葡萄VvERF3b基因和VvPDF1.2基因的启动子功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物体内,逆境相关基因的表达在转录水平上与转录因子与基因的顺式作用元件相互作用密切相关。乙烯响应因子(Ethylene response factors, ERF)作为重要的转录因子可以调控多种植物逆境相关基因的表达。而植物防御素(PDF)基因是植物响应病虫害侵袭的重要相关基因。本文通过对这两个基因启动子的研究,推断两个基因在葡萄抗逆响应途径中的表达模式,对于了解葡萄对逆境的抵抗机理有着重要的意义。
     本研究利用PCR扩增获得欧洲葡萄(Vitis vinifera)的ERF3b基因和PDF1.2基因启动子序列,并利用PLACE和PlantCARE软件分析得到的两个基因的启动子序列。在VvERF3b基因启动子序列中发现多种与植物激素相关的顺式作用元件:ABRE元件、ASF1元件、DPBF元件、DRE元件、ERE元件、GCC元件、W-box和TCA元件,而在VvPDF1.2基因启动子内发现多种与植物逆境响应相关的顺式作用元件:W-box、TGA元件、TC-rich元件、TATC元件、ERE元件、SEBF元件和MYBGAHV元件。
     按照VvERF3b基因启动子顺式作用元件的分析结果设计了6个上游启动子引物分别和一个下游启动子引物配对,利用PCR扩增获得6条起始密码上游长度不同的启动子片段P1~P6,通过酶切、纯化、连接,将6条VvERF3b基因5’缺失启动子序列代替原载体的8×GCC增强子和35S启动子插入pGCC载体中,与LUC报告基因连接构建6个植物表达载体:VvERF3b-P1~VvERF3b-P6。使用PEG-Ca~(2+)介导法介导重组载体转染拟南芥原生质体,用瞬时表达方法检测LUC表达量,结果表明VvERF3b基因启动子中从-1047bp到-585bp区域对于下游基因的表达有激活的作用,而从-1324bp到-1047bp区域可能存在两个以上对下游基因的表达起抑制作用的基序,用来抑制基因本身的表达。
     鉴于目前市场中没有LUC植物表达载体,该文使用PCR扩增获得LUC基因片段,通过酶切、纯化、连接等手段将LUC基因片段代替pBI221载体的GUS基因片段在35S启动子驱动下表达,构建了具有多克隆位点(MCS)的LUC植物表达载体。
The level of transcription of a gene is closely related to the interaction of transcription factors and cis-elements in the DNA sequence. Ethylene response factors (ERF), as an important transcription factor, can regulate a variety of plant genes which response to stresses. Plant defensin (PDF) can respond to biotic stress in plant. In the paper, through the investigation of the two genes, the author may discover the expression profile of the gens. It might be valuable for the enhancement of grape stress resistance.
     In this thesis, the PCR was performed to obtain the promoter sequences of the VvERF3b and VvPDF1.2, and the PLACE and PlantCARE software was used to analysis the sequences. The results revealed that there were several putative cis-elements in the promoter of VvERF3b which were involved in the plant hormone responses, such as ABRE element, ASF1 element, DPBF element, DRE element, ERE element, GCC element, W-box and TCA element; and there were several putative cis-elements in the promoter of VvPDF1.2 which were involved in the plant stress responses, such as W-box, TGA element, TC-rich element, TATC element、ERE element、SEBF element and MYBGAHV element.
     In according with the promoter sequence of VvERF3b gene, six forward and one reverse primers were designed. Then six different lengths of promoter fragments, that is P1, P2, P3, P4, P5 and P6 were amplified by PCR. The six amplified fragments were inserted into pGCC vector which is plant expression vector containing LUC repoter gene to substitute the 35S promoter and 8×GCC enhancer. These recombinant plasmids were named VvERF3b-P1, VvERF3b-P2, VvERF3b-P3, VvERF3b-P4, VvERF3b-P5, VvERF3b-P6. These recombinated vectors were transferred into A. thaliana protoplast cells by PEG-Ca~(2+). The results of six vectors’LUC gene transient expression indicated that the -1047 to -585 was essential for high expression of the gene, and removal of -1324 to -1185 region and -1324 to -1047 region caused increased in the expression of LUC in cells, which indicated that the region between -1324 and -1047 may contain at least two putative negative elements which caused the decrease of LUC expression.
     There is no plant expression vector which can expression LUC gene in the current market. So the sequence of LUC gene is amplified by PCR in the research, and inserted into pBI221 vector to substitute the GUS gene in the vector. We named the recombinated plasmid as pBI221-LUC.
引文
[1] Dhalowal HS, U. H. Genetic engineering for disease and pest resistance in plants. Plant Biotechnology. 1999, 16(4): 255-261.
    [2] Chakravarthy, S., Tuori, R. P., D'Ascenzo, M. D. et al. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell. 2003, 15(12): 3033-3050.
    [3] Wu, L., Zhang, Z., Zhang, H. et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 2008, 148(4): 1953-1963.
    [4]张娜,尹继刚.真核生物转录因子及其研究方法进展.动物医学进展. 2009, 30(1): 75-79.
    [5] Riechmann, J. L., Heard, J., Martin, G. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000, 290(5499): 2105-2110.
    [6] Jofuku, K. D., den Boer, B. G., Van Montagu, M. et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994, 6(9): 1211-1225.
    [7] Allen, M. D., Yamasaki, K., Ohme-Takagi, M. et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 1998, 17(18): 5484-5496.
    [8] Okamuro, J. K., Caster, B., Villarroel, R. et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A. 1997, 94(13): 7076-7081.
    [9] Sakuma, Y., Liu, Q., Dubouzet, J. G. et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002, 290(3): 998-1009.
    [10] Elliott, R. C., Betzner, A. S., Huttner, E. et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996, 8(2): 155-168.
    [11] Chuck, G., Meeley, R. B. & Hake, S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 1998, 12(8): 1145-1154.
    [12] Boutilier, K., Offringa, R., Sharma, V. K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002, 14(8): 1737-1749.
    [13] Alonso, J. M., Stepanova, A. N., Leisse, T. J. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003, 301(5633): 653-657.
    [14] Hu, Y. X., Wang, Y. X., Liu, X. F. et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res. 2004, 14(1): 8-15.
    [15] Sohn, K. H., Lee, S. C., Jung, H. W. et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol. 2006, 61(6): 897-915.
    [16] Yamaguchi-Shinozaki, K. & Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress.Plant Cell. 1994, 6(2): 251-264.
    [17] Thomashow, M. F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50(571-599.
    [18]陈俊.植物MYB类转录因子研究进展.植物生理与分子生物学学报. 2002, 28(2): 81-88.
    [19] Bilaud, T., Koering, C. E., Binet-Brasselet, E. et al. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res. 1996, 24(7): 1294-1303.
    [20] Ito, M. Factors controlling cyclin B expression. Plant Mol Biol. 2000, 43(5-6): 677-690.
    [21] Li, X., Duan, X., Jiang, H. et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol. 2006, 141(4): 1167-1184.
    [22] Toledo-Ortiz, G., Huq, E. & Quail, P. H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003, 15(8): 1749-1770.
    [23] Buck, M. J. & Atchley, W. R. Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol. 2003, 56(6): 742-750.
    [24] Colilla, F. J., Rocher, A. & Mendez, E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 1990, 270(1-2): 191-194.
    [25] Mendez, E., Moreno, A., Colilla, F. et al. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem. 1990, 194(2): 533-539.
    [26] Terras, F. R., Schoofs, H. M., De Bolle, M. F. et al. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992, 267(22): 15301-15309.
    [27] Bohlmann, H. The Role of Thionins in Plant Protection CRC Crit Rev Plant Sci. 1994, 13(1): 16.
    [28] Bruix, M., Jimenez, M. A., Santoro, J. et al. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry. 1993, 32(2): 715-724.
    [29] Terras, F. R., Eggermont, K., Kovaleva, V. et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell. 1995, 7(5): 573-588.
    [30] Broekaert, W. F., Terras, F. R., Cammue, B. P. et al. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995, 108(4): 1353-1358.
    [31] Kobayashi, Y. A newα-helical motif in membrane active peptides Neurochem Int. 1991, 18(4): 10.
    [32] Hill, C. P., Yee, J., Selsted, M. E. et al. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science. 1991, 251(5000): 1481-1485.
    [33] Segura, A., Moreno, M., Molina, A. et al. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998, 435(2-3): 159-162.
    [34] Kagan, B. L., Selsted, M. E., Ganz, T. et al. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A. 1990, 87(1): 210-214.
    [35] Cociancich, S., Ghazi, A., Hetru, C. et al. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem. 1993, 268(26): 19239-19245.
    [36] Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993, 11(105-128.
    [37] Wimley, W. C., Selsted, M. E. & White, S. H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 1994, 3(9): 1362-1373.
    [38] Hristova, K., Selsted, M. E. & White, S. H. Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry. 1996, 35(36): 11888-11894.
    [39] Maget-Dana, R. & Ptak, M. Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J. 1997, 73(5): 2527-2533.
    [40] Ludtke, S. J., He, K., Heller, W. T. et al. Membrane pores induced by magainin. Biochemistry. 1996, 35(43): 13723-13728.
    [41] Bechinger, B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997, 156(3): 197-211.
    [42] Harder, J., Siebert, R., Zhang, Y. et al. Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics. 1997, 46(3): 472-475.
    [43]刘媛媛,赵宝华.防御素的研究进展和应用前景.中国医药生物技术. 2009, 4(4): 303-306.
    [44] Osborn, R. W., De Samblanx, G. W., Thevissen, K. et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 1995, 368(2): 257-262.
    [45] Thevissen, K., Ghazi, A., De Samblanx, G. W. et al. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996, 271(25): 15018-15025.
    [46] Caaveiro, J. M., Molina, A., Gonzalez-Manas, J. M. et al. Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett. 1997, 410(2-3): 338-342.
    [47] Thevissen, K., Terras, F. R. & Broekaert, W. F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol. 1999, 65(12): 5451-5458.
    [48] De Samblanx, G. W., Goderis, I. J., Thevissen, K. et al. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem. 1997, 272(2): 1171-1179.
    [49] De Samblanx, G. W., Goderis, I. J., Thevissen, K. et al. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem. 1997, 272(2): 1171-9.
    [50] Thevissen, K., Osborn, R. W., Acland, D. P. et al. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact. 2000, 13(1): 54-61.
    [51] O'Shea-Greenfield, A. & Smale, S. T. Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription. J Biol Chem. 1992, 267(9): 6450.
    [52] Dantonel, J. C., Wurtz, J. M., Poch, O. et al. The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci. 1999, 24(9): 335-339.
    [53] Wieczorek, E., Brand, M., Jacq, X. et al. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature. 1998, 393(6681): 187-191.
    [54] Smale, S. T. Core promoters: active contributors to combinatorial gene regulation. Genes Dev. 2001, 15(19): 2503-2508.
    [55] Mitsuhara, I., Ugaki, M., Hirochika, H. et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 1996, 37(1): 49-59.
    [56] Christensen, A. H., Sharrock, R. A. & Quail, P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992, 18(4): 675-689.
    [57] Zhang, W., McElroy, D. & Wu, R. Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell. 1991, 3(11): 1155-1165.
    [58] Nitz, I., Berkefeld, H., Puzio, P. S. et al. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 2001, 161(2): 337-346.
    [59] Trindade, L. M., Horvath, B., Bachem, C. et al. Isolation and functional characterization of a stolon specific promoter from potato (Solanum tuberosum L.). Gene. 2003, 303(77-87.
    [60] Williams, M. E., Foster, R. & Chua, N. H. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 1992, 4(4): 485-496.
    [61] Lam, E. & Chua, N. H. ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell. 1989, 1(12): 1147-1156.
    [62] Gilmartin, P. M., Memelink, J., Hiratsuka, K. et al. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell. 1992, 4(7): 839-849.
    [63] Choi, J. J., Klosterman, S. J. & Hadwiger, L. A. A Promoter from Pea Gene DRR206 Is Suitable to Regulate an Elicitor-Coding Gene and Develop Disease Resistance. Phytopathology. 2004, 94(6): 651-660.
    [64] Hao, D., Ohme-Takagi, M. & Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem. 1998, 273(41): 26857-26861.
    [65] Rawat, R., Xu, Z. F., Yao, K. M. et al. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol Biol. 2005, 57(5): 629-643.
    [66] Ballas, N., Wong, L. M., Ke, M. et al. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci U S A. 1995, 92(8): 3483-7.
    [67] Nagao, R. T., Goekjian, V. H., Hong, J. C. et al. Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol. 1993, 21(6): 1147-1162.
    [68] Kaplan, B., Davydov, O., Knight, H. et al. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell. 2006, 18(10): 2733-2748.
    [69] Liu, Y. G. & Whittier, R. F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995, 25(3): 674-681.
    [70] Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007, 2(7): 1565-1572.
    [71]王传堂,黄粤,杨新道,姜勇,张建成,陈殿绪,闵平,禹山林.改良CTAB法和高盐低pH值法提取花生DNA的效果.花生学报. 2002, 31(3): 20-23.
    [72]张贵星,袁保梅,许培荣,薛乐勋.改良的降落PCR与普通PCR结果比较.郑州大学学报(医学版). 2003, 38(3): 352-354.
    [73] Despres, C., Chubak, C., Rochon, A. et al. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell. 2003, 15(9): 2181-2191.
    [74] Terzaghi, W. B. & Cashmore, A. R. Photomorphogenesis. Seeing the light in plant development. Curr Biol. 1995, 5(5): 466-468.
    [75] Benfey, P. N. & Chua, N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990, 250(4983): 959-966.
    [76] Katagiri, F., Lam, E. & Chua, N. H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature. 1989, 340(6236): 727-730.
    [77] Xiang, C., Miao, Z. & Lam, E. DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol Biol. 1997, 34(3): 403-415.
    [78] Klinedinst, S., Pascuzzi, P., Redman, J. et al. A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol Biol. 2000, 42(5): 679-688.
    [79] Kim, S. Y., Chung, H. J. & Thomas, T. L. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 1997, 11(6): 1237-1251.
    [80] Finkelstein, R. R. & Lynch, T. J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell. 2000, 12(4): 599-609.
    [81] Lopez-Molina, L. & Chua, N. H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41(5): 541-547.
    [82] Busk, P. K., Jensen, A. B. & Pages, M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 1997, 11(6): 1285-1295.
    [83] Kizis, D. & Pages, M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J. 2002, 30(6): 679-689.
    [84] Dubouzet, J. G., Sakuma, Y., Ito, Y. et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33(4): 751-763.
    [85] Itzhaki, H., Maxson, J. M. & Woodson, W. R. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci U S A. 1994, 91(19): 8925-8929.
    [86] Montgomery, J., Goldman, S., Deikman, J. et al. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci U S A. 1993, 90(13): 5939-5943.
    [87] Tapia, G., Verdugo, I., Yanez, M. et al. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol. 2005, 138(4): 2075-2086.
    [88] Brown, R. L., Kazan, K., McGrath, K. C. et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 2003, 132(2): 1020-1032.
    [89] Yu, D., Chen, C. & Chen, Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell. 2001, 13(7): 1527-1540.
    [90] Pastuglia, M., Roby, D., Dumas, C. et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell. 1997, 9(1): 49-60.
    [91] Chen, W., Provart, N. J., Glazebrook, J. et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell. 2002, 14(3): 559-574.
    [92] Eulgem, T., Rushton, P. J., Robatzek, S. et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5(5): 199-206.
    [93] Chen, C. & Chen, Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 2002, 129(2): 706-716.
    [94] Maleck, K., Levine, A., Eulgem, T. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet. 2000, 26(4): 403-410.
    [95] Xu, X., Chen, C., Fan, B. et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 2006, 18(5): 1310-1326.
    [96] Diaz-De-Leon, F., Klotz, K. L. & Lagrimini, L. M. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol. 1993, 101(3): 1117-1118.
    [97] Takaiwa, F., Oono, K., Wing, D. et al. Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol. 1991, 17(4): 875-885.
    [98] Boyle, B. & Brisson, N. Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell. 2001, 13(11): 2525-2537.
    [99] Gubler, F., Kalla, R., Roberts, J. K. et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995, 7(11): 1879-1891.
    [100] Ohme-Takagi, M. & Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995, 7(2): 173-182.
    [101] van der Fits, L. & Memelink, J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J. 2001, 25(1): 43-53.
    [102] Cheong, Y. H., Chang, H. S., Gupta, R. et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 2002, 129(2): 661-677.
    [103] Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J. et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003, 15(1): 165-178.
    [104] Yang, Z., Tian, L., Latoszek-Green, M. et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol. 2005, 58(4): 585-596.
    [105] Pirrello, J., Jaimes-Miranda, F., Sanchez-Ballesta, M. T. et al. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 2006, 47(9): 1195-1205.
    [106] Liang, H., Lu, Y., Liu, H. et al. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J Exp Bot. 2008, 59(11): 3111-320.
    [107] Pre, M., Atallah, M., Champion, A. et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008, 147(3): 1347-1357.
    [108] Champion, A., Hebrard, E., Parra, B. et al. Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas. Mol Plant Pathol. 2009, 10(4): 471-485.
    [109] Pandey, G. K., Grant, J. J., Cheong, Y. H. et al. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 2005, 139(3): 1185-1193.
    [110] Gu, Y. Q., Yang, C., Thara, V. K. et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell. 2000, 12(5): 771-786.
    [111] Park, J. M., Park, C. J., Lee, S. B. et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001, 13(5): 1035-1046.
    [112] Berrocal-Lobo, M., Molina, A. & Solano, R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002, 29(1): 23-32.
    [113] Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S. et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell.2002, 14(4): 817-831.
    [114] Tournier, B., Sanchez-Ballesta, M. T., Jones, B. et al. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 2003, 550(1-3): 149-154.
    [115] Onate-Sanchez, L., Anderson, J. P., Young, J. et al. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol. 2007, 143(1): 400-409.
    [116] McGrath, K. C., Dombrecht, B., Manners, J. M. et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005, 139(2): 949-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700