温度胁迫对葡萄生长的影响及叶面肥喷布效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以砧木及品种为试材,鉴定了10种砧木的抗寒性,研究了生长中后期保叶和砧穗组合对提高树体贮藏营养的作用;同时研究了高温胁迫下喷布CaCl_2与NaHSO_3对缓解葡萄光合抑制的生理机制;主要结果如下:
     1.以3个品种的离体根和活体根系为试材进行低温胁迫处理,所得半致死温度差异性不显著,证明利用离体根鉴定抗寒性是可行的;-8℃下不同时间胁迫,贝达离体根的相对电导率随时间延长呈升高趋势,其中4h短时间胁迫与对照没有显著性差异,4h~20h之间相对电导率急剧上升,直到48h变化趋于平缓。
     2.不同砧木的抗寒性顺序为:贝达>5BB>Fercal、101-14>SO4> 3309C>140Ru>1103P>110R、Gravesac;其中贝达抗寒性最强,半致死温度为-8.8℃;砧木5BB、Fercal、101-14、SO4、3309C抗寒性相当,半致死温度处于-7.0~-5.6℃之间;140R、1103P、Gravesac、110R抗寒性稍差,半致死温度在-5.0~-4.3℃之间;不同砧木的抗寒性与离体根的粗度显著相关,相关系数为r=0.5027(a=0.01时,r=0.4869)。
     3.不同砧木离体根的相对电导率随胁迫温度降低呈不同程度的上升;-3℃胁迫下,抗寒性强的贝达、5BB等增幅较小,比其对照增加69.1%、69.34%,抗寒性弱的110R、Gravesac增幅较大,分别比其对照增加146%、136%;-6℃胁迫下,砧木贝达、5BB与其对照相比增加112.04%、127.51,而Gravesac、110R比对照增加238.81%、237.39%。可溶性糖、脯氨酸、游离氨基酸、可溶性蛋白、MDA随低温胁迫呈升高趋势,相关性分析表明,除可溶性糖指标外,以上指标与半致死温度显著相关。
     4.生长期叶面喷布2~3次的NaHSO_3各组合,均不同程度的提高赤霞珠葡萄的光合能力及光系统II光化学效率;NaHSO_3+增糖剂处理使果实含糖量提高10g/l,枝条淀粉含量比对照提高53.4%;NaHSO_3+KH_2PO_4处理的根系中淀粉含量比对照增加9.2%;NaHSO_3+尿素处理的枝条和根系中的蛋白质含量增加25.3%、9.6%,氨基酸含量增加6.5%、24.9%。综合看,NaHSO_3+增糖剂处理效果较好。
     5.生长季中后期对赤霞珠喷布3次各种氨基酸及氮、磷、钾叶面肥,各处理均不同程度提高了叶片光合速率及光系统II稳定性;0.08%谷氨酸、0.1%多肽使果实含糖量提高17.90g/l、11.48g/l,一年生枝条淀粉含量提高67.3%、64.1%;0.15%增糖剂处理的枝条淀粉含量增加48.9%;0.4%KH2PO4处理的枝条中可溶性糖及淀粉含量增加74.7、27.7%;0.6%尿素处理的氨基酸和可溶性蛋白提高60.3%、36.9%。综合看,氨基酸源叶面肥较好。
     6.不同赤霞珠砧穗组合中,相同品系不同砧木,9、10月份测定CS-169/1103P组合光合速率及光系统II的光化学效率高于CS-169/SO4组合,果实品质、枝条和根系的C、N贮藏营养亦显著优于SO4砧组合;不同品系嫁接于1103P砧木上,无论光合、荧光参数还是果实糖度、树体贮藏营养均以CS-169品系最优。综合看,赤霞珠以169品系嫁接1103P砧木组合最佳。
     7.喷施15mmol·L~-1CaCl_2显著提高了高温胁迫下葡萄叶片的净光合速率(Pn),使光系统II(PSII)维持较高的活性,光化学猝灭系数(qP)、PSII的天线转换效率(Fv’/Fm’)、最大光化学效率(Fv/Fm)均极显著高于清水对照,初始荧光(Fo)极显著小于对照,膜脂过氧化产物MDA含量稍低于对照;添加抑制剂EGTA、CPZ的处理则明显抑制了光合作用与PSII功能活性,证明喷Ca~+2能有效缓解高温对叶片光合作用的抑制以及对PSII系统的损害。
     8.不同浓度NaHSO_3不同程度的减轻了高温胁迫对巨峰葡萄光合作用的抑制程度,维持了PSII较高的活性;以1mmol·L-1NaHSO3的缓解作用最好。
The cold resistance of 10 rootstocks were identified, the effects of a series of protecting leaves operations and the combination of clone and rootstock on stored nutrition were appraised; while the physiological mechanism of CaCl_2 and NaHSO_3 to alleviate grape photosynthesis was studied. The results were as follows:
     1. There was no significant difference in semilethal temperature between cutting root and invivo root under low temperature stress in 3 cultivars. It’s feasible to use cutting roots for testing cold resistance of rootstocks; the relative conductivity of Beta cutting roots increased with time under -8℃cold stress, short period stress of 4h had no significant difference with control, while the relative conductivity increased sharply between 4h and 20h and reached peak value till 48h.
     2. The cold resistance of rootstocks in descending order was: Beta>5BB> Fercal、101-14>SO4>3309C>140Ru>1103P>110R、Gravesac; Beta had the strongest cold resistance and its semilethal temperature was -8.8℃, Followed by 5BB, Fercal, 101-14, SO4 and 3309C, whose semilethal temperature were between -7.0 and -5.6℃; 140R, 1103P, Gravesac and 110R had low cold resistance, whose semilethal temperature were between -5.0 and -4.3℃. Cold resistance of different rootstocks and coarseness of cutting root was significant correlation. The coefficient of correlation was r=0.5027 (a=0.01, r=0.4869).
     3. The relative conductivity of different rootstocks cutting roots increased with the temperature declining. Under -3℃stress, Beta and 5BB increased by 69.1% and 69.34% than control, while 110R and Gravesac increased by 146% and 136% than control. Under -6℃stress, Beta and 5BB increased by 112.04%,127.51% than control, while Gravesac and 110R increased by 238.81%, 237.39% than control. The content of soluble sugar, proline, free amino acids, soluble protein and MDA was increase with temperature decreasing. Correlation analysis showed that above indexes had a significant correlation with semilethal temperature except souble sugar.
     4. Spraying 2 or 3 times NaHSO_3 and its combinations during growing season could significantly improve the photosynthetic performance and the photochemical efficiency of PSII of Cabernet Sauvignon. NaHSO_3 + ZTJ treatment increased the fruit sugar content and branch starch content by 10g/l and 53.4% than control. NaHSO_3+KH_2PO_4 treatment increased root starch content by 9.2% than control. NaHSO_3+urea treatment increased protein branch and root content by 25.3% and 9.6%, and increased branch and root amino acid content by 6.5% and 24.9%. In general, NaHSO_3+ZTJ treatment had a better effect.
     5. Spraying 3 times amino acids and N, P, K foliar fertilizer during mid and later growing period of Cabernet Sauvignon could improve the photosynthetic performance and the photochemical efficiency of PSII to a certain extent. 0.08% glutamic acid and 0.1% polypeptide treatment increased fruit sugar content of by 17.90g/l and 11.48g/l, while increased branch starch content by 67.3% and 64.1%. 0.15%; ZTJ treatment increased branch starch content by 48.9%. 0.4%; KH_2PO_4 treatment increased branch soluble sugar and starch content by 74.7% and 27.7% than control; 0.6% urea treatment increased amino acid and soluble protein content by 60.3% and 36.9%. In general, the amino acid foliar fertilizer had the better effect.
     6. Among the different Cabernet Sauvignon clone and rootstock combinations, CS-169/1103P had a higher photosynthetic rate and photochemical efficiency of PS II than CS-169/SO4 in September and October. The fruit quality and C, N storage nutrient in branch and root of CS-169/1103P was significantly better than CS-169/SO4. Among the different clones grafted on 1103P, the clone of 169 had the best effect on photosynthesis, fluorescence parameters, fruit sugar content and storage nutrition. In general, the clone of 169 grafted on 1103P was the best.
     7. The net photosynthetic rate, PSII activity, the photochemical quenching, Fv’/Fm’, Fv/Fm, were significantly increased by spraying 15mmol·L~-1 CaCl_2 under high temperature stress. The membrane lipid peroxidation produce content was slightly lower than control. Adding inhibitors EGTA, CPZ treatment significantly inhibited the photosynthesis and the activity of PSII. Idicated that spraying Ca~2+ effectively alleviated the high temperature inhibition to the photosynthesis and PSII system in grape leaves.
     8 NaHSO_3 of different concentration alleviated the heat stress inhibition to photosynthesis on kyoto grape and maintained high PSII activity. The effect of 1mmol·L~-1 NaHSO3 on alleviation to the leaf photosynthesis was best.
引文
1.艾琳.鲜食葡萄抗寒性研究[D].乌鲁木齐:新疆农业大学2003.
    2.陈贵林,贾开志.钙和钙调素拮抗剂对高温胁迫下茄子幼苗抗氧化系统的影响[J].中国农业科学,2005,38(1):197-202.
    3.陈建白.电导法在植物抗寒研究中的应用[J].南热作科技,1999,22(1):26-28.
    4.陈杰中,徐春香,梁立峰.低温对香蕉叶片中蛋自质及脯氨酸的影响[J].华南农业人学学报,1999,20(3):54-58.
    5.陈景新.燕山葡萄-一种兼具高糖与高抗性的野生资源[J].中国果树,1979(1):11-15.
    6.陈璇,李金耀,马纪,等.低温胁迫对春小麦和冬小麦叶片游离脯氨酸含量变化的影响[J].新疆农业科学,2007,44(5):553-556.
    7.陈忠,苏维埃,汤章成.植物热激蛋白[J].植物生理学通讯,2000,36,(4):289-296.
    8.邓令毅,王洪春.葡萄的抗寒性与质膜透性[J].植物生理学通讯,1984,2,12-14.
    9.范苓,段伟,程杰山,等.李绍华,王利军,刘国杰.水杨酸对高温胁迫下及恢复期间葡萄幼苗叶片光合机构PSⅡ的影响[J].果树学报,2009,26(5):623-627.
    10.葛玉香,沈育杰,李晓红,等.山葡萄种质资源主要经济性状的研究现状及其展望[J],特产研究,1997(4):34-38.
    11.管长志,孟昭清.巨峰葡萄晚秋叶施15N-尿素的吸收、运转、贮藏和再分配[J].园艺学报,1993,20,(3):237-242.
    12.郭修武,傅望衡,光浩.葡萄根系抗寒性的研究[J].园艺学报,1989,l6(1):17-22.
    13.韩振海,王福钧.晚秋叶施尿素和生长调节剂对富士苹果幼树贮藏氮素的影响[J].园艺学报,1992,19(2):15-21.
    14.郝中宁.秋季叶施尿素及乙烯利对枣树贮藏氮素的影响[J].园艺学报,1991,18(2):102-106.
    15.贺普超,牛立新.我国葡萄属野生种抗寒性的研究[J].园艺学报,1989,16(2):81-88.
    16.扈惠灵,王跃进,王西平.晚秋叶施高浓度肥料对梨树矿质营养状况的影响[J].西北农业学报,2002,11(2):63-66.
    17.皇甫淳,国贤贵.“双优”两性花山葡萄研究初报[J].吉林农业大学学报.1988,10(4):31-33.
    18.黄义江,王宗清.苹果属果树抗寒性的细胞学鉴定[J].园艺学报,1982,9(3):23-29.
    19.黄义江.苹果属果树抗寒性的细胞学鉴定[J].园艺学报,1962,1(1):15-23.
    20.简令成,孙得兰,施国雄,等.不同柑橘类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13,(3):163-167.
    21.简令成,孙德兰,施国雄,等.不同柑橘种类叶片组织结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168.
    22.简令成,孙龙华,贺善文,等.柑橘叶片细胞结构的适应性变化[J].园艺学报,1984,11(2):79–83.
    23.黎盛臣,文丽珠,张凤琴,等.抗寒抗病葡萄新品种-北醇[J].植物学通报,1983,l(2):28-30.
    24.李靖,王政,庞振亚,方庆,李成斌.喷施磷酸二氢钾对桃叶片和果实性状的影响[J].果树学报.2007,24(4):533-536.
    25.李荣富,王丽雪,梁艳荣,等.葡萄抗寒性的研究[J].园艺学进展(第二辑),1998,188–192.
    26.李荣富,王丽雪,张福仁,等.葡萄枝条组织化学特性与抗寒力关系的研究.中国科协第二届青年学术年会.园艺学论文集,北京农业大学出版社,1995,232-237.
    27.李荣富,王丽雪,梁艳荣,等.葡萄抗寒性研究进展[J].内蒙古农业科技,1997,6.
    28.李荣富,王丽雪.低温胁迫对葡萄叶片及细胞亚显微结构的影响[J].华北农学报,1996,11(4):109-113.
    29.李荣富,王丽雪.葡萄落叶前叶看细胞亚显微结构的变化[J].内蒙古农牧学院学报,1997,18(3):50-54.
    30.李天来,李淼,孙周平.钙和水杨酸对亚高温胁迫下番茄叶片保护酶活性的调控作用[J].应用生态学报,2009,20(3):586-590.
    31.刘星辉,王宏华,蔡建明,等.香蕉叶片组织细胞结构和生理特性与耐寒性的关系[J].福建农业大学学报,1990,19(2):181-185.
    32.刘悦萍,黄卫东,张俊环.钙-钙调素对水杨酸诱导葡萄幼苗耐热性的影响及与抗氧化的关系[J].园艺学报,2005,32(3):381-386
    33.刘悦萍,黄卫东,张俊环.高温锻炼和水杨酸预处理对热激下葡萄叶肉细胞超微结构的影响[J].园艺学报,2006,33(3):491-495.
    34.刘祖祺,张连华.用放射免疫法分析柑桔抗寒锻炼中游离和结合态脱落酸的变化[J].南京农业大学学报,1988,(3):11~25.
    35.马培芳,李利红,杨亚军,等.水杨酸对高温强光胁迫下小麦叶绿体D1蛋白磷酸化及光系统Ⅱ功能的影响[J].应用生态学报.2008,19(12):2632-2636.
    36.马培芳,杨亚军,赵会杰.水杨酸对高温强光下小麦抗氧化及光合作用的影响[J].河南农业科学,2009,4:26-29.
    37.潘海发,徐义流.叶面喷施钾肥对砀山酥梨叶片钾素含量和果实品质的影响[J].中国农学通报,2008,24(3):270-273.
    38.彭伟秀,杨建民,张芹,等.几个仁用杏品种枝条组织结构与抗寒性关系的初步研究[J].2002,河北农业大学学报,25,1.
    39.曲仲湘,吴玉树,王焕校,等.植物生态学.高等教育出版社,1993.
    40.阮仕立,李记明.野生葡萄种质资源的抗性及其利用研究进展[J].中外葡萄与葡萄酒.2002,4,30-33.
    41.佘文琴,刘星辉.低温胁迫下芒果叶片若干生理生化变化[J].福建农业大学学报,2001,30
    42.沈育杰,史贵文,徐浩.等.我国山葡萄种质资源研究与利用叨[J].特产研究,1992(3):29-32.
    43.宋润刚,路文鹏,王军,等.山葡萄新品种-双红[J].中国果树,1998(4):5-7.
    44.孙希生.喷钙对乔纳金苹果贮藏性的影响[J].中国果树,2001(5):2-4.
    45.孙宪芝,郭先锋,郑成淑,王文莉,梁芳.高温胁迫下外源钙对菊花叶片光合机构与活性氧清除酶系统的影响[J].应用生态学报,2008,19(9):1983-1988.
    46.孙艳,徐伟君.范爱丽高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,2006,17(3):399-402.
    47.万清林.草莓抗寒特性分析[J].北方园艺,1989,(8):33-36.
    48.王丽雪,李荣富.葡萄枝条中淀粉、还原糖剂脂类物质变化与抗寒性的关系[J].内蒙古农牧学院学报,994,15(4):1-6.
    49.王丽雪.葡萄叶片组织结构与抗寒性的关系[J].特产研究[J].1990,3.
    50.王利军,黄卫东,于凤义.高温胁迫对14C2SA在葡萄植株中的运转和分配的影响[J].植物生理学报,2001,27(2):129~134.
    51.王利军,黄卫东,战吉成.水杨酸和高温锻炼与葡萄抗热性及抗氧化的关系[J].园艺学报,2003,30(4):452-454.
    52.王利军,李家承,刘允芬,等.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响[J].中国农学通报,2003,19(6):185-189.
    53.王利军,李家永,战吉成,黄卫东.水杨酸对受高温胁迫的葡萄幼苗光合作用和同化物分配的影响[J].植物生理学通讯,2003,6,215-216.
    54.王利军,战吉成,黄卫东.葡萄幼苗高温锻炼过程中与水杨酸相关的信号转导的初步研究[J].植物学通报,2002,19(6):710-715.
    55.王淑杰,王家民,李亚东,等.氨基酸种类、含量与葡萄抗寒性关系的研究[J].葡萄栽培与酿酒,1998,(1):1-3.
    56.王淑杰,王家民,李亚东.可溶性蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园
    57.王晓芳,徐月华,翟衡,等.不同葡萄砧穗组合根系构型研究[J].果树学报,2007,24(3):293-297.
    58.王晓芳,翟衡,杜远鹏,等.葡萄不同砧穗组合的营养特征分析[J].中外葡萄与葡萄酒,2007,1,15-18.
    59.王晓芳.不同葡萄砧穗组合根系构型及其生物学效应[D].泰安:山东农业大学毕业论文2007.
    60.吴韩英,寿森炎,朱祝军,等.高温胁迫对甜椒光合作用和叶绿素荧光的影响[J].园艺学报,2001,28(6):517-521.
    61.吴经柔.应用过氧化物同功酶测苹果抗寒性[J].果树科学,1990,7(1):41-43.
    62.吴月燕.高温胁迫对藤稳葡萄生长结果的影响[J].果树学报,2001,18(5):280-283.
    63.谢丽芬.葡萄砧木抗寒性鉴定及抗寒机理的研究[D].呼和浩特:内蒙古农业大学,2007.
    64.徐春香,陈杰忠,梁立峰.低温对香蕉叶片中甘油等物质含量的影响[J].果树科学,2000,17
    65.杨建民,李艳,杨敏生,等.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50.
    66.杨晶辉.葡萄不同类群、品种及树体情况与冻害的关系[J].中外葡萄与葡萄酒,1985,1,9-14.
    67.姚胜蕊,曾骆,简令成.桃花芽越冬过程中多糖积累和质壁分离动态与品种抗寒性的关系[J].果树科学,1991,8(1):13-18.
    68.艺,1996,(2):13-14.
    69.尹立荣,孙克娟,等.葡萄叶片的组织结构与抗寒力的关系[J].特产研究.1990,3,7-9.
    70.余文琴,刘星辉.荔枝叶片细胞结构紧密度与耐寒性的关系[J].园艺学报,1995,22(2):185-186.
    71.俞德浚.中国果树分类学[M].北京:农业出版社,1979:176-179.
    72.宰学明,钦佩,吴国荣,等.外源钙对高温胁迫下花生幼苗叶绿体Ca2+-ATPase、Mg2+-ATPase活性及Ca2+分布的影响[J].中国油料作物学报,2005,27(4):41-44.
    73.张惠斌,刘星辉龙眼叶片组织细胞结构特征与耐寒性的关系[J].园艺学报,1993,20(1):1-7
    74.张连忠,接玉玲,杨兴洪,等.落叶前根外追肥对苹果休眠期营养状况的影响[J].山东农业大学学报,1998,29(4):443-447.
    75.张宗申,利容千,王建波.外源Ca2+预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、AsA含量及Ca2+分布的影响[J].植物生态学报,2001,25(2):230-234.
    76.赵登超,姜远茂,彭福田,等.冬枣秋季不同枝条叶施15N-尿素的贮藏、分配及再利用[J].核农学报,2007,21(1):87-90.
    77.赵明哲.长白山区山葡萄的开发利用[J].特产科学试验,1985(1):38-42.
    78.郑家基,卢炜,陈利恒等.龙眼、橄榄叶片空隙率与耐寒性的关系[J].福建农业大学学报,1996,25(2):161-164
    79.郑玉生,张秋明,刘昆玉.温州蜜柑枳高砧的抗寒生理[J].上海农业学报,1998,14(1):51-54.
    80.朱志玉.沙引发及抗寒剂处理对水稻种子发芽及幼苗抗寒性的影响[D].杭州:浙江大学硕士学位论文,2002.
    81. Adams G.T., et. Anatomical studies on first-year winter injured red spruce foliage.American Joural of Botany, 1998, (9) :1199-1206.
    82. Adams G.T., et. AI. Anatomical studies on first-year winter injured red spruce foliage. American Journal of Botany, 1998, (9) :1199-1206.
    83. Aimone S., Bovio M., Comparative trial on six Barbera rootstock combinations in the Basso Monferato districts. Results on the first years of observation [J]. Annali della Facolta di Science Agrarie della University degli Studies di Torino, 1987, 14 :63-76.
    84. Alkier A. C., Racz G. J., Soper R. J.. Effects of foliar-and soil-applied nitrogen and soil nitrate-nitrogen level on the protein content of neepawa wheat. Canadian Journal of Soil Science, 1972, 52: 301-309.
    85. Bukhov N.G.., Wiese C., Neimanis S., Heber U., Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosyn. Res. 1999, 59, 81–93.
    86. Bush D. S.. Calcium regulation in plant cells and its role in sig-naling. Annual Review of Plant Physiology and Plant Molecular Biology , 1995, 46: 95-122.
    87. Camejo D., Rodr′(?)guez P., Morales M. A., Dell’amico J. M., Torrecillas A., Alarc′on J. J., High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 2005, 162, 281–289.
    88. Carlos Alcaraz. Lopez, Maria Botia, Carlos F. Alcaraz, Fernndo Riquelme. Effects of Calcium-Containing Foliar Sprays Combined with Titanium and Algae Extract on Plum Fruit Quality. Journal Plant Nutrition, 2004, (6) :713-729.
    89. Chakraborty U., Tongden C., Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Advances in Plant Science, 2005,
    90. Dat J. F., Lopez Delgado H., Foye C. H., et al. Parallel change in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in musturd seedlings. Plant Physiology, 1998, 116 :1351~1357
    91. De Ronde J. A. D., Cress W. A., Kruger G. H. J., Strasser R. J., Staden J. V., Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology, 2004, 61,1211–1244.
    92. Dieter P.. Calmodulin and calmodulin-mediated progress in plants. Plant Cell and Environment, 1984, 7 :371-380.
    93. Gallerani G., Pratella G. C..Bertolini P., Marchi A.. Lack of relationship between total calcium of apple fruit and a calcium deficiency related disorder(bitter pit) :a four year report. Acta Horticulturae. 1990, (274) :141-148.
    94. Giorgessi F., Bortolin C., Sansone L.. Stock and growth relationships in Vitis Vinifera. Acta Horticulturae Sinica, 1997, 427 :311-318.
    95. Gong M., Chen S. N., Song Y. Q., Li Z. G.. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Australian Journal of Plant Physiology, 1997(a), 24.:371-379.
    96. Gong M., Li X. J., Dai X., Tian M., Li Z. G.. Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seedlings. Journal of Plant Physiology, 1997(b), 150 :615-621.
    97. Guilioni L., Wery J., Tardieu F., Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs. American Journal of Botany, 1997, 80, 159–168.
    98. He Y. L., Liu Y. L., Cao W. X., Huai M. F., Xu B. G., Huang B. G.. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 2005, 45, 988–995.
    99. Huner N. P., et. al. Anatomical changes in leaves of pumarye in response to growth at cold-hardening tempera-Mmes. Botanical Gazette. 1981, 14(1) :5-62.
    100. Irving H. R., Gehring C.A., Parish R. W.. Changes in cy-to solic pH and cacium of guard cells precede stomatal movements. Proceedings of the National Academy of Sci-ences of the United States of America, 1992, 89: 1790-1794
    101. Ismail A. M., Hall A. E., Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science. 1999, 39, 1762–1768.
    102. Janda T. G., Szalai I. T., Padi E.. Hydroponic treatment with salicylic acid decrease the effects of chilling injury in mazie ( Zea Mays L)plants. Planta , 1999, 208 :175~480
    103. Jiang Y., Huang B.. Efftects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 2001, 52(355): 341-349.
    104. Kerepesi G.. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedings[J]. Crop Science, 2000, 40 :482-487.
    105. Korotaeva N. E., Antipina A. I., Grabelynch O. I., et al. Mitochondrial low-molecular-weight heat shock proteins and tolerance of crop plant’s mitochondria to hyperthermia. Fiziol. Biokhim Kul’turn. Rasten. 2001, 29, 271–276.
    106. Larkindale J., Huang B.. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Joural of Plant Physiology, 2004, 161, 405–413.
    107. Levitt J.. Responses of plants to enviornnmental stress:chilling,freez-ing and high temperature stress. 1980, Ed2, Voll, NewYork :Academic Press.
    108. Lopez-Delgado H., Dat J. F., Foyer C. H., Scott I. M., Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Joural Environmental Biology, 1998, 49, 713–720.
    109. Lyons J. M.. Chilling injury in plants[J]. Annual Review of Plant Physiology, 1973, 24 :445-455.
    110. Marchand F. L., Mertens S., Kockelbergh F., Beyens L., Nijs I.. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Global Change Biology, 2005, 11, 2078–2089.
    111. Mcdonald G. K., Paulsen G. M., High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil, 1997, 196, 47–58.
    112. Miroshnichenko S., Tripp J., Nieden U., Neumann D., Conrad U., Manteuffel R., Immuno modulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant Joural. 2005, 41, 269–281.
    113. Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7, 405–410
    114. Monroy A. F., Sarhan F., Dhindsa R. S.. Cold-induced changes in freezing tolerance protein phosphorylation and gene expres-sion. Plant Physiology, 1993, 102 (4): 1227-1235.
    115. Posmyk M. M., Janas K. M., Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta physiol. Plant. 2007, 29, 509–517.
    116. Puvis A. C..Yelenosky G.. Sugar and proline accumulation of grapefruit favedo and leaves during cold Hardening of young trees[J]. Joural of American Social Horticulture Science, 1982, (2) :222-226.
    117. Rodney D. R.. The entrance of nitrogen compounds through the epidermis of apple leaves. Proceedings of the America Society for Horticultural Science, 1952, 59: 99-102.
    118. Salvucci M. E., Crafts-Brandner S. J.. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 2004b, 120, 179–186.
    119. Sarandón S. J., Gianibelli M. C.. Effect of foliar urea spraying and nitrogen application at sowing upon dry matter and nitrogen distribution in wheat (Triticum aestivum L.). Agronomy Journal, 1990, 10: 183-189.
    120. Senaratna T., Touchell D., Bunn E., et al. Acetyl salicylic acid (as2pirin) and salicylic acid induce multiple stress tolerance in bean andtomato plants. Plant Growth Regulation, 2000, 30 :157~161
    121. Serrano M., Martínez-Romero D., Castillo S., Fábian G., Daniel V.. Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biology and Technology, 2004, 34: 155-167.
    122. Simoes-Araujo J. L., Rumjanek N. G., Margis-Pinheiro M.. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Joural of Plant Physiology, 2003, 15, 33–41.
    123. Tsukaguchi T., Kawamitsu Y., Takeda H., Suzuki K., Egawa Y.. Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant ProductionScience, 2003, 6, 4–27
    124. Vasilas B. L., Legg J. O., Wolf D. C.. Foliar fertilization of soybeans: absorption and translocation of 15N-labelled urea. Agronomy Journal, 1980, 72: 271-275.
    125. Vollenweider. P., Gunthardt-Goerg,. M. S., Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environment Pollution, 2005, 137, 455–465.
    126. Wahid A., Close T. J.. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 2007, 51, 104–109.
    127. Wang L. X.. International symposium on horticultural germp lasm cultuvated and ild[M]. International Academic Publisher, New York. 1988, 96-97.
    128. Wang W. X., Vinocur B., Shoseyov O., Altman A.. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9: 244~252.
    129. Wang Y., Yu Q. Y., Tang X. X., Wang L. L.. Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes. Progress in Natural Science, 2009, 19: 435-442.
    130. Wise, R. R., Olson A. J., Schrader S. M., Sharkey T. D.. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant and Cell Environment. 2004, 27, 717–724.
    131. Yamada M., Hidaka T., Fukamachi H.. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae. 1996, 67, 39–48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700