纳米铜及氧化(亚)铜薄膜的微观结构及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过向化学镀铜溶液中添加十二烷基苯磺酸钠(SDBS),在玻璃表面制备了纳米铜膜,微观结构分析表明铜膜具有明显的(111)织构和较低的表面粗糙度,电阻率随膜厚的增加而下降。利用热氧化法对膜厚为100nm的铜膜进行氧化,氧化温度和时间对薄膜的组成和表面形貌有很明显的影响,特别是在300°C氧化8h后会形成直径10-15nm,长度200-300nm的CuO纳米线。纳米线生长工艺研究表明,适宜形成纳米线的温度范围为300oC-400oC;在350oC时,随氧化时间的延长,纳米线逐渐减少;而在400oC时,几乎没有形成纳米线;且膜厚的增加有利于纳米线的形成;纳米线的形成符合VS机理。通过向电解液中添加不同含量的十六烷三甲基氯化铵(CTAC),在ITO基体上利用恒电位电沉积法制备了不同表面形貌的Cu2O薄膜。结果表明CTAC对于Cu2O薄膜的晶粒尺寸及表面形貌有很明显的影响。
Copper has been increasingly used as an alternate material for aluminum-based interconnects in ultra-large-scale-integration (ULSI) metallization, because of its high resistance to electromigration and low electrical resistivity. Electroless plating has been proposed as an potential technology for the preparation of copper seed layer in ULSI metallization. The microstructures and properties of this seed layer have important effects on the properties of subsequent electrodeposited layers. Therefore, it is essential to fabricate electroless copper film with good properties by optimizing conventional bath composition and processing parameters. Copper oxides including cuprous oxide and cupric oxide are p-type semiconductor. Thermal oxidation under controlled conditions has been used to prepare copper oxide thin films. Especially, CuO nanowires (nanorods) can be synthesized on the copper substrate by this method, without any catalyst and template. At present, interests on the nanowires (nanorods) are focused on the fabrication technique. Electrodeposition is attractive method to synthesize oxide and sulphide. Cu_2O thin films synthesized by electrodeposition have wide applications in solar cells. The structural characterizations of Cu_2O thin film are found to influence the properties of solar cells.
     Based on above methods, nanocrystalline copper films on the glass have been fabricated by electroless plating with the addition of surfactant, sodium dodecyl benzene sulfonate (SDBS). Cu_2O and CuO thin films as well as CuO nanowires (nanorods) have been synthesized by the thermal oxidation of the as-prepared nanocrystalline copper thin films. Cu_2O thin films with different microstructure have been synthesized on indium-doped tin oxide (ITO) glass by potentiostatically electrodeposition, with cationic surfactant, cetyl trimethylammonium chloride (CTAC) as an additive in cupric acetate electrolyte. Microstructures and properties of these thin films are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), atom force microscope (AFM), transmission electron microscope (TEM), fourier-transform infrared transmission (FTIR), UV-vis spectrophotometer, etc. The main results are shown as follows:
     1. Nanocrystalline copper thin films have been synthesized by electroless plating. Microstructure analysis show that an obvious (111) texture exits in the copper thin films. The grain size and the intensity of (111) texture of copper thin films increases with increasing deposition time. The transition from a random grain growth to one preferred on (111) plane and the expense of the (111) orientated grains are responsible for this texture development in the Cu film. Morphologies observations reveal that 1min deposition is able to achieve a continuous copper thin film. Nanocrystalline copper thin films are composed of small nodules which composed of several grains and the growth of them follows the Volmer-Weber model.
     2. The improvement of RMS with the increasing deposition time is due to the increasing number of nodules and the growth in three dimensions. A dense copper thin film can be formed with the addition of SDBS which improves the quality of surface. A good adhesion strength exits between the Cu film and the glass substrate. The results of electrical resistivity show that it decreases rapidly with the increasing of film thickness when the film thickness is smaller than 100nm. The increased electrical resistivity arises from the enhancement of the surface and grain boundary reflections. The grain boundary reflection coefficient (R) which was calculated based on a combination model and the resultant value of R varies in a range of 0.4-0.75. It was showed that grain boundaries have more important contribution to R than surfaces. The increasing grain boundaries are the main factor that increased the electrical resistivity in the nanocrystalline copper thin films.
     3. The oxidation behaviors of electroless copper thin films, 100nm thick in the range of 100°C-600°C have shown that Cu_2O can be formed at the initial oxidation stage of 250°C. While at the temperature of 300°C, a mixture of Cu_2O and CuO is formed and Cu_2O evolves into pure CuO above 350°C. The oxidation temperature and time have played a key role in the microstructure and surface morphologies. CuO nanowires with the diameter of about 10-15nm and the length of 200-300nm have been observed at 300°C for 8h. Copper oxide films have higher transmittance in the visible and IR region, while almost completely opaque in the UV region. The variation of optical transmittance spectra depends on the composition and microstructure of oxide films. The band gaps are 1.93-1.98eV and 2.2-2.4 eV for pure CuO and the mixture of Cu_2O and CuO, respectively.
     4. It can be found that the optimum temperature is between 300oC and 400oC for a 100nm thick thin film at the oxidation time of 1h. No nanowires are observed when the oxidation temperature is lower or higher than this range of temperature. The number of nanowires decreases with the prolonging of oxidation time at 350oC. However, few nanowires could be seen when the thin film was oxidized at 400oC. The increase of film thickness is benefit to the formation of nanowires. The formation and growth of these nanowires is probably due to vapor-solid (VS) mechanism. The transmittance of CuO nanowires increases with the increasing of introduced wavelength and decreases with the increase of film thickness. The band gaps of CuO nanowires are in the range of 1.94eV-2.03eV.
     5. Cu_2O thin films with different microstructures and morphologies have been fabricated on ITO glass by potentiostatically electrodeposition, with CTAC as an additive of electrolyte. The electrochemical analysis shows that the formation of copper can be restrained and the formation of Cu_2O can be accelerated by the addition of CTAC. It is seen that the deposition of Cu_2O favors the higher pH value. The peaks according to Cu_2O are slightly shifted to positive potential with increasing the temperature. The deposition current increases with the increase in electrolyte concentration. The deposition potential is the lowest at the concentration of 1.0 C0. The XRD results indicate that CTAC has great effect on the microstructure of Cu_2O thin films. The diffraction intensity of Cu_2O thin films with the CTAC of 3.0mM is higher than that of others. With the concentration of CTAC increased, the flowers of Cu_2O turn into spheres with shagginess and eventually another type of flowers can be formed. It is found that the increase of electrolyte concentration is propitious to the formation of flowers for Cu_2O and it gradually becomes much larger. The temperature has no obvious effects on the morphologies of Cu_2O. However, the density of Cu_2O particles increases, while the particle size decreases with the increased temperature. The effect of CTAC on the particle size and morphologies of Cu_2O thin films might be attributed to the adsorption of CTAC, which in turn change the surface energies of different crystal face and affect the growth kinetics. The addition of CTAC has no obvious effect on the chemical state, and the binding energies of Cu 2p3/2, Cu 2p1/2 and O 1s are 932.6eV, 952.5eV and 530.4ev, respectively. The variation of optical transmittance varied with the introduced wavelength depends on the variation of CTAC. Moreover, the increase of concentration and temperature tend to enhance the optical transmittance of Cu_2O thin films. The band gaps of electrodeposited Cu_2O thin films are in the range of 1.70-2.02 eV.
引文
[1] K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering R, 1996, 16: 161-221.
    [2] H. Gleiter, Nanocrystalline materials. Progress in materials science, 1989, 33: 223-315.
    [3] E. Comini, Metal oxide nano-crystals for gas sensing, Analytica Chimica Acta, 2006, 568: 28-40.
    [4] M. E. Mchenry, M. A. Willard, D. E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Progress in materials science, 1999, 44: 291-433.
    [5] M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials. Progress in materials science, 2006, 51: 427-556.
    [6] I. Yamada, N. Toyoda, Nano-scale surface modification using gas cluster ion beams-A development history and review of the Japanese nano-technology program. Surface and Coatings Technology, 2007, 201: 8579-8587.
    [7] K. Hono, Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Progress in materials science, 2002, 47: 621-729.
    [8] Y. Ito, E. Fukusaki, DNA as a ‘Nanomaterial’, Journal of Molecular Catalysis B: Enzymatic, 2004, 28: 155-166.
    [9] A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys inAl-based systems. 1998, 43: 365-520.
    [10] N. Koshida, N. Matsumoto, Fabrication and quantum properties of nanostructured silicon, Material science and engineering R, 2003, 40: 169-205.
    [11] S. Berger, R. Porat, R. Rosen, Nanocrystalline materials: a study of wc-based hard metals. Progress in Materials Science, 1997, 42: 311-320.
    [12] S. C. Tjong, H. Chen, Nanocrystalline materials and coatings. Materials Science and Engineering R, 2004, 45: 1-88.
    [13] A. Raveh, I. Zukerman, R. Shneck, R. Avni, I. Fried, Thermal stability of nanostructured superhard coatings: A review. Surface and Coatings Technology, 2007, 201: 6136-6142.
    [14] V. V. Pokropivny, V. V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterials science. Materials Science and Engineering C, 2007, 27: 990-993.
    [15] D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Progress in Materials Science, 2004, 49: 537-560.
    [16] Y. V. Kolen'ko, V. D. Maximov, A. A. Burukhin, V. A. Muhanov, B. R. Churagulov, Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering: C, 2003, 23: 1033-1038.
    [17] G. G. Tibbetts, M. L. Lake, K. L. Strong, B. P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 2007, 67: 1709-1718.
    [18] M. Trojanowicz, Analytical applications of carbon nanotubes: a review. Trends in Analytical Chemistry, 2006, 25: 480-489.
    [19] E. P. S. Tan, C. T. Lim, Mechanical characterization of nanofibers-A review. Composites Science and Technology, 2006, 66:1102–1111.
    [20] A. M. Ali, T. Inokuma, Y. Kurata, S. Hasegawa, Luminescence properties of nanocrystalline silicon films. Materials Science and Engineering C, 2001, 15: 125-128.
    [21] I. Ferreira, F. Braz Fernandes, P. Vilarinho, E. Fortunato, R. Martins, Nanocrystalline p-type silicon films produced by hot wire plasma assisted technique. Materials Science and Engineering: C, 2001, 15: 137-140.
    [22] C. Cheung, F. Djuanda, U. Erb, G. Palumbo, Electrodeposition of nanocrystalline Ni-Fe alloys. Nanostructured materials, 1995, 5: 513-523.
    [23] H. Wei, G. D. Hibbard, G. Palumbo, U. Erb, The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits. Scripta Materialia, 2007, 57: 996-999.
    [24] Y. J. Li, J. Mueller, H. W. H?ppel, M. G?ken, W. Blum, Deformation kinetics of nanocrystalline nickel, Acta Materialia, 2007, 55: 5708-5717.
    [25] M. Chauhan, F. A. Mohamed, Investigation of low temperature thermal stability in bulk nanocrystalline Ni. Materials Science and Engineering: A, 2006, 427: 7-15.
    [26] B. Balamurugan, B. R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films, 2001, 396: 90-96.
    [27] J. ?yvien?, M. Laurikaitis, J. Dudonis, Deposition of nanocomposite Zr–ZrO2 films by reactive cathodic vacuum arc evaporation. Materials Science and Engineering B, 2005, 118: 238-241.
    [28] A. S. Reddy, S. Uthanna, P. S. Reddy, Properties of dc magnetronsputtered Cu2O films prepared at different sputtering pressures. Applied Surface Science, 2007, 253: 5287-5292.
    [29] M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae and K. Nogi, Influence of sputtering conditions on the structure and properties of Ti–Si–N thin films prepared by r.f.-reactive sputtering. Surface and Coatings Technology, 2003, 174-175: 261-265.
    [30] S. G. Springer, P. E. Schmid, R. Sanjinés and F. Lévy, Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering. Surface and Coatings Technology, 2002, 151-152: 51-54.
    [31] G. G. Fuentes, D. Cáceres, I. Vergara, E. Elizalde, J. M. Sanz, Elastic properties of hard TiCxNy films grown by dual ion beam sputtering. Surface and Coatings Technology, 2002, 151-152: 365-369.
    [32] M. Iliescu, V. Nelea, J. Werckmann, I. N. Mihailescu, Transmission electron microscopy investigation of pulsed-laser deposited hydroxylapatite thin films prepared by tripod and focused ion beam techniques. Surface and Coatings Technology, 2004, 187: 131-140.
    [33] M. Szymonski, P. Korecki, J. Kolodziej, P. Czuba, P. Piatkowski, Structure and electronic properties of ionic nano-layers MBE-grown on III–V semiconductors. Thin Solid Films, 2000, 367: 134-141.
    [34] K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, S. K. Gupta, D. Bhattacharya, R. Pinto, G. P. Kothiyal, S. C. Sabharwal, A study of the CuO phase formation during thin film deposition by molecular beam epitaxy. Thin Solid Films, 1998, 324: 37-43.
    [35] H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, N. Iwamoto, Themechanical properties and microstructure of Ti–Si–N nanocomposite films by ion plating. Surface and Coatings Technology, 2003, 169-170: 452-455.
    [36] M. S. Leu, S. C. Lo, J. B. Wu, A. K. Li, Microstructure and physical properties of arc ion plated TiAlN/Cu thin film. Surface and Coatings Technology, 2006, 201: 3982-3986.
    [37] K. L. Choy, Chemical vapor deposition of coatings. Progress in Materials Science, 2003, 48: 57-170.
    [38] M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science, 1999, 150: 143-151.
    [39] W. Liu, Y. Chen, G. Kou, T. Xu, D. C. Sun, Characterization and mechanical/tribological properties of nano Au–TiO2 composite thin films prepared by a sol–gel process. Wear, 2003, 254: 994-1000.
    [40] A. Y. Oral, E. Mensur, M. H. Aslan, E. Basaran, The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties. Material Chemisty Physics, 2004, 83: 140-144.
    [41] R. P. Wijesundera, M. Hidaka, K. Koga, M. Sakai, W. Siripala, Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films. Thin Solid Films, 2006, 500: 241-246.
    [42] E. Gomez, J. G. Torres, E. Valles, Electrodeposition of Co–Ag films and compositional determination by electrochemical methods. Analytica Chimica Acta, 2007, 602: 187-194.
    [43] C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee, K. C. Ho, The effects of hydrothermal temperature and thickness of TiO2 filmon the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006, 90(15): 2391-2397.
    [44] D. Chen, G. Shen, K. Tang, Y. Qian, Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route. Journal of Crystal Growth, 2003, 254:225-228.
    [45] A. O. Stoermer, J. L. M. Rupp, L. J. Gauckler, Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC. Solid State Ionics, 2006, 177: 2075-2079.
    [46] J. D. Desai, H. M. Pathan, S. K. Min, K. D. Jung, O. S. Joo, Preparation and characterization of iron oxide thin films by spray pyrolysis using methanolic and ethanolic solutions. Applied Surface Science, 252: 2251-2258.
    [47] P. K. Ghosh, S. Jana, S. Nandy, K. K. Chattopadhyay, Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique, Materials Research Bulletin, 2007, 42: 505-514.
    [48] K. Abdelouahdi, C. Sant, C. Legrand-Buscema, P. Aubert, J. Perrière, G. Renou, Ph. Houdy, Microstructural and mechanical investigations of tungsten carbide films deposited by reactive RF sputtering. Surface and Coatings Technology, 2006, 200: 6469-6473.
    [49] C. S. Sandu, R. Sanjinés, M. Benkahoul, F. Medjani, F. Lév, Formation of composite ternary nitride thin films by magnetron sputtering co-deposition. Surface and Coatings Technology, 2006, 201: 4083-4089.
    [50] S. Halindintwali, D. Knoesen, R. Swanepoel, B.A. Julies, C. Arendse, T. Muller, C.C. Theron, A. Gordijn, P.C.P. Bronsveld, J.K. Rath, Improvedstability of intrinsic nanocrystalline Si thin films deposited by hot-wire chemical vapour deposition technique. Thin Solid Films, 2007, 515: 8040-8044.
    [51] H. Huang, O. K. Tan, Y. C. Lee, M. S. Tse, Preparation and characterization of nanocrystalline SnO2 thin films by PECVD. Journal of Crystal Growth, 2006, 288: 70-74.
    [52] Sang-Myeon Han, Joong-Hyun Park, Sang-Geun Park, Sun-Jae Kim and Min-Koo Han, Hydrogenation of nanocrystalline Si thin film transistors employing inductively coupled plasma chemical vapor deposition for flexible electronics. Thin Solid Films, 2007, 515: 7442-7445.
    [53] Yali Li, Yoshie Ikeda, Toru Saito, Hajime Shirai, Si thin-film solar cells using SiH2Cl2 by rf plasma-enhanced chemical vapor deposition. Thin Solid Films, 2006, 511-512: 46-50.
    [54] K. Shalini, S. Chandrasekaran, S. A. Shivashankar, Growth of nanocrystalline TiO2 films by MOCVD using a novel precursor. Journal of Crystal Growth, 2005, 284: 388-395.
    [55] D. C. Lim, B. C. Kang, J. S. Moon, O. M. Moon, J. H. Park, H. G. Jee, S. B. Lee, Y. H. Kim, J. Y. Lee, J. H. Boo, Enhanced hardness in two-layer a-BON/nc-SiC coating prepared by plasma-assisted MOCVD and thermal MOCVD. Surface and Coatings Technology, 2005, 193: 162-166.
    [56] L. Francioso, A. Forleo, S. Capone, M. Epifani, A. M. Taurino, P. Siciliano, Nanostructured In2O3-SnO2 sol-gel thin film as material for NO2 detection, Sensors and Actuators B: Chemical, 2006, 114: 646-655.
    [57] P. Lenormand, A. Lecomte, D. Babonneau, A. Dauger, X-ray reflectivity, diffraction and grazing incidence small angle X-ray scattering ascomplementary methods in the microstructural study of sol–gel zirconia thin films. Thin Solid Films, 2006, 495: 224-231.
    [58] H. Choi, E. Stathatos, D. D. Dionysiou, Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants. Thin Solid Films, 2006, 510: 107-114.
    [59] C. Viazzi, J. P. Bonino, F. Ansart, Synthesis by sol-gel route and characterization of Yttria Stabilized Zirconia coatings for thermal barrier applications. Surface and Coatings Technology, 2006, 201: 3889-3893.
    [60] X. Han, R. Liu, Z. Xu, W. Chen, Y. Zhen, Room temperature deposition of nanocrystalline cadmium peroxide thin film by electrochemical route. Electrochemistry Communications, 2005, 7: 1195-1198.
    [61] S. Karuppuchamy, M. Iwasaki, H. Minoura, Physico-chemical, photoelectrochemical and photocatalytic properties of electrodeposited nanocrystalline titanium dioxide thin films. Vacuum, 2007, 81: 708-712.
    [62] F. Sun, Y. Guo, W. Song, J. Zhao, L. Tang, Z. Wang, Morphological control of Cu2O micro-nanostructure film by electrodeposition. Journal of Crystal Growth, 2007, 304: 425-429.
    [63] C. H. Seah, S. Mridha, L. H. Chan, Fabrication of D.C.-plated nanocrystalline copper electrodeposits. Journal of Materials Processing Technology, 1999, 89-90: 432-436.
    [64] F. Wang, K. Hosoiri, S. Doi, N. Okamoto, T. Kuzushima, T. Totsuka, T. Watanabe, Nanostructured L10 Co–Pt thin films by an electrodeposition process. Electrochemistry Communications, 2004, 6: 1149-1152.
    [65] D. Y. Park, N. V. Myung, M. Schwartz, K. Nobe, Microstructured magnetic CoNiP electrodeposits: structure-property relationships.Electrochimica Acta, 2002, 47: 2893-2900.
    [66] P. E. Bradley, D. Landolt, Pulse-plating of copper-cobalt alloys. Electrochimica Acta, 1999, 45: 1077–1087.
    [67] Y. Shacham-Diamand, V. Dubin, M. Angyal. Electroless copper deposition for ULSI. Thin Solid Films, 1995, 262: 93-103.
    [68] Y. Shacham-Diamand, V. M. Dubin. Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization. Microelectronic Engineering, 1997, 33: 47-58.
    [69] Y. Shacham-Diamand, A. Inberg, Y. Sverdlov, V. Bogush, N. Croitoru, H. Moscovich, A. Freeman. Electroless processes for micro- and nanoelectronics. Electrochimica Acta, 2003, 48: 2987-2996.
    [70] G. A. Shafeev, L. Bellard, J. M. Themlin, C. F. Ammar, A. Cros, W. Marine. Uncongruent laser ablation and electroless metallization of SiC. Applied Physics Letter, 1996, 68: 773-775.
    [71] R. K. Aithal, S. Yenamandra, R.A. Gunasekaran, P. Coane, K. Varahramyan. Electroless copper deposition on silicon with titanium seed layer. Materials Chemistry and Physics, 2006, 98: 95-102.
    [72] J. P. O’Kelly, K. F. Mongey, Y. Gobil, J. Torres, P. V. Kelly, G. M. Crean. Room temperature electroless plating copper seed layer process for damascene interlevel metal structures. Microelectronic Engineering, 2000, 50: 473-479.
    [73] E. Webb, C. Witt, T. Andryuschenko. Integration of thin electroless copper films in copper interconnects metallization. Journal of Applied Electrochemistry, 2004, 34: 291-300.
    [74] S. G. D. S. Filho, A. A. Pasa, C. M. Hasenack. A mechanism forelectroless Cu plating onto Si. Microelectronic Engineering, 1997, 33: 149-155.
    [75] S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [76] M. Hernández-Vélez, Nanowires and 1D arrays fabrication: An overview. Thin Solid Films, 2006, 495: 51-63.
    [77] G. Cao, D. Liu, Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science, 2007, doi:10.1016/j.cis.2007.07.003.
    [78] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, J. R. LaRoche, ZnO nanowire growth and devices. Materials Science and Engineering R: Reports, 2004, 47: 1-47.
    [79] K. S. Shankar, A. K. Raychaudhuri, Fabrication of nanowires of multicomponent oxides: Review of recent advances. Materials Science and Engineering: C, 2005, 25: 738-751.
    [80] Y. M. Lin, M. S. Dresselhaus, J. Y. Ying, Fabrication, structure, and transport properties of nanowires. Advances in Chemical Engineering, 2001, 27: 167-203.
    [81] J. Zhu, W. Jiang, Fabrication of conductive metallized nanostructures from self-assembled amphiphilic triblock copolymer templates: Nanospheres, nanowires, nanorings. Materials Chemistry and Physics, 2007, 101: 56-62.
    [82] S. T. Lee, N. Wang, C. S. Lee, Semiconductor nanowires: synthesis, structure and properties. Materials Science and Engineering A, 2000, 286: 16-23.
    [83] D. M. Qu, P. X. Yan, J. B. Chang, D. Yan, J. Z. Liu, G. H. Yue, R. F. Zhuo, H. T. Feng, Nanowires and nanowire-nanosheet junctions of SnO2 nanostructures. Materials Letters, 2007, 61: 2255-2258.
    [84] K. Peppler, J. Janek, Template assisted solid state electrochemical growth of silver micro- and nanowires. Electrochimica Acta, 2007, 53: 319-323.
    [85] M. Motoyama, Y. Fukunaka, T. Sakka, Y. H. Ogata, Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochimica Acta, 2007, 53: 205-212.
    [86] J. Xu, W. Zhang, M. A. Morris, J. D. Holmes, The formation of ordered bismuth nanowire arrays within mesoporous silica templates. Materials chemistry and physics, 2007, 104: 50-55.
    [87] X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, D. Y. Song, Carbon nanotubes filled with metallic nanowires. Carbon, 2004, 42: 47-52.
    [88] H. Y. Yap, B. Ramaker, A. V. Sumant, R. W. Carpick, Growth of mechanically fixed and isolated vertically aligned carbon nanotubes and nanofibers by DC plasma-enhanced hot filament chemical vapor deposition. Diamond and Related Materials, 2006, 15: 1622-1628.
    [89] M. Yu, J. Liu, S, Li, Preparation and characterization of highly ordered NiO nanowire arrays by sol-gel template method. Journal of University of Science and Technology Beijing, 2006, 13: 169-173.
    [90] Y. Su, C. Shen, H. Yang, H. Li, H. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route. Transactions of Nonferrous Metals Society of China, 2007, 17: 783-786.
    [91] D. K. T. Ng, L. S. Tan, M. H. Hong, Synthesis of GaN nanowires ongold-coated substrates by pulsed laser ablation, Current Applied Physics, 2006, 6: 403-406.
    [92] N. Fukata, T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, K. Murakami, Phonon confinement in silicon nanowires synthesized by laser ablation. Physica B: Condensed Matter, 2006, 376-377: 864-867.
    [93] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta, J. V. Yakhmi, Growth and branching of CuO nanowires by thermal oxidation of copper. Journal of Crystal Growth, 2006, 289: 670-675.
    [94] T. Yu, C. Sow, A. Gantimahapatruni, F. Cheong, Y. Zhu, K. Chin, X. Xu, C. Lim, Z. Shen, J. T. Thong, A. T. Wee, Patterning and fusion of CuO nanorods with a focused laser beam. Nanotechnology, 2005, 16: 1238-1244..
    [95] J. H. Choi, M. H. Ham, W. Lee, J. M. Myoung, Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation. Solid State Communications, 2007, 142: 437-440.
    [96] E. A. de Vasconcelos, F. R. P. dos Santos, E. F. da Silva, H. Boudinov, Nanowire growth on Si wafers by oxygen implantation and annealing. Applied Surface Science, 2006, 252: 5572-5574.
    [97] H. Yoshiki, K. Hashimoto, A. Fujishima. Area-selective electroless copper deposition using zinc oxide thin films patterned on a glass substrate. Metal Finishing, 1996, 94: 28-29.
    [98] Y. Ji, T. Zhong, Z. Li, X. Wang, D. Luo, Y. Xia, Z. Liu. Grain structure and crystallographic in Cu damascene lines. Microelectronic Engineering, 2004, 71: 182-189.
    [99] X. Jiang, T. Herricks, Y. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nanoletter, 2002, 2: 1333-1338.
    [100] J. C. Hu, T. C. Chang, C. W. Wu, L. J. Chen, C. S. Hsiung, W. Y. Hsieh, W. Lur, T. R. Yew. Effects of a new combination of additives in electroplating solution on the properties of Cu films in ULSI applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000, 18:1207-1210.
    [101] C. Ryu, K.W. Kwon, A.L.S. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, S.S. Wong. Microstructure and reliability of copper interconnects. IEEE Transanction Electrical Devices, 1999, 46: 1113-1120.
    [102] W. L. Goh, K. T. Tan. The use of electroless copper seed in electrochemical deposited copper interconnect. Thin Solid Films, 2004, 462-463: 275-278.
    [103] F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata. Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Applied Physics Letter, 2006, 88: 083110-3.
    [104] K. Sugioka, T. Hongo, H. Takai, K. Midorikawa. Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Applied Physics Letter, 2005, 86: 171910-4.
    [105] R. S. Liu, C. C. You, M. S. Tsai, S. F. Hu, Y. H. Li, C. P. Lu. An investigation of smooth Nano-sized copper seed layers on TiN and TaSiN by new non-toxic electroless plating. Solid State Communications, 2003, 125: 445-448.
    [106] S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang, S. J. Lin, Integrated electrochemical deposition of copper metallization for ultralarge scale integrated circuits. Journa Electrochemical Society, 2004, 151: C81-C88.
    [107] S. P. Chong, Y. C. Ee, Z. Chen, S. B. Law. Electroless copper seed layer deposition on tantalum nitride barrier film. Surface and Coatings Technology, 2005, 198: 287-290.
    [108] J. C. Patterson, C. N. Dheasuna, J. Barrett, T. R. Spalding, M. O’reilly, X. Jiang, G. M. Crean. Electroless Copper Metallization of Titanium Nitride, Applied Surface Science, 1995, 91: 124-128.
    [109] Y. C. Ee, Z. Chen, L. Chan, A. K. H. See, S.B. Law, K. C. Tee, K. Y. Zeng, L. Shen. Effect of processing parameters on electroless Cu seed layer properties. Thin Solid Films, 2004, 462-463: 197-201.
    [110] H. Yoshiki, K. Hashimoto, A. Fujishima. Area-selective electroless copper deposition using zinc oxide thin films patterned on a glass substrate. Metal Finishing, 1996, 94: 28-29.
    [111] Y. A. Yang, Y. B. Wei, B. H. Loo, J. N. Yao. Electroless copper plating on a glass substrate coated with ZnO film under UV illumination. Electroanalytical Chemistry, 1999, 462: 259-263.
    [112] Y. Ji, T. Zhong, Z. Li, X. Wang, D. Luo, Y. Xia, Z. Liu. Grain structure and crystallographic in Cu damascene lines. Microelectronic Engineering, 2004, 71: 182-189.
    [113] T. Muppidi, D. P. Field, J. E. Sanchez Jr., C. Woo. Barrier layer, geometry and alloying effects on the microstructure and texture of electroplated copper thin films and damascene lines. Thin Solid Films 2005, 471: 63-70.
    [114] K. Zhang, K. P. Lieb, P. Schaaf, M. Uhrmacher, W. Felsch, M.Münzenberg. Ion-beam-induced magnetic texturing of thin nickel films. Nuclear Instruments and Methods in Physics Research B, 2000, 161-163: 1016-1021.
    [115] V. M. Kozlov, L. P. Bicelli. Texture formation of electrodeposited Fcc metals. Material Chemical and Physics, 2003, 77: 289-293.
    [116] O. Engler, J. Hirsch, K. Lücke. Texture development in Al-1.8wt%Cu depending on the precipitation state-ΙΙ. Recrystallization texture. Acta Metallic Materials, 1995, 43:121-138.
    [117] D. N. Lee, K. H. Hur. The evolution of texture during annealing of electroless Ni-Co-P deposits. Scripta Materialia, 1999, 40: 1333-1339.
    [118] B. W. Sheldon, K. H. A. Lau, A. Rajamani. Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. Journal of Applied Physics, 2001, 90:5097-5103.
    [119] Y. Kim, J. Shin, J. Cho, G. A. T. Eyck, D. L. Liu, S. Pimanpang, T. M. Lu, J. J. Senkevich, H. S. Shin. Surface characterization of copper electroless deposition on atomic layer deposited palladium on iridium and tungsten. Surface and Coatings Technology, 2006, 200: 5760-5766.
    [120] R. S. Souleimanova, A. S. Mukasyan, A. Varma. Study of structure formation during electroless plating of thin metal-composite membranes. Chemical Engineering Science, 1999, 54: 3369-3377.
    [121] M. Becht, F. Atamny, A. Baiker, K. H. Dahmen. Morphology analysis of nickel thin films grown by MOCVD. Surface Science, 1997, 371: 399-408.
    [122] 杨烈宇,关文铎,顾卓明,材料表面薄膜技术,人民交通出版社,1991,1,75-77。
    [123] 吴自勤,王兵,薄膜生长,科学出版社,2001,1,170-189。
    [124] F. Hanna, Z. A. Hamid, A. A. Aal. Controlling factors affecting the stability and rate of electroless copper plating. Materials Letters, 2003, 58: 104-109.
    [125] M. Garza, J. Liu, N. P. Magtoto, J.A. Kelber. Adhesion behavior of electroless deposited Cu on Pt/Ta silicate and Pt/SiO2. Applied Surface Science, 2004, 222: 253-262.
    [126] E. K. Broadbent, E. J. Mcinerney, L. A. Gochberg, R. L. Jackson. Experimental and analytical study of seed layer resistance for copper damascene electroplating. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1999, 17: 2584 -2595.
    [127] D. Dayal, H. U. Finzel and P. Wiβmann, in “Thin Metal Films and Gas Chemisorption,” (Elsevier Publ, Amsterdam, 1987) p. 53.
    [128] M. Radoeva, B. Radoev. Ohm resistivity of electroless copper layers as a function of their thickness. Jounal of Material Science, 1995, 30: 2215-2219.
    [129] H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Murarka, G. C. Wang. Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films. Thin Solid Films, 2001, 384: 151-156.
    [130] C. Durkan, M. E. Welland. Size effects in the electrical resistivity of polycrystalline nanowire. Physical Review B, 2000, 61: 14215 -14218.
    [131] M. Radoeva, B. Radoev, K.W. St?kelhuber. Effect of deposition inhomogeneity on the ohm resistance of thin electroless copper layers. Jounal of Material Science, 2003, 38: 2703-2707.
    [132] J. W. Lim, M. Isshiki. Electrical resistivity of Cu films deposited by ionbeam deposition: Effects of grain size, impurities, and morphological defect. Jouranl of Applied Physics, 2006, 99: 094909-7.
    [133] E. H. Sondheimer. The mean free path of electrons in metals. Advance in Physics, 1952, 1: 1-12.
    [134] H. Mayer. Structure and properties of thin films. Wiley, New York, 1959, p. 225.
    [135] A. F. Mayadas, M. Shatzkes. Electrical–resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Physics Review B1, 1970, 13: 82-89.
    [136] J. M. Camacho, A. I. Oliva. Morphology and electrical resistivity of metallic nanostructures. Microelectronics Journal, 2005, 36: 555-558.
    [137] J. M. E. Harper, C. Cabral Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, C. K. Hu. Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. Jouranl of Applied Physics, 1999, 86: 2516-2525.
    [138] W. Zhang, S. H. Brongersma, T. Clarysee, V. Terzieva, E. Rosseel, W. Vandervorst, K. Maex. Surface and grain boundary scattering studied in beveled polycrystalline thin copper films. Jouranl of Vacuum Science and Technology B, 2004, 22:1830-1833.
    [139] S. Bijani, M. Gabás, L. Martínez, J. R. Ramos-Barrado, J. Morales, L. Sánchez, Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films, 2007, 515:5505-5511.
    [140] S. Anandan, X. Wen, S. Yang, Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solarcells. Material Chemistry Physics, 2005, 93: 35-40.
    [141] A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas, K. V. Rao, H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands. Journal of Applied Physics, 2002, 92: 2172-2180.
    [142] J. R. Ortiz, T. Ogura, J. M. Valtierra, S. E. A. Ortiz, P. Bosch, J. A. Reyes, V. H. Lara, A catalytic application of Cu2O and CuO films deposited over fiberglass. Applied Surface Science, 2001, 174: 177-184.
    [143] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Field emission from various CuO nanostructures. Applied Physics Letter, 2003, 83:3383-3385.
    [144] F. Marabelli, G. B. Parravicini, F. S. Drioli, Optical gap of CuO. Physics Review B, 1995, 52: 1433-1436.
    [145] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, Electronic structure of Cu2O and CuO. Physics Review B, 1988, 38: 11322-11330.
    [146] W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Synthesis and characterization of Cu2O nanowires by a novel reduction route. Advanced Materials, 2002, 14: 67-69.
    [147] C. H. Xu, C. H. Woo, S. Q. Shi, Formation of CuO nanowires on Cu foil, Chemisty Physics Letter, 2004, 399: 62-66.
    [148] W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang, S. Yang, Journal of Crystal Growth, Growth of novel nanostructured copper oxide (CuO) films on copper foil. 2006, 291: 479-484.
    [149] K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology, 2006, 17: 3939-3943.
    [150] H. Wu, D. Lin, W. Pan, Fabrication, assembly, and electricalcharacterization of CuO nanofibers. Applied Physics Letter, 2006, 89: 133125-133128.
    [151] S. Li, H. Zhang, Y. Ji, D. Yang, CuO nanodendrites synthesized by a novel hydrothermal rout. Nanotechnology, 2004, 15: 1428-1432.
    [152] G. Q. Yuan, H. F. Jiang, C. Lin, S. J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. Journal of Crystal Growth, 2007, 303: 400-406.
    [153] G. Papadimitropoulos, N. Vourdas, V. E. Vamvakas, D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers. Thin Solid Films, 2006, 515: 2428-2432.
    [154] S. Han, H. Y. Chen, Y. B. Chu, H. C. Shih, Phase transformations in copper oxide nanowires, Jouranl of Vacuum Science and Technology B, 2005, 23: 2557-2560.
    [155] W. Gao, H. Gong, J. He, A. Thomas, L. Chan, S. Li, Oxidation behaviour of Cu thin films on Si wafer at 175–400°C. Material Letter, 2001, 51: 78-84.
    [156] X. Ma, G. Wang, K. Yukimura, M. Sun, Characteristics of copper oxide films deposited by PBII&D. Surface Coatings and Technology, 2007, 201: 6712-6714.
    [157] S. S. Chang, H. J. Lee, H. J. Park, Photoluminescence properties of spark-processed CuO. Ceramics international, 2005, 31: 411-415.
    [158] J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, P. X. Yan, CuO nanowires synthesized by thermal oxidation rout. J. Alloys Compd. 2007, doi: 10.1016/j.jallcom. 2006.12.032.
    [159] A. Kumar, A. K. Srivastava, P. Tiwari, R. V. Nandedkar, The effect ofgrowth parameters on the aspect ratio and number density of CuO nanorods, Journal of Physics: Condensed Material, 2004, 16: 8531-8543.
    [160] L. S. Huang, S. G. Yang, T. Li, B. X. Gu, Y. W. Du, Y. N. Lu, S. Z. Shi, Preparation of large-scale cupric oxide nanowires by thermal evaporation method. Journal of Crystal Growth, 2004, 260: 130-135.
    [161] R. Neskovska, M. Ristova, J. Velevska, M. Ristov, Electrochromism of the electroless deposited cuprous oxide films. Thin Solid Films, 2007, 515: 4717-4721.
    [162] K. Santra, C. K. Sarkar, M. K. Mukherjee, B. Ghosha, Copper oxide thin films grown by plasma evaporation method. Thin Solid Films, 1992, 213: 226-229.
    [163] E. M. Alkoy, P. J. Kelly, The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets. Vacuum, 2005, 79: 221-230.
    [164] D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Materials Science and Engineering B, 2006, 134: 9-19.
    [165] H. A. Wu, Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 2006, 33: 9-16.
    [166] C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. G?sele, L. Samuelson, Nanowire-based one-dimensional electronics. Materrials today, 2006, 9: 28-35.
    [167] S. Inoue, S. Z. Chu, K. Wada, D. Li, H. Haneda, New roots to formation of nanostructures on glass surface through anodic oxidation of sputteredaluminum. Science and Technology of Advanced Materials, 2003, 4: 269-276.
    [168] Y. H. Lee, I. C. Leu, M. T. Wu, J. H. Yen, K. Z. Fung, Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition. Journal of Alloys and Compounds, 2007, 427: 213-218.
    [169] B. X. Yang, T. R. Thurston, J. M. Tranquada, Magnetic neutron scattering study of single-crystal cupric oxide. G. Shirane, Physics Review B, 1989, 39: 4343-4349.
    [170] H. Yamada, X. G. Zheng, Y. Soejima, M. Kawaminami, Lattice distortion and magnetolattice coupling in CuO. Physics Review B, 2004, 69: 104104-7.
    [171] F. R. N. Nabarro, P. J. Jackson, Growth of crystal whiskers. In growth and perfection of crystal growth, Wiley: New York, 1958, pp 13-120.
    [172] S. H. Wang, Q. J. Huang, X. G. Wen, X. Y. Li, S. H. Yang, Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires. Physics Chemistry Chemistry Physics, 2002, 4: 3425-3429.
    [173] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, C. H. Sow, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology, 2005, 16: 88-92.
    [174] U. S. Chen, Y. L. Chueh, S. H. Lai, L. J. Chou, H. C. Shih, Synthesis and characterization of self-catalyzed CuO nanorods on Cu/TaN/Si assembly using vacuum-arc Cu deposition and vapor-solid reaction. Jouranl of Vacuum Science and Technology B, 2006, 24: 139-142.
    [175] H. Y. Dang, J. Wang, S. S. Fan, The synthesis of metal oxide nanowires bydirectly heating metal samples in appropriate oxygen atmospheres, Nanotechnology, 2003, 14: 738-741.
    [176] R. S. Wagner, W. C. Eillis, Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letter, 1964, 4: 89-90.
    [177] R. Memming, Solar energy conversion by photoelectrochemical processes. Electrochimica Acta, 1980, 25: 77-88.
    [178] B. P. Rai, Cu2O solar cells: A review. Solar Cells, 1988, 25: 265-272.
    [179] Q. Tang, T. Li, X. Chen, D. Yu, Y. Qian, Efficient field emission from well-oriented Cu2O film. Solid State Communications, 2005, 134: 229–231.
    [180] W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, E. W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials & Solar Cells, 2003, 77: 229–237.
    [181] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Materials Research Bulletin, 2006, 41: 1310-1318.
    [182] Y. H. Lee, I. C. Leu, S. T. Chang, C. L. Liao, K. Z. Fung, The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium. Electrochimica Acta, 2004, 50: 553-559.
    [183] N. Fathy, R. Kobayashi, M. Ichimura, Preparation of ZnS thin films by the pulsed electrochemical deposition. Materials Science and Engineering B, 2004, 107: 271-276.
    [184] Y. Tang, Z. Chen, Z. Jia, L. Zhang, J. Li, Electrodeposition andcharacterization of nanocrystalline cuprous oxide thin films on TiO2 films. Materials Letters, 2005, 59: 434-438.
    [185] I. Prakash, P. Muralidharan, N. Nallamuthu, M. Venkateswarlu, N. Satyanarayana, Preparation and characterization of nanocrystallite size cuprous oxide. Materials Research Bulletin, 2007, 42: 1619-1624.
    [186] F. Luo, D. Wu, L. Gao, S. Lian, E. Wang, Z. Kang, Y. Lan, L. Xu, Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100. Journal of Crystal Growth, 2005, 285: 534-540.
    [187] Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang, Y. Qian, Room temperature synthesis of Cu2O nanocubes and nanoboxes. Solid State Communications, 2004, 130: 585-589.
    [188] P. He, X. Shen, H. Gao, Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption. Journal of Colloid and Interface Science, 2005, 284: 510-515.
    [189] A. Tang, Y. Xiao, J. Ouyang, S. Nie, Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes. Journal of Alloys and Compounds, 2007, doi:10.1016/j.jallcom.2007.02.148.
    [190] H. Zhang, X. Ren, Z. Cui, Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. Journal of Crystal Growth, 2007, 304: 206-210.
    [191] X. Zhang, Y. Xie, F. Xu, X. Liu, D. Xu, Shape-controlled synthesisof submicro-sized cuprous oxide octahedra, Inorganic Chemistry Co-mmunications, 2003, 6: 1390-1392.
    [192] H. Zhang, Z. Cui, Solution-phase synthesis of smaller cuprous oxidenanocubes, Materials Research Bulletin, 2007, doi:10.1016/j.materre-sbull.2007.06.014
    [193] S. J. Chen, X. T. Chen, Z. Xue, L. H. Li, X. Z. You, Solvothermal preparation of Cu2O crystalline particles. Journal of Crystal Growth, 2002, 246: 169-175.
    [194] H. H. Lee, C. Lee, Y. L. Kuo, Y. W. Yen, A novel two-step MOCVD for producing thin copper films with a mixture of ethyl alcohol and water as the additive. Thin Solid Films 2006, 498: 43-49.
    [195] K. Tang, X. Wang, W. Yan, J. Yu, R. Xu, Fabrication of superhydrophilic Cu2O and CuO membranes. Journal of Membrane Science, 2006, 286: 279-284.
    [196] A. S. Reddy, S. Uthanna, P. S. Reddy, Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Applied Surface Science, 2007, 253: 5287-5292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700