山核桃若干成花基因克隆及时空表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山核桃(Carya cathayensis Sarg.)是我国特有的名优干果和木本油料植物,具有很高的经济价值。山核桃属雌雄同株异花木本植物,存在童期长、雌雄花发育时间不一致的问题,直接影响山核桃的产量。本论文通过克隆若干山核桃成花基因并探讨其表达模式,为研究山核桃成花机理并从根本上提高山核桃产量奠定一定基础。本论文将利用同源克隆及基因组步移技术获得山核桃若干成花相关基因,通过Real-Time RT PCR技术和RNA原位杂交技术分析成花相关基因的时空表达情况。主要研究结论如下:
     1、获得FT、AG和AP1同源基因的片段,分别命名为CcFT、CcAG和CcAP1。对CcFT、CcAG和CcAP1基因的序列分析表明它与其他植物相应的同源基因都有极高的同源性,这种结构上的相似性使笔者有理由推测它们在功能上的相似性。
     2、对CcAP1基因的表达分析发现,该基因在整个雌花芽形成过程中的表达情况并没有呈现明显的规律,多数时期表达量均很低,或几乎不表达。相关研究显示AP1与萼片和花瓣的发育有关,山核桃雌花花被缺失,这可能是造成CcAP1基因表达量低的原因之一。
     3、CcLFY基因在整个雌花芽形成过程中均有表达,在不同时期间表达量差异很大。Real-Time RT PCR实验结果显示,在3月中上旬CcLFY的表达量比之后的表达量明显要高,在而之后各样品的相对表达量相对较低。同时还发现CcLFY的表达量受到温度的影响,低温在一定程度上会降低CcLFY的表达量。
     4、原位杂交实验结果显示,雌花芽原基时期的CcLFY杂交信号不是很强烈,随着花序原基顶端生长锥逐渐变平,杂交信号有所增强,之后形成小花、小苞片过程中,均有CcLFY检测信号,这些结果说明CcLFY在山核桃雌花芽的形成中具有重要作用,并可能影响雌花芽形成后的花器官分化。
Carya cathayensis Sarg. is endemic to Chinese famous dried fruit and Woody oil plant, with high economic value. Carya cathayensis is a hermaphrodite outcrossing woody plants, have problems such as a long time ahead of maturation and male and female flower development time inconsistency which directly affect it’s production. This paper will probe into Carya cathayensis flowering mechanism and the mechanism of sex floral organs, for fundamentally improving the Carya cathayensis production or realization of precocious and dwarf provide the scientific basis. The paper will use homology cloning and genome walking techniques clone a number of flower-related genes in Carya cathayensis, use Real-Time RT PCR technology and RNA in situ hybridization analysis gene expression in different flowering time and different issues of female flower bud. The main conclusions are as follows:
     FT, AG and AP1 homologous gene fragments have been cloned in Carya cathayensis, named CcFT, CcAG and CcAP1. Homology analysis between CcFT, CcAG and CcAP1 gene sequence and the corresponding genes of other plants showed that they have a high homology,this structural similarity suggested that they have similar function.
     Expression analysis of the CcAP1,we found that its expressing during the female flower bud formation did not show obvious rule.Most times the expression were low or almost no expression. Related studies have shown that AP1 may related to development of the sepals and petals. Carya cathayensis female flower lack of perianth,that may result in low expression of CcAP1.
     Carya cathayensis CcLFY expresses during the whole process of the formation of the female flower bud , but very different in different times. Real-Time RT PCR results showed that, CcLFY expresses significantly higher in 3 months early than all samples following, expression of each late sample is relatively low. Also found that the expression of CcLFY affected by temperature, low temperature will reduce the expression of CcLFY to some extent.
     In situ hybridization results showed that, CcLFY hybridization signal during female flower bud primordia is not very strong, with the growth cone in the top inflorescence primordia gradually flattened, hybridization signal was enhanced. CcLFY hybridization signals also detected during the formation of small flowers, small bracts process. These results suggest that CcLFY may plays an important role in female flower bud formation in Carya cathayensis, and may also affect the formation of organ differentiation.
引文
[1]孟繁静.植物花发育的分子生物学[M].北京:中国农业出版社, 2000.
    [2]白书农,谭克辉.对光敏水稻研究的回顾与反思:植物光周期现象中叶片信息对茎端的形态建成事件有专一性吗?[J].科学通报. 2001, 46(09): 788-792.
    [3] MOURADOV A, CREMER F, COUPLAND G. Control of flowering time: interacting pathways as a basis for diversity[J]. The Plant Cell. 2002, 14: 111-130.
    [4] WANG Z Y, TOBIN E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression.[J]. Cell. 1998, 93(7): 1207-1217.
    [5] IZAWA T, OIKAWA T, TOKUTOMI S, OKUNO K, SHIMAMOTO K. Phytochromes confer the photoperiodic control of flowering in rice(a short-day plant)[J]. The Plant Journal. 2000, 22(5): 391-399.
    [6] REEVES P H, COUPLAND G. Response of plant development to environment: control of flowering by daylength and temperature [J]. Current Opinion in Plant Biology. 2000, 3(1): 37-42.
    [7] MICHAELS S D, AMASINO R M. FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering [J]. Plant Cell. 1999, 11, 949-956, : 949-956.
    [8] MICHAELS S D, AMASINO R M. Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization[J]. Plant Cell. 2001, 13(4): 935-942.
    [9] SOPPE W J, BENTSINK L, KOORNNEEF M. The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana[J]. Development. 1999, 126(21): 4763-4770.
    [10] ROGUEV A, SCHAFT D, SHEVCHENKO A, PIJNAPPEL W W, WILM M, AASLAND R, STEWART A F. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4[J]. EMBO Journal. 2001, 20(24): 7137-7148.
    [11] HE Y, AMASINO R M. Role of chromatin modification in flowering-time control [J]. Trends in Plant Science. 2005, 10(1): 30-35.
    [12] GENDALL A, LEVY Y, WILSON A, DEAN C. The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis[J]. Cell. 2001, 107(4): 525-535.
    [13] SUNG S, AMASINO R M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature. 2004, 427: 159-164.
    [14] LEVY Y Y, MESNAGE S, MYLNE J S, GENDALL A R, DEAN C. Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control [J]. Science. 2002, 297: 243-246.
    [15] LEE I, MICHAELS S D, MASSHARDT A S, AMASINO R M. The late flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erect a strain ofArabidopsis [J]. The Plant Journal. 1994, 6(6): 903-909.
    [16] MACKNIGHT R, BANCROFT I, PAGE T, LISTER C, SCHMIDT R, LOVE K, WESTPHAL L, MURPHY G, SHERSON S, COBBETT C, DEAN C. FCA, a Gene Controling Flowering in Arabidopsis, Encodes a Protein Containing RNA-binding Domains[J]. Cell. 1997, 89: 737-745.
    [17] SUN T P, GOODMAN H M, AUSUBE F M. Cloning the Arabidopsis GA7 Locus by Genomic Subtraction[J]. Plant Cell. 1992, 4: 1116-1120.
    [18] BORNER R, KAMPMANN G, CHANDLER J, GLEIBNER R, WISMAN E, APEL K, MELZER S. A MADS domain gene involoved in the transition to flowering in Arabidopsis[J]. The Plant Journal. 2000, 24(5): 591-599.
    [19] BLAZQUEZ M A, GREEN R, NILSSON O, SUSSMAN M R, WEIGEL D. Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter[J]. Plant Cell. 1998, 10: 791-800.
    [20] BLAZQUEZ M A, WEIGEL D. Integration of floral inductive signals in Arabidopsis[J]. Nature. 2000, 404: 889-892.
    [21] LEVY Y Y, DEAN C. Control of flowering time [J]. Current Opinion in Plant Biology. 1998, 1(1): 49-54.
    [22] NEMOTO Y, KISAKA M, FUSE T, YANO M, OGIHARA Y. Characterization and functional analysis of t hree wheat genes wit h homology to the CONSTANS flowering time gene in t ransgenic rice[J]. The Plant Journal. 2003, 36 (1): 82-93.
    [23] SAMACH A, ONOUCHI H, GOLD S E, DITTA G S, SCHWARZ-SOMMER Z, YANOFSKY M F, COUPLAND G. Distinct Roles of CONSTANS Target Genes in Reproductive Distinct Roles of CONSTANS Target Genes in Reproductive Development of Arabidopsis [J]. Science. 2000, 288(5471): 1613-1616.
    [24] BOSS P K, BASTOW R M, MYLNE J S, DEAN C. Multiple pathwaysin the decision to flower : enabling, promoting, and resetting[J]. The Plant Cell. 2004, 16 : S18-S31.
    [25] AYRE B G, TURGEON R. Graft Transmission of a Floral Stimulant Derived from CONSTANS[J]. Plant Physiology. 2004, 135: 2271-2278.
    [26] PARCY F. Flowering: a time for integration[J]. Int J Dev Biol. 2005, 49: 585-593.
    [27] YANOVSKY M J, KAY S A. Molecular basis of seasonal time measurement in Arabidopsis[J]. Nature. 2002, 419: 308-312.
    [28] BLAZQUEZ M A, SOOWAL L N, LEE I, WEIGEL D. LEAFY expression and flower initiation in Arabidopsis [J]. Development. 1997, 124: 3835-3844.
    [29]王利琳,梁海曼,庞基良,朱睦元.拟南芥LEAFY基因在花发育中的网络调控及其生物学功能[J].遗传. 2004, 26(01): 137-142.
    [30] HEMPEL F D, WEIGEL D, MANDEL M A, DITTA G, ZAMBRYSKI P C, FELDMAN L J, YANOFSKY M F. Floral determination and exp ression of floral regulatory genes in Arabidopsis[J].Development. 1997, 124(19): 3845-3853.
    [31]丁焱,戴思兰,马月萍.高等植物成花的光周期调控[J].北方园艺. 2009(09): 106-110.
    [32] COEN E S, ROMERO J M, DOYLE S, ELLIOTT R, MURPHY G, CARPENTER R. Floricaula: A homeotic gene required for flower development in antirrhinum majus [J]. Cell. 1990, 63(6): 1311-1322.
    [33] BASTOW R, MYLNE J S, LISTER C, LIPPMAN Z, MARTIENSSEN R A, DEAN C. Vernalization requires epigenetic silencing of FLC by histone met hylation[J]. Nature. 2004, 427: 164-167.
    [34]洪薇,曹家树. FLC基因表达在植物春化过程中的作用[J].植物学通报. 2002, 19(04): 406-411.
    [35] YANOFSKY M H, MA H, BOWMAN J L, DREWS G N, FELDMANN K A, MEYEROWITZ E M, E M. The protein encoded by the Arabidopsis thaliana homeotic gene agamous resembles transcription factors[J]. Nature. 1990, 346 (35-39).
    [36] BOWMAN J L, SMYTH D R, MEYEMWITZ E M. Genetic interactions among floral homeotic genes of Arabidopsis[J]. Development. 1991, 112(5): 1-20.
    [37] SIEBURTH L E, MEYEROWITZ E M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically.[J]. Plant Cell. 1997, 9(3): 355-365.
    [38] BUSCH M A, BOMBLIES K, WEIGEL D. Activation of a floral homeotic gene in Arabidopsis. [J]. Science. 1999, 285: 585-587.
    [39] DEYHOLOS M K, SIEBURTH L E. Separable whorl-specific expression and negative regulation by enhancer elements within the AGRMOUS second intron[J]. Plant Cell. 2000, 12: 1799-1810.
    [40] DREWS G N, BOWMAN J L, MEYEROWITZ E M. Negative regulation of the Arabidopsis homeotic gene AGAM0US by the APETALA2 product.[J]. Ce11. 1991, 65: 991-1002.
    [41] COLLINS F S. Positional cloning moves from perditional to traditional[J]. Nature Genetics. 1995, 9: 347-350.
    [42]王春香,高谦,潘乃穟,陈章良.马铃薯X病毒外壳蛋白基因的cDNA克隆和全序列测定[J]. Journal of Integrative Plant Biology. 1991(05): 37-43.
    [43]舒群芳,李文彬,张利明,孙勇如. cDNA文库的免疫筛选[J].农业生物技术学报. 1997(01).
    [44]舒群芳,孙勇如,徐锦堂.编码天麻抗真菌蛋白cDNA的分子克隆[J].植物学报. 1995(09).
    [45] COULSON A, SULSTON J, BRENNER S, KARN J. Toward a physical map of the genome of the nematode Caenorhabditis elegans[J]. Proc.Natl. Acad. Sci. USA. 1986, 83: 7821-7828.
    [46] SONG W Y, WANG G L, CHEN L L. Areceptor kinase-like protein encoded by the rice disease resistance gene Xa21[J]. Science. 1995, 270(5243): 1804-1806.
    [47] DIXON M S, JONES D A, KEDDIE J S. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins[J]. Cell. 1996, 84(3): 451-459.
    [48] MCDOWELL J M, DHANDAYDHAM M, LONG T A. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis[J]. The Plant Cell. 1998, 10: 1861-1874.
    [49] LI X, QIAN Q, FU Z, WANG Y, XIONG G, ZENG D, WANG X, LIU X, TENG S, HIROSHI F, YUAN M, LUOK D, HAN B, LI J. Contorl of tillering in rice[J]. Nature. 2003, 422: 618-621.
    [50] FEDOROFF N V, FURTEK D B, NELSON O E. Cloning of the Bronze Locus in Maize by a Simple and Generalizable Procedure Using the Transposable Controlling Element Activator (Ac) [J]. Proc Natl Acad Sci USA. 1984, 81: 3825-3829.
    [51] JONES D A, THOMAS C M, HAMMOND-KOSACK K E. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science. 1994, 266: 789-793.
    [52] ELLIS J G, FINNEGAN E J, LAWRENCE G J. Developing a transposon tagging system to isolate rust-resistance genes from flax [J]. Theor Appl Genet. 1992, 85: 46-54.
    [53] OSBORNE B I, BAKER B. Movers and shakers: maize transposons as tools for analyzing other plant genomes.[J]. Curr.Opin.CellBiol. 1995, 7(3): 406-413.
    [54]杨林,王金发.植物基因土程中的转座子标签[J].生物技术. 2000, 10(1): 22-26.
    [55] JOHAL G S, BRIGGS S P. Reductase-activity encoded by the HM1 disease resistance gene in Maize[J]. Science. 1992, 258(5084): 985-987.
    [56] WHITHAM S, DINESHKUMAR S P, CHIO D. The product of the tobacco mosaic-virus resistance gene-N-similarity to toll and the interleukin-1 receptor[J]. Cell. 1994, 78(6): 1011-1015.
    [57] JONES D A, THOMAS C M, HAMMONDKOSACK K E. Isolation of the tomato CF-9 gene for resistance to cladosporium-fulvum by transposon tagging[J]. Science. 1994, 266: 789-793.
    [58] LAWRENCE G J, FINNEGAN E J, AYLIFFE M A, ELLIS J G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N.[J]. Plant Cell. 1995, 7(8): 1195-1206.
    [59] KENNETH A F, M D M, MICHAEL L C, QUATRANO R S. A Dwarf Mutant of Arabidopsis Generated by T-DNA Insertion Mutagenesis [J]. Science. 1989, 243(4896): 1351-1354.
    [60] MARKS M D, FELDMANN K A. Trichome development in Arabidopsis thaliana T-DNA tagging of the GGABROUSI gene. [J]. The Plant Cell. 1989, 1: 104-105.
    [61] HAYASHI H. Activation of a plant gene by T-DNA tagging:auxin-independent growth in vitro[J]. Science. 1992, 258: 1350-1353.
    [62] GLOVER J, GRELON M, CRAIG S, CHAUDHURY A, DENNIS E. Cloning and characterization of MSS from Arabidopsis:a gene critical in male meiosis[J]. Plant J. 1998, 15(3): 345-356.
    [63] LEE S W, TOMASETTO C, SAGER R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization[J]. Proc Natl Acad Sci USA. 1991, 88: 2825-2829.
    [64] SCHAFFER M A, FISCHER R L. Analysis of mRNAs that Accumulate in Response to LowTemperature Identifies a Thiol Protease Gene in Tomato 1 [J]. Plant Physiology. 1989, 87: 431-436.
    [65]马建忠.植物的冷诱导基因(综述)[J].农业生物技术学报. 1996, 4(01): 8-14.
    [66] CHONG K, WANG L P, TAN K H, HUANG H L, LIANG H G. Molecular cloning and characterization of vernalizationrelated(ver) genes in winter wheat[J]. Physiol plant. 1994, 92: 511-514.
    [67]李捷,印莉萍,刘维仲.示差扣除杂交法及其在分子生物学中的应用[J].生物技术通报. 1999(03).
    [68] DOMINGUEZ-PUIGJANER E, LLOP I M, VENDRELL, PRAT S. A cDNA Clone Highly Expressed in Ripe Banana Fruit Shows Homology to Pectate Lyases[J]. Plant Physiol. 1997, 114(3): 1071-1076.
    [69]董继新,董海涛,吴玉良,程志强,何祖华,李德葆.用PCR-差别筛选法分离和克隆水稻受稻瘟病菌诱导的cDNA片段[J].中国农业科学. 1999, 32(03): 8-13.
    [70] LIANG P, PARDEE A. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization [J]. Nucleic Acids Research. 1993, 21(14): 3269-3275.
    [71] BAUER D, MüLLER H, REICH J, RIEDEL H, AHRENKIEL V, WARTHOE P, STRAUSS M. Identification of differentially expressed mRNA species by an improved display technique[J]. Nucl Acids Res. 1993, 21(14): 4272-4280.
    [72] LI F S, BARNATHAN E S, KARIKO K. Rapid method for screening and cloning cDNA generated in differential mRNA display: application of northern blot for affinity capturing of cDNAs.[J]. Nucleic Acids Res. 1994, 22(9): 1764-1765.
    [73] WANG S, LUE W, WU S, HUANG H, CHEN J, WANG S, LUE W, WU S, HUANG. Characterization of a maize beta-amylase cDNA clone and its expression during seed germination[J]. Plant physiology. 1997, 113(2): 403-409.
    [74] MASAHARU M, DAISAKU O, RYO S. lsolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidopsis and Its Expression Manner in Planta[J]. Plant Physiol. 1997, 113: 755-763.
    [75] GAO M, CHIBBAR R N. Isolation, characterization and expression analysis of starch synthase IIa cDNA from wheat(Triticum aest ivum L.)[J]. Geno me. 2000(43): 768-775.
    [76] LEISTER D, BALLVORA A, SALAMINI F, GEBHARDT C. A PCR?based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Nature Genetics. 1996, 14: 421-429.
    [77] LEISTER D, KURTH J, LAURIE D A, YANO M, SASAKI T, GRANER A, SCHULZE-LEFERT P. RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and Barley (H. vulgare) [J]. Theor.Appl Genet. 1999(98): 509-520.
    [78]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社, 1993.
    [79]金凤媚,薛俊,郏艳红,刘仲齐.半定量RT- PCR技术的研究及应用[J].天津农业科学. 2008,14(1): 10-13.
    [80] WANG A M, DOYLE M V, MARK D F. Quantitation of mRNA by the polymerase chain reaction[J]. Leukemia. 2000, 14(2): 316-323.
    [81]廖慧敏,高强,刘谋益.基因芯片技术及其在植物上的应用[J].湖南农业科学. 2003(5): 19-22.
    [82]翟鹏,童坦君.基因科学的革命—基因芯片技术[J].生理科学进展. 2000, 31(2): 135-139.
    [83] VANDESOMPELE J, DE P A, SPELEMAN F. Elimination of primerdimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR[J]. Anal Biochem. 2002, 303: 95-98.
    [84]蒋春燕,王泰健,王琴,范学政.实时荧光定量PCR技术[J].动物医学进展. 2005, 26(12): 97-101.
    [85]张中保,李会勇,石云素,宋燕春,黎裕,王天宇.应用实时荧光定量PCR技术分析玉米水分胁迫诱导基因的表达模式[J].植物遗传资源学报. 2007, 8(04): 421-425.
    [86]牛艳梅,沈文涛,卢雅薇,周鹏.番木瓜果实扩展蛋白Cp-EXP1基因表达的荧光定量PCR分析[J].生物技术通讯. 2008, 19(01): 84-86.
    [87] GALL J G, PARDUE M L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations[J]. Proc. Natl. Acad Sci. USA. 1969, 63(2): 378-383.
    [88] COEN E S. The role of homeotic genes in flower development and evolution. [J]. Annu. Rev. Plant Physiol. Plant MOl. Biol. 1991, 42: 241-279.
    [89]陈绍荣,杨弘远. RNA原位杂交技术及其在植物基因表达研究中的应用[J].武汉植物学研究. 2000, 18(1): 57-63.
    [90]张若惠,路安民.植物分类学报[J].植物分类学报. 1979, 17(2): 40-44.
    [91]骆咏,傅松玲,张良富,周永康.海拔高度对山核桃生长与产量的影响[J].经济林研究. 2008, 26(1): 71-73.
    [92]黄坚钦,章滨森,陆建伟,付敢伟.山核桃嫁接愈合过程的解剖学观察[J].浙江林学院学报. 2001(02).
    [93]朱玉球,廖望仪,黄坚钦,孙晓萍.山核桃愈伤组织诱导的初步研究[J].浙江林学院学报. 2001(02).
    [94]万俊丽,黄坚钦,夏国华,张启香,黄丽春.山核桃幼胚不定芽的诱导[J].浙江林学院学报. 2009, 26(5): 726-766.
    [95]王正加.山核桃分子标记与开花基因CcLFY及其启动子克隆的研究[D].北京:北京林业大学, 2006.
    [96]洪丹丹.山核桃x薄壳山核桃授粉子代AFLP、SSR分析[D].杭州:浙江林学院, 2007.
    [97] HANNA W W. Use of apomixis in cultivar development[J]. Advances in Agronomy. 1995, 54: 333-350.
    [98]徐锐.枳壳与早实枳中若干成花基因的克隆及表达分析[D].武汉:华中农业大学, 2007.
    [99] HSUA C, LIUA Y, LUTHEB D S, YUCEERA C. Poplar FT2 Shortens the Juvenile Phase andPromotes Seasonal Flowering[J]. The Plant Cell. 2006, 18: 1846-1861.
    [100] BOHLENIUS H, HUANG T, CHARBONNEL-CAMPAA L, BRUNNER A, JANSSON S, STRAUSS S, NILSSON O. CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees[J]. Science. 2006, 312: 1040-1043.
    [101]龚霞峰,胡江琴,刘姬艳,王利琳.植物AGAMOUS同源基因的表达调控[J].杭州师范大学学报(自然科学版). 2009, 8(03): 218-223.
    [102] WEIGEL D, MEYEROWITZ E M. The ABCs of floral homeotic genes[J]. Cell. 1994, 78: 203-209.
    [103] WEIGEL D, ALVAREZ J, SMYTH D, YANOFSKY M, MEYEROWITZ E. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell. 1992, 69(5): 843-859.
    [104] NG. M. Activation of the Arabidopsis B class homeotic genes by APETALA1[J]. The Plant Cell. 2001, 13 : 739-753.
    [105] NG M, YANOFSKY M F. Activation of the Arabidopsis B class homeotic genes by APETALA1[J]. The Plant Cell. 2001, 13(4): 739-753.
    [106] LOPEZ P, WHEATLEY K, ROBSON F, ONOUCHI H, VALVERDE F, COUPLAND G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature. 2000, 410: 1116-1120.
    [107] MANDEL M A, GUSTAFSON-BROWN C, SAVIDGE B, YANOFSKY M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALAI.[J]. Nature. 1992, 360: 273-277.
    [108] GUSTAFSON-BROWN C, SAVIDGE B, YANOFSKY M F. Regulation of the Arabidopsis floral homeotic gene APETALAl[J]. Cell. 1994, 76: 131-143.
    [109] PARCY F, NILSSON, BUSCH M A, LEE I. Agenetic framework for floral patterning[J]. Nature. 1998, 395: 561-566.
    [110] SHEPARD K A, PURUGGANAN M D. The genetics of plant morphological evolution [J]. Current Opinion in Plant Biology. 5, 5(1): 49-55.
    [111] MANDEL M A, YANOFSKY M F. The Arabidopsis AGL8 MADS Box Gene Is Expressed in Inflorescence Meristems and Is Negatively Regulated by APETALA1[J]. THE PLANT CELL. 1990, 7(11): 1763-1771.
    [112]孙海峰,孟玉平,曹秋芬,梁爱华.枣中APETALA1(AP1)同源基因的克隆及其表达特征分析[J].山西大学学报(自然科学版). 2009, 32(02): 266-272.
    [113] YAO J, DONG Y, KVARNHEDEN A, MORRIS B, YAO J L, DONG Y H. Seven MADS-box genes in apple are expressed in different parts of the fruit.[J]. Journal of the American Society for Horticultural Science. 1999, 124(1): 8-13.
    [114] KIM S, KOH J, YOO M, HONGZHI K, YI H, HONG M, SOLTIS P S, SOLTIS D E. Expression of floral MADS-box genes in basal angiosperms : implications for the evolution of floral regulators[J].Plant journal. 2005, 43(5): 724-744.
    [115] KYOZUKA J, KONISHI S, NEMOTO K, IZAWA T, SHIMAMOTO K. Downregulation of RFL,the FLO/LFY homology of rice,accompanied with panicle branch initiation[J]. Proc Natl Accd Sci USA. 1998, 95: 1979-1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700