杉木端粒相关序列和5S rDNA序列分析及染色体定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从杉木中克隆了两段端粒相关序列TAS1和TAS2,并对杉科植物墨西哥落羽杉、池杉、落羽杉、中山杉、东方杉的5S rDNA基因进行了克隆测序,与杉科其他植物的5S rDNA基因进行同源性分析。首次应用染色体荧光原位杂交技术在杉木染色体上定位了端粒相关序列TAS1和5S rDNA基因。
     利用单引物在杉木中进行PCR扩增,得到两段杉木端粒相关序列,在NCBI上进行比对,推测TAS1和TAS2可能来自于杉木不同的染色体,表明即使是同一物种的同一个体,端粒相关序列之间同源性也是很低的,具有很高的多态性。
     分别对墨西哥落羽杉、池杉、落羽杉、中山杉、东方杉的5S rDNA基因进行克隆测序,与杉木、柳杉和水杉的5S rDNA基因进行同源性分析,表明:杉木与中山杉、东方杉、落羽杉、水杉、池杉的5S rDNA基因区相似度不是很高,与柳杉和墨西哥落羽杉的相似度较低,而柳杉与其他6种树种的相似度最低,亲缘关系最远,说明它们在进化过程中5S rDNA基因变异较大。东方杉5S rDNA基因区与母本墨西哥落羽杉的相似度达到99.2%,与父本柳杉的相似度为84.9%,推测东方杉5S rDNA与母本墨西哥落羽杉的相似度高可能是致同进化现象。而中山杉,水杉、池杉的5S rDNA基因区的相似度达到100%,推测中山杉,水杉、池杉的5S rDNA的致同进化表现基本一致。
     首次采用杉木端粒相关序列作为探针,利用FISH技术在杉木减数分裂中期Ⅰ染色体上进行定位,发现有4个信号点。用杉木5S rDNA基因作为探针在杉木根尖有丝分裂染色体上进行定位,在细胞核和中期染色体上均发现有2个信号点。
In the study, two telomere-associated sequences, TAS1 and TAS2 were isolated from Cunninghamia Lanceolata. The 5S rDNA gene sequences of Taxodium mucronatum、T. ascendens.Brongn、T. distichum、T.distichum×T. mucronatum、T. mucronatum×Cryptomeria fortunei were cloned and sequenced, then compared with other plants. It was the first time to localize the TAS1 and 5S rDNA on Chromosomes of Cunninghamia Lanceolata by FISH (Fluorescence in situ hybridization).
     Two telomere-associated sequences, TAS1 and TAS2 were isolated from Cunninghamia Lanceolata by single-primed PCR, and compared with the sequences in the NCBI, It presumed that TAS1 and TAS2 might come from different chromosomes of Cunninghamia Lanceolata. It conclusioned that even the same species, the same individual, it was low homology and high polymorphic between TAS DNA sequences.
     It was cloned and sequenced 5S rDNA of T.mucronatum、T. ascendens.Brongn、T.distichum、T.distichum×T. mucronatum、T.mucronatum×C.fortunei, then compared with C. Lanceolata、C. fortunei and M.glyptostroboides. It was found that C.Lanceolata had low similarity with T. distichum×T. mucronatum、T. mucronatum×C. fortunei、T. distichum、M. glyptostroboides、T. ascendens.Brongn, lower with C. fortunei and T. mucronatum, while C. fortunei had the lowest similarity, had the farthest relationship with other six species. Our results illustrated that there were large variation of 5S rDNA gene. The similarity of 5S rDNA gene region of T. mucronatum×C. fortunei with T. mucronatum was 99.2%, with C. fortunei was 84.9%, It speculated that it was a concerted evolution phenomenon. The similarity of 5S rDNA gene region of T. distichum×T. mucronatum、M. glyptostroboides and T. ascendens.Brongn was 100%, It presumed that the 5S rDNA gene of T. distichum×T. mucronatu、M. glyptostroboides and T. ascendens.Brongn have completely concerted evolution.
     It was the first time to localize the TAS1 on metaphase chromosome of Cunninghamia Lanceolata by FISH, the results indicated that there were four cross loci. It was localized 5S rDNA which used as a probe on mitotic chromosomes of Cunninghamia Lanceolata, the results indicated that there were two cross signal which had been detected both in the nucleus and metaphase chromosomes.
引文
[1] Allshire, R. C, M. Dempster, and N. D. Hastie. Human telomeres contain at least three types of G-rish repeat distributed non-randomly[J]. Nucleic Acids Research, 1989, 17: 4611-4627
    [2] A. Schmidt, R. L. Doudrick, J. S. Heslop-Harrison, T. Schmidt. The contribution of short repeats of low sequence complexity to large conifer genomes[J]. Theoretical and Applied Genetics, 2000, 1: 7-10
    [3] AYu E. Y, Kim S. O, Kim J. H. etal. Sequence- specific DNA recognition by the Myb- like domain of plant telomeric protein RTBP1[J]. Biological Chemistry, 2000, 275: 24208-24214
    [4] Angeles Cuadrado, Hieronim Golczyk, Nicolas Jouve. A novel, simple and rapid nondenaturing FISH(ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected[J]. Chromosome Research , 2009, 17:755–762
    [5] Andrzej Kilian, Andris Kleinhofs. Cloning and mapping of telomere-associated sequences from Hordeum vulgare L. [J]. Molecular and general genetics, 1992, 235:153-156
    [6] Barry E, Flanary, Gunther Kletetschka. Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva[J]. Biogerontology, 2005, 6: 101-111
    [7] Brown G R, Amarasinghe B. Preliminary karyotype and chromosomal localization of ribosomal DNA sites in white spruce using fluo rescence in situ hybridization[J]. Genome , 1993, 36(2): 310-316
    [8] Broun P, Ganal M W, Tanksley S D. Telomeric arrays display high levels of heritable polymorohism among closely related plant vaieties[J]. Proceedings of National Academy of Sciences in USA , 1992 , 89: 1354-1357
    [9] Burr B, Frances A Burr , etal. Pining down loose ends :Mapping telomeres and factors affecting their length [J]. The Plant Cell, 1992, 4: 953-960
    [10] Barbara Zellinger, Karel Riha. Composition of plant telomeres[J].Science Direct, 2007, 1(11):399-409
    [11] Chikashige Y, DaQing Ding, etal. Meitoic nuclear reorganization :Switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces prombe[J].The EMBO Journal, 1997, 16: 193-202
    [12] Cohn M, Edstrom J E. Chromosome ends in Chironomus Pallidivittatus ceontain Different subfomailies of telomere-associated sequenees[J]. Chromosoma, 1992, 101: 634-640
    [13] Cheng Z, Stupar R M, Gu M, etal. A Tandemly Repeated DNA Sequence is Associated with Both Knob2like Heterochromatin and a Highly Decondensed Structure in the Meiotic Pachytene Chromosomes of Rice[J]. Chromosoma, 2001, 110: 24-31
    [14] Doudrick R L, Heslop Harrison J S. Karyotype of slash pine ( Pinus elliottii var. elliottii) using patterns of fluorescence In situ hybridization and fluorochrome banding[J]. Heredity, 1995, 86(4): 289-296
    [15] De Jong J H, Fransz P F, Zabel P. High Resolution FISH in Plants-techniques and Applications [J]. Trend in Plant Science, 1999, 4(7): 258-263
    [16] Florijn RJ, Bonden LAJ, Vrolijk H, etal. High-resolution DNA fiber-FISH for genomic DNA mapping and color-bar-coding of large genes[J]. Humman Molcular Genetics, 1995, 4: 831-836
    [17] Fajkus J, Fulneckora J. Plant cells express telomerase activity upon transfer to callus culture without extensively changing telomere lengths[J]. Molecular and general genetics, 1998, 260 (5): 470-474
    [18] Ganal M W, Lapaitan N L V, Tanksley S D. Macrostructure of the tomato telomeres[J]. Plant Cell, 1991 , 3: 87-94
    [19] Hwang M. G, Chung I. K, Kang B. G. Sequence- specific binding property of Arabidopsis thaliana telomeric DNA binding protein (AtTBP1) [J]. FEBS Letter, 2001, 503(1): 35-40
    [20] Heng HHQ, Squire J, Tsui L-C, High resolution mapping of mammalian genes by in situ hybridization to free chromatin[J]. Proceedings of National Academy of Sciences, 1992, 89: 9509-9513
    [21] Hizume, M. Chromosomal localization of 5S rRNA genes in Vicia fava and Crepis capillaries [J]. Cytologia, 1993, 58:417–421.
    [22] Itohk, Iwabuchim, Shimzmotok. In situ hybridization with species specific DNA probes gives evidence for asymmetric nature of B rassica hybrids obtained by X2ray fusion[J]. Theoretical and Applied Genetics, 1991, 81: 356-362
    [23] J. Fuchs, A. Brandes, I.Schubert. Telomere sequence localization and karyotype evolution in higher plants[J]. P1. Syst. Evol, 1995, 196: 227-241
    [24] Jiang J M, Gill B S, Wang GL , etal. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes[J]. Proceedings of National Academy of Sciences in USA, 1995, 92: 4 487-4 491
    [25] Killan A, Carol Stiff, Andris Kleinhofs. Barley telomeres shorten during differentiation but grow in callus culture[J]. Proceedings of National Academy of Sciences in USA, 1995, 92: 9555~9559
    [26] L. Mao, K. M. Devos, L. Zhu, M. D. Gale. Cloning and genetic mapping of wheat telomere-associated sequences[J]. Mol Gene Genetics, 1997, 254: 584-591
    [27] Liu Di, Lu Hai, Ji Fei-teng,etal. Cloning and Analysis of Telomere-associated Sequences of Ginkgo biloba L[J]. Forestry Studies in China, 2005, Vol. 7, No. 1
    [28] Leitchij, Heslop-Harrisonjs. Physicalmapping of the 18s、5.8s、26s rRNA genes in barley by in situ hybridization[J]. Genome, 1992, 35: 1 013-1 018
    [29] Langer P R, Waldrop A A, Ward D C. Enzymatic synthesisof biotin2labeled polynucleotides: novel nucleic acid affinityprobes[J]. Proceedings of National Academy of Sciences in USA, 1981, 78(11): 6633-6337
    [30] Larkinpj. Disom ic Th inopy rum intermed ium addition lines in wheat w ith barley yellow dwarf virus resistance and w ith rust resistances[J]. Genome, 1995, 38: 385-394
    [31] Leitchar, Mosqollerw, Schwarzachert, etal. Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids[J]. Cell Sciences, 1990, 95: 335-341
    [32] Lubaretz O, Fuchs J. Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer - aided chromosome analysis[J]. Theoretical Applied Genetics, 1996, 92: 411-416
    [33] Leitchij, Leitchar, Heslop-Harrisonjs. Physical mapp ing of p lant DNA sequences by simultaneous in situ hybridization of two differently fluo rescent p robes[J]. Genome, 1991, 34: 329-333
    [34] Lichter P. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones[J]. Science, 1990, 247: 64-69
    [35] Lawrenc JB. Interphase and metaphase resolution of different distance within the human dystrophingene[J]. Science, 1990, 249: 928-932
    [36] Muka I Y, Naka hara Y, Yanamoto M. Simultaneous discrim ination of the th ree genomes in hexap liod wheat by multico lo r fluo rescence in situ hybridization using to tal genomic and highly repeated DNA p robes[J]. Genome, 1993, 36: 489-494
    [37] McEachern M. J, Blackburn E. H. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts.Proc[J]. National Academy of Sciences, 1994, 91: 3453-3457
    [38] Masahiro Hizume, Fukashi shibata, Yukari Matsusaki. Chromosomal localization of telomere sequence repeats in five gymnosperm species[J]. Chromosome Science. 2000, 4: 39-42
    [39] Masahiro Hizume. Physical Mapping of 5S Rrna Genes in Cycas revolute [J]. Japan Cytologia, 1995, 60: 389-393
    [40] Riha K, Jiri Fajkus, Jiri Siroky. Developmental control of telomere lengths and telomerase activity in plants [J]. The Plant Cell, 1998, 10: 1691-1698.
    [41] Smith K. A, M. B. Stark, P. A. Gorman. Fusions near telomeres occur very early in the amplification of CAD genes in Syrian hamster cells[J]. Proceedings of the National Academy of Sciences, 1992, 89: 5427-5431
    [42] Scherthan H, Bahler J, Kohli J. Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast [J]. Cell boil, 1994, 127: 273-285
    [43] Shend, Wangz, Wum. Gene mapping on maize pachytene chromosome by in situ hybridization[J]. Chromosoma, 1987, 95: 311-314
    [44] Shibata E. AT-rich sequences containing Arabidopsis-type telomere sequence and their chromosomal distributionin Pinusdensiflora[J]. Theor ApplGenet, 2005, 110: 1253-1258
    [45] Schmidt L, Heslop-Harrison JS, Schmidt T. The contribution of short repeats of low sequence complexity to large conifer genomes[J]. Theoretical and Applied Genetics, 2000, 101: 7-14
    [46] Shen L, Zhu L H. Direct PCR based genetic mapping of rice telomeric repeat associated sequences[J]. Genome, 1998, 41: 193-198
    [47] Snowdon R J, Friedrich T, Friedt W. Identifying the chromosomes of the A- and C-genome diploid Brassica species B.rapa (syn.campestris) and B.oleraceain their amphidiploid B.napus [J]. Theoretical and Applied Genetics, 2002, 104: 533- 538
    [48] Sastri D C, Hilt K. An overview of evolution in plant 5SrDNA[J]. Systematic Evolution, 1992, 183: 169- 181
    [49] Umehara Y, Inagaki A, Tasoue H, etal. Construction and charaterization of a rice YAC library for physical mapping[J]. Plant Breeding, 1994, 1: 79-82
    [50] Wood J G, Sinclair D A. TPE or not TPE?It’s no longer a question[J]. Trends in Pharmacological Sciences, 2002, 23: 1-4
    [51] Wiegant J, Kalle W, Mullenders L, etal. High-resolution in situ hybridization using DNA halo preparations[J]. humman molcular Genetics, 1992, 1: 587-591
    [52] Wang G L, Holsten T E, Wang H P, etal. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa21 disease resistance locus[J]. Plant , 1995, 7: 101-109
    [53] Wu T Y, Wang Y X, Wu R. Transcribed repetitive DNA sequences in telomeric regions of rice ( Oryza sativa) [J]. Plant Molecular Biology, 1994 , 26 : 363-375
    [54] Xu J, Procunier J D, Kasha K J. Species2specific in situ hybridization of Hord eum bu lbosum chromo somes[J]. Genome, 1990, 33: 628-634
    [55] Yan Ling, Wei-Feng Lu, Fan Lu, etal. PCR-RFLP and AP-PCR of rbcL and ITS of rDNA Show That×Taxodiomeria peizhongii(Taxodium×Cryptomeria) Is not an Intergeneric Hybrid[J]. Journal of Integrative Plant Biology. 2006, 48 (4): 468-472
    [56] Zhangxq, Wangxp, Jingjk, etal. Characterization of wheat triticale double haploid lines by cyto logical and biochem icalmarkers[J]. Plant Breeding, 1998, 117: 7-12
    [57] Zican He, Jianqiang Li, Qing Cai, etal. Hongwen Huang.Cytogenetic studies on Metasequoia glyptostroboides, a living fossil species[J]. Genetica, 2004, 122: 269-276
    [58]常怀普.端粒及其研究进展[J].中国牛业科学, 2006, 5(32): 43-46
    [59]陈佩度,周波,齐莉莉,等.用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系[J].遗传学报, 1995, 22 (5): 380-386
    [60]陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析[J].林业科学, 2000, 36 (3) : 46-51
    [61]陈波,梁江丽,田晓平,等.水稻愈伤组织端粒酶催化特征检测[J].浙江理工大学学报,2009,26(4) : 597-611
    [62]房迈莼,李美茹,李洪清.一种简单高效的克隆水稻端粒相关序列的方法[J].植物生理学通讯, 2004, 6 (40): 729-730
    [63]冯霞,孙振元,刘建锋,等.多年生黑麦草核型分析与组织培养再生植株染色体变异研究[J].林业科学研究, 2005, 18(3): 321-324
    [64]国兰琴.端粒和端粒酶及其与衰老的关系[J].中华老年医学杂志, 2006, 10 (25): 788-791
    [65]巩学千.水稻端粒相关序列的克隆及鉴定[J].中国科学, 1998, 4 (28): 324-332
    [66]龚志云.水稻45S rDNA和5S rDNA的染色体定位研究[J].遗传学报, 2002, 29(3): 241-244
    [67]黄发新,张新叶,河村嘉一郎.运用RAPD技术进行杉木无性系识别研究[J].湖北林业科技, 2000 (增) : 14-19
    [68]何祯祥,施季森,尹增芝,等.杉木生长性状相关联遗传标记的检测[J].浙江林学院学报, 2000, 17(4): 350-354
    [69]韩德元.植物生长调节剂—原理与应用[M].北京科学技术出版社, 1997
    [70]蒋向辉,佘朝文,许栋,等.杉木CCoAOMT基因部分cDNA克隆与序列分析[J].中南林业科技大学学报, 2009, 6 (29): 24-28
    [71]孔亚红.端粒、端粒酶的研究进展[J].中外健康文摘, 2006, 3 (5): 22-24
    [72]兰添颖,刘博,董凤平,等.菠菜rDNA及端粒多色荧光原位杂交分析[J].遗传, 2007, 29(11): 1405-1408
    [73]卢军,李乐玉,朱利泉.荧光原位杂交技术的研究进展及其在染色体识别应用中的展望[J].安徽农业科学, 2008, 36(3) : 911 -913
    [74]梁毓.荧光原位杂交技术的研究进展[J].中国优生与遗传杂志, 2005, 5(13): 119-120
    [75]李宗芸,熊志勇,金危危,等.水稻间期核、粗线期和有丝分裂中期染色体FISH分辨率的比较[J].武汉大学学报(理学版), 2002, 4 (48): 511-516
    [76]李湘阳,周坚,袁汉升,等.杉木单染色体扩增产物的RAPD分析[J].南京林业大学学报, 2003, 27(3): 55-581
    [77]李集临.细胞遗传学[M].科学出版社, 2007: 34-35
    [78]李林初.杉科的两条演化路线[J].植物分类学报, 1990, 28(1): 1-9
    [79]罗建勋.杉木优树自由授粉子代测定及优良家系选择[J].西南林学院学报, 2009, Vol. 29 No. 4
    [80]刘庆昌,吴国良.植物细胞组织培养[M].中国农业大学出版社, 2005, 35-37
    [81]刘云龙.组织培养中植物生长调节剂的调控[M].农业与技术, 1996
    [82]刘占林,张大明,王晓茹.裸子植物5S rRNA基因序列变异及二级结构特征研究[J].遗传学报, 2003, Vol 30, No.1
    [83]廖进秋.波兰小麦和矮兰麦45S rDNA和5S rDNA基因位点FISH分析[J].遗传, 2007, 29(4)
    [84]牟金叶,李集临,王献平.异源细胞质小麦-中间偃麦草异位系的培育与荧光原位杂交鉴定[J].科学通报, 2000, 45: 297-300
    [85]朴铁夫,许素莲,叶长江.薏苡染色体端粒的研究[J].核农学报, 2003, 17(5): 361-362
    [86]潘远智.一品红组织培养技术体系研究[J].四川农业大学学报,2001,6
    [87]童春发,施季森.利用杉木的F1代群体构建遗传连锁图谱[J].遗传学报, 2004, 31(10): 1149-1156
    [88]魏萍,丁显平,聂涌.引物原位标记合并荧光原位杂交技术在人类中期染色体分析中的应用[J].现代预防医学, 2008, 10 (35): 14-19
    [89]吴大忠.不同杉木无性系组织培养繁殖特性的比较研究[D].硕士论文, 2007, 4
    [90]吴菁华. 45S rDNA和5S rDNA在水仙染色体上的物理定位[J].热带作物学报, 2008, 29 (5): 618-621
    [91]王永等.甘蓝2号染色体的高分辨率5S rDNA荧光原位杂交[J].中国农业科学, 2009, 42 (12): 4294- 4300
    [92]徐进,施季森,杨立伟.杉木花粉母细胞减数分裂的细胞学特性及异常现象的观察[J].林业科学, 2007, 43(11): 32-36
    [93]轩淑欣.荧光原位杂交技术在大白菜染色体基因定位中的应用研究[D]. 2006, 7
    [94]徐延浩等. 45S rDNA和5S rDNA在南瓜、丝瓜和冬瓜染色体上的比较定位[J].遗传, 2007, 29 (5): 614-620
    [95]于永福.杉科植物的起源、演化及其分布[J].植物分类学报, 1995, 33(4) :362-389
    [96]杨壹羚,徐昕.一种改进的重复多色荧光原位杂交技术[J].石河子大学学报, 2005, 5
    [97]杨玉玲等.不同地理种源杉木的分子多态性分析[J].热带亚热带植物学报, 2009, 17 (2) : 183-189
    [98]俞友明等.矮生杉木解剖构造研究[J].浙江林业科技, 2009, 29 (4): 47-50
    [99]赵明.端粒和端粒酶在植物生长发育中的调控作用[J].生物学通报, 2005, 10(40): 52-54
    [100]赵丽娟,李集临.植物染色体C -分带和原位杂交的研究应用[J].哈尔滨师范大学自然科学学报, 2004, 20(5): 86-88
    [101]钟筱波, Paul F, Fransz J.用荧光原位杂交技术构建高分辨率的DNA物理图谱[J].遗传, 1997, 19 (3) : 44-48.
    [102]张增艳,马有志,辛志勇.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质[J].中国农业科学, 1998, 31(3): 1-4
    [103]周仲华,陈金湘,何鉴星,余筱南.植物原位杂交技术的发展与应用[J].作物研究,2001年棉花专辑,50-55
    [104]郑仁华.杉木遗传育种研究进展与对策[J].世界林业研究, 2005, 3(18): 63-65
    [105]张施君,王凤兰,周厚高.火百合的组织培养及快速繁殖[J].江苏农业科学, 2004, 4: 72-73
    [106]钟天映,陈媛媛,毕利军.端粒与端粒酶的研究—解读2009年诺贝尔生理学或医学奖[J].生物化学与生物物理进展, 2009, 36(10): 1233-1238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700