福建黄兔微卫星多态性及其与生长性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选用8个微卫星标记与福建黄兔的基因组进行PCR扩增,扩增结果用聚丙烯酰胺凝胶电泳进行分型,分析微卫星标记的多态性及其与生长性状的关联。结果表明:
     在福建黄兔三个品系6个群体的8个微卫星座位共检测到49个等位基因,每个座位平均6.1,最多为7个,最少为5个。其中,22个等位基因为6个群体所共有。所选用的8个微卫星座位的杂合度在0.5904~0.7267之间,平均为0.6857。多态信息含量在0.5723~0.7222之间,平均为0.6622。
     计算了6个群体的遗传距离,并构建了系统聚类图。遗传距离最近的是连江与连城群体,为0.1206;遗传距离最远的是连城与上杭群体,为0.4446。聚为三类:黄毛品系连江与连城群体聚为一类;黑毛品系中上杭与德化群体先聚为一类,而后再与大田群体聚到一起;白毛品系聚为一类。
     通过最小二乘分析微卫星遗传标记与体重、体尺性状的相关。结果显示:微卫星座位Sol33 209bp等位基因可能对1月龄体重有较强的正面影响;座位Satl2 125bp和座位Sol33201bp等2个等位基因可能对3月龄体重有较强的正面影响;座位Sol33 213bp等位基因可能对8月龄体重有负面影响;微卫星座位Sol03中如果242bp等位基因的正面影响存在,240bp等位基因可能对8月龄体重有较强的负面影响;座位Sol44 217bp、座位Sol33 213bp以及座位Sol03 236bp等3个等位基因可能对体长性状有正面影响;座位Sol44 227bp、座位Sol33 213bp以及座位Sol03 244bp等3个位基因可能对胸围性状有正面影响;座位Sol44203bp等位基因可能对胸围性状有负面影响。这为进一步QTL定位提供理论依据。
Eight microsatellite markers were chosed to analyze correlation between polymorphims of microsatellite markers, body size and body weight of Fujian yellow rabbit through PCR-PAGE method. The results indicated:
     There were 49 alleles in eight microsatellite loci, and each locus had 6.1. The most was 7 and the least was 5.There are 21 alleles in common in six populations.The average heterozygosit(H) was 0.6857,ranging 0.5904 from 0.7267.The average polymorphism information content(PIC) was 0.6622,ranging from 0.5723 to 0.7222.
     The genetic distance between population and the dendrogram were calculated.The genetic distances between lianjiang populations and liancheng populations was the nearest(0.1206).The genetic distances between liancheng population and shanghang population was the furthest (0.4446).The cluster analysis results showed that 6 populations were divided into three categories:1) lianjiang and liancheng,2) shanghang.dehua and datian,3)shouning.
     On the other side,least square means were analyzed. Many genotypes of microsatellites were significant correlations with body size and body weight.The allele 209bp of Sol33 had a positive effect on first month' weight.The allele 125bp of Satl2 and allele 201bp of Sol33 had a strong positive impact on 1-month-old weight. The allele 213bp of Sol33 may have a negative impact on the 8-month-old weight. If allele 242bp of Sol03 had a positive impact, the allele 240bp had a strong negative impact on the 8-month-old weight. The allele 217bp of Sol44, allele 213bp of Sol33 and allele 236bp of Sol03 had a positive impact on stem length.The allele 213bp of Sol33, allele 170bp of Sol30 and allele 244bp of Sol03 may have a positive impact on chest circumference. The allele 203bp of Sol44 may have a negative impact on chest circumference.This will provide a theoretical basis for further QTL.
引文
[1] 张细权,李加琪,杨关福.动物遗传标记[M].北京:中国农业大学出版社,1997:71~76.
    [2] Allard R. W.. The genetics of inbreeding populations[J]. Adv Genet, 1968, 14: 55~131.
    [3] Price S. C. Estimates of population differentiation obtained from enzyme polymorphisms and quantitative characters[J]. J hered, 1984, 75: 141~142.
    [4] Hamrick. JL. Association between the breeding system and the genetic structure of tropical tree population In Linhart. J(eds) [J]. Evolution Ecology of Plant,Boulder:Westview press,1989,129~146.
    [5] Schall.B.A.et al.Comparison of methods for assessing genetic variation in plant conservation biology, In Falk D. A. and K. E. Holsinger(eds) [J]. Genetics and Conservation of Rare Plants, New York: Oxford University Press, 1991, 123~134.
    [6] Ve nable. D L. Using intra specific variation to study the ecological significance and evolution of plant life histories, In Dirzo R. and Sarukhan(eds) [J]. Perspectives on Plant Population ecology. Sunderland: sinauer. 1984, 166~187.
    [7] 夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59~65.
    [8] Bandoc O L, Flor M C G T, Rehollos S D N, et al. Variations in karyotypic characteristics of difference breed group in water buffaloes (bubalus bubalis) [J]. Asian-Aust J Anim Sci., 2002, 15(3): 321~325.
    [9] 刘莉,谢芳,成荣等.泰和乌骨鸡染色体G-带、Ag-NORs与生产性能关系[J].扬州大学学报(农业与生命科学版),2003,24(3):23~28.
    [10] 贾永红等.遗传标记及其在动物遗传育种中的应用(上)[J].黄牛杂志,1998,24(6):45~46.
    [11] 王偕根,陈国宏,张学余等.鹿苑鸡核型及其与生产性能的相关性研究[J].中国家禽,2003,25(6).
    [12] 何颖,杨建华.家鸡血液生化遗传标记与产蛋相关性状间基因多效/连锁效应浅析[J].湖南农业科学,2005(3):77~78.
    [13] 窦全林,白文林.山羊乳生化遗传标记的研究进展[J].西南民族学院学报(自然科学 版),2002,28(2):216~218.
    [14] 张才骏,王勇,卢福山等.柴达木黄牛生化遗传标记的研究[J].青海畜牧兽医杂志,2001,31(6):3~5.
    [15] 黄勇富.中国主要地方猪种遗传多样性及起源分化研究[D].四川农业大学博士论文,1996.
    [16] 王林云.猪白细胞抗原复合体的研究现状和应用前景[J].Anim. Biotech Bulletin, 1996(suppl):15~19.
    [17] Casas-Carillo E, Prill: Adams A,Price S G & Kirkpatrick B W.Association of Growth hormone and Insulin-like growth facter-1 genotypes with growth and the carcass traits in offspring of purebred swine[C]. Proc 5th World Congr Genet Appl Livest Prod, 1994, 21: 272~275.
    [18] Fujii J. Detection of the HAL gene in swine:a point mutation in the skeletal Muscle ryanodine receptor gene(RYR) [J]. Anim. Genet, 1993, 21(5): 6~61.
    [19] Max Rothschild, Carol Jacodson, Dawid Vaske.The estrogen receptor locus in associated with a major gene influencing litter size in pigs[J]. Proc.Natl Acad.Sci,USA,1996,93:201~205.
    [20] 朱化彬.PCR法鉴别哺乳动物胚胎性别的研究[J].国外畜牧科技,1995(25):26~31.
    [21] Williams, J. G. K, Kubelik A,R,Liavk.K.J.DNA polymorphism amplified by arbitrary primers is useful as genetic markers[J]. Nucl Acids Ros, 1990, 18: 6531~6535.
    [22] Welsh. J. K. Fingerprinting genoms using PCR with arbitary primers[J]. Nucleic Acids research, 1990, 18: 7213~7218.
    [23] Levin. l. L, Dodgson, J. B. Genetic map of the chicken Z chromosome using Random Amplified Polymorphic DNA (RAPD)markers[J]. Genomics, 1993, 16: 224~230,
    [24] Wci. R, Dontine. M, Bitgord.J.J.Identification of RAPD markers in crosses between inbred lines of Rhode Island[J]. Red. Livest Prod, 1994, 21: 41~44.
    [25] 陈民利,赵伟春,应华忠,WHBE兔遗传特异性的RAPD分析[J].浙江大学学报(农业与生命科学版),2005,31(4):493~498.
    [26] 霍金龙,苗永旺,李莲军三个鸡品系遗传关系的RAPD分析[J].云南农业大学学报,2006,21(2):222~227.
    [27] Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting[J]. European Patent Application Animal Science, 1996, 23(1): 11~25.
    [28] 张英杰,山羊微卫星DNA多态性检测及杂交优势预测[D].甘肃农业大学博士后研究报告,2004.
    [29] Weber J L. Information of human (dC-dA)n(dG-dT)n polymorphisms [J]. Genomics, 1990(7): 524~530.
    [30] Ranajit, Chakraborty, et al. Relative mutation rates at di-,tri-,and tetranucleotide microsatellite loci[J]. Proc Natl Acad Sci. USA, 1997, 94: 1041~1046.
    [31] Guillermo orti-, Devon E. Pearse, John C. Avose, et al. Phylogenetic assessment of length variation at a microsatellite locus[J]. Proc Natl Acad Sci. USA, 1997(94): 10745~10749.
    [32] Levinson G, et al. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Mol Biol Evo1, 1987, 4(3).
    [33] 樊斌.地方猪遗传多样性的微卫星DNA标记检测与评估方法研究[D].华中农业大学博士研究生学位论文,2002,7.
    [34] Beckmann J S, Weber J L. Survey of human and rat microsatellites[J]. Genomics, 1992(12): 627~631.
    [35] Winter A K, Fredholm M. Thomsen PD Vsriable(dG-dT)n(dA-Dc)n sequences in the porcine genome[J]. Genomics, 1992(12).
    [36] 刘榜.微卫星DNA作为遗传标记的优点及前景[J].湖北农业科学,1997(2):49~51.
    [37] 樊斌,微卫星标记检测遗传多样性的原理和方法[C].第十次全国动物遗传育种学术论会论文集,1999:32~36.
    [38] 吴登俊等.家畜基因组遗传多态性标记—微卫星标记研究进展[J].国外畜牧科技,1999(26):37~40.
    [39] 徐莉.等微卫星DNA标记技术及其在遗传多样性研究中的应用[J].西北植物学报,2002,22(3):714~722.
    [40] Moore S, S, Sargeant L.L, King T.J,et al.The conservation of dinucleiotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species[J]. Genomics, 1991(10): 654~670.
    [41] Arevalo E, Holder D, Derr J, et al. Caprine microsatellite diinucleotide repeat polymorphisms at the SR-CRSP-1, SR-CRSP-2, SR-CRSP-3,SR-CRSP-4,SR-CRSP-5 loci [J]. Animal Genetics, 1994(25): 645~651.
    [42] 杨澜.用五个牛微卫星在四个山羊品种中DNA多态性的检测[C].第六次全国畜禽遗传标记研讨会论文集,1998:101~103.
    [43] M J de Gortari, et al. Extensive genomic conservation of cattle microsatellite heterozygosity in sheep [J]. Animal Genetics. 1997(28): 274~290.
    [44] 储明星等.小尾寒羊4个微卫星座位的克隆及序列分析[J].遗传学报,2002,29(5):402~405.
    [45] 张润锋.陕西荷斯坦牛遗传多态性与泌乳性状关系的分子标记研究[D].西北农林科技大学,2004,6.
    [46] Rico C, Rico I, Webb N.. Four polymorphic microsatellite loci for the European rabbit (Oryctolagus Cuniculus) [J]. Anim. Genet, 1994, (5): 367.
    [47] F-Mougel, J-C Mounolou, M Monnerot. Nine polymorphic microsatellite loci in the rabbit Oryctolagus cuniculus[J]. Animal Genetics, 1997(28): 58~71.
    [48] Guillaume Queney, Nuno Ferrand, Steven Weiss, et al. Stationary. Distributions of Microsatellite Loci Between Divergent Population Groups of the European Rabbit (Oryctolagus cuniculus) [J]. Mol. Biol. Evol, 2001, 18(12): 2169~2178.
    [49] Korstanje R, Gillissen G F, Kodde L P et al. Mapping of microsatellite loci and association of aorta atherosclerosis with LG VI markers in the rabbit Physiol[J]. Genomics, 2001(6): 11~18.
    [50] U Kryger, T. J. Robinson, P. Bloomer. Isolation and characterization of six polymorphic microsatellite loci in South African hares (Lepus saxatilis F. Cuvier, 1823 and Lepus capensis Linnaeus, 1758) [J]. Molecular Ecology, 2002(2): 422~424.
    [51] 朱玉峰.家兔群体遗传变异的微卫星标记研究[D].中国人民解放军军需大学硕士学位论文,2003.6.
    [52] 龚明川.肉兔微卫星标记遗传多态性分析及其与体重性状的相关研究[D].四川农业大学硕士学位论文,2004.6.
    [53] 韩春梅,张嘉保,高庆华等.微卫星DNA在吉戎兔亲子鉴定中的应用研究遗传[J],2005,27(6):903~907.
    [54] 李庚航.长毛兔微卫星标记多态性与生产性能相关研究[D].四川农业大学硕士学位论文,2005,6.
    [55] 赵进,张金枝,郭晓令等.长毛兔微卫星标记初步分析[J].浙江农业科学,2006(3):333~334.
    [56] 谢光美.长毛兔微卫星多态性及其与产毛量和体重的相关研究[D].四川农业大学硕士学 位论文,2006,6.
    [57] Van Haeringen W. A., Bieman M. den, van Zutphen LFM., et al. Polymorphic microsatellitie DNA markers in the rabbit(Oryctolagus cuniculus L.)[J]. Experimental Animal Science, 2001 (38): 49~57.
    [58] Koh M.C, Lim C. H, Chua S. B. et al. Random amplified polymorphic DNA (RAPD) fringerprints for identification of red meat animal species[J]. Meat Science,1998,48:(3,4), 275~285.
    [59] 杨丽萍,张玉笙,高运东等.家兔RAPD分析反应体系的优化[J].山东农业科学,1999(5):15~17
    [60] Gissi C: Gullberg A, Amason U,The complete mitochondrial DNA sequence of the rabbit (Oryctolagus cuniculus L.) [J]. Genomics, 1998, 50(2): 161~169.
    [61] 秦树臻,吴平,周开亚等.福建黄兔线粒DNA的限制性内切酶分析[J].中国养兔杂志,1993(5):5~6.
    [62] 龙继蓉.中国家兔遗传多样性研究[D].四川农业大学博士学位论文,2001,5.
    [63] Fox R. R. &van Zutphen L. F. M. Chromosomal homology of rabbit (Oryctolagus cuniculus linkage group Ⅵ with rodent species[J]. Genetics, 1979(93): 183~188.
    [64] Gellin J., G. Echacd, M. Yerle etal. Localization of the a and β casein genes to the q24 region of chromosome 12 in the rabbit (Oryctolagus cuniculus)by in situ hybridization[J]. Cytogenet Cell Genet, 1985(39): 220~223.
    [65] Mahoney C. E., Picciano S. R., Button K. M., Martin-Deleon P. A. Regioal mapping of the creative kinase B (CKBB) gene in rabbit (Oryctolagus cuniculus) and man using a rat cDNA probe[J]. Cytogenetics and cell Genetics, 1988(48): 160~163.
    [66] Martin-Deleon P. A., Location of the 18S and 28S rRNA cistrons in the genome of the domestic rabbit (Oryctolagus cuniculus L.)[J]. Cytogenetics and cell Genetics, 1980(28):34~40.
    [67] 尤珩.福建省家畜家禽品种志和图谱[M].福州:福建科学技术出版社,1985:13~13.
    [68] J萨姆布鲁克,D.W.拉塞尔.分子克隆试验指南(第三版)[M].北京:科学出版社,2003.
    [69] Bostein. D, White R. L. Construction of a genetic linkage maps in man using restriction fragment length polymorphisms [J]. Amer.J. Hum. Genet, 1980, 32: 314~331.
    [70] Takezake N., Nei, M, Genetic Distance and Reconstruction of Phylogenetic Tree From Microsatellite DNA[J]. Genetics. 1996, 144: 389~399.
    [71] 赵家平.部分家兔品种微卫星DNA遗传多样性研究[D].中国农业科学院硕士学位论文,2006,6.
    [72] 沈立权.微卫星DNA标记与新扬州蛋用性状的相关研究[D].扬州大学硕士学位论文,2004,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700