疫学杂志, 2003,19(6):585-587.
    31.王军伟,师建国,汪静,等. 99mTc标记抗肝癌单链抗体的生物分布及放射免疫显像的初步研究[J]. Modern Oncology, 2006,14(6):710-712.
    32.张歌萌,乔宏庆,刘彦仿,等.抗肝癌抗原单链抗体在荷人肝癌裸鼠体内的放射免疫显像效果[J].第四军医大学学报,2003,24(14):1253-1255.
    33. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer [J]. Biochim Biophys Acta, 1994, 1198(2-3):165-184.
    34. Fehm T, Maimonis P, Katalinic A, et al. The prognostic significance of c-erbB-2 serum protein in metastatic breast cancer [J]. Oncology, 1998, 55(1):33-38.
    35. Yarden Y. Biology of HER2 and its importance in breast cancer [J]. Oncology, 2001, 61(2):1-13.
    36.汪海洋,刘海波,董艳秋,等. 125I标记的抗p185抗体的体外代谢与体内生物学分布[J].细胞与分子免疫学杂志,2005,21(5):591-594.
    37.牛瑞芳,常克力,朱殿清,等.乳腺癌单链抗体制备及其在荷人乳腺癌裸鼠中的放免显像[J].中国肿瘤临床, 2001,28(10):729-732.
    38. Wolf P, Alt K, Wetterauer D, et al. Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer [J]. Journal of Immunotherapy, 2010, 33(3):262-271.
    39. Zitzmann S, Mier W, Schad A, et al. A new prostate carcinoma binding peptide (DPU-1) for tumor imaging and therapy [J]. Clin Cancer Res, 2005, 11(1):139-146.
    40.王洁,李建国,庞华,等.抗HIF-1α肺腺癌人源单链抗体的制备和放射免疫显像[J].第三军医大学学报,2010,32(17):1851-1853.
    41.洪智慧,周小林,石怡珍,等. 131I标记抗胃泌素释放前体单链抗体的制备及其稳定性和免疫活性的研究[J].国际放射医学核医学杂志,2010,34(2):107-109.
    42. Shankar S, Vaidyanathana G, Kuanb CT, et al. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance [J].Nuclear Medicine and Biolog, 2006, 33(1):101-110.
    43. Reilly RM, Maiti PK, Kiarash R, et a1. Rapid imaging of human Melanoma xenografts using an scFv fragment of the human monoclonal anti-body H11 labelled with 111In [J]. Nucl Med Commun, 2001, 22(5):587-595.
    44. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogennic therapies [J]. Curr Pharm Des, 2004, 10(13):1439-1455.
    45. Birchler MT, Thuerl C, Schmid D, et al. Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment [J]. Otolaryngology–Head and Neck Surgery, 2007, 136(4):543-548.
    46. Hao HJ, Jiang YQ, Zheng YL, et al. Improved stability-and yield Fv targeted superantigen by introducing both linker and disulfide bond into the targeting moiety [J]. Biochimie, 2005, 87(8):661-667.
    47. Schuermann JP, Prewitt SP, Davies C, et al. Evidence for structural plasticity of heavy chain complementarity--determining region 3 in antibody-ssDNA recognition [J]. JMol Bid, 2005, 347(5):965-978.
    48. Paul S, Nishiyama Y, Planque S, et al. Theory of proteolytic antibody occurrence [J]. Imnmnol Lett, 2006, 103(1):8-16.
    49. Wittel UA, Jain M, Goel A, et al. The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs [J]. Nucl Med Biol, 2005, 32(2):157-164.
    50. Kenanova V, Olafsen T, Williams LE, et al. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy [J]. Cancer Res, 2007, 67(2):718-726.
    51. Goel A, Augustine S, Baranowska- Kortylewicz J, et al. Single-Dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using
    131I-labeled multivalent CC49 single-chain fvs [J]. Clin Cancer Res, 2001, 7(1):175-184.
    52. Kim MK, Jeong HJ, Kao CH, et al. Improved renal clearance and tumor targeting of Tc-labeled anti-Tac monoclonal antibody Fab by chemical modifications [J]. Nucl Med Bio, 2002, 29:139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700