改善有机电致发光器件的效率和稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用时间分辨光致发光光谱研究了采用辅助掺杂的方法制备有机红光电致发光器件内的能量转移过程。通过对荧光衰减曲线的拟合,首次计算出从Alq到DCJTB、从Alq到rubrene以及从rubrene到DCJTB的能量转移速率分别为1.04×109 s-1, 3.89×109 s-1, and 2.79×109 s-1。可以看出能量通过rubrene从Alq到DCJTB的转移速率是能量直接从Alq到DCJTB的2.7倍。制作了掺杂两种荧光染料rubrene、DCJTB的有机红光电致发光器件,与只掺杂DCJTB的红光器件相比,红光的色纯度、亮度、效率都有了很大的提高。通过分析器件的光致发光、电致发光及时间分辨光致发光特性,器件性能的提高被认为是由于掺入的rubrene能够帮助能量从Alq到DCJTB的转移。依据能量给体的发射光谱与能量受体的吸收光谱的重叠大小以及器件的电流-电压特性,我们认为在能量通过rubrene从Alq到DCJTB的转移过程中,F?rster能量转移不是能量转移的主要形式,载流子转移起主要作用。
     利用新型铼系磷光材料DMFbpy-Re、Dpphen-Re、Dmphen-Re、phen-Re采用在荧光母体CBP中掺杂磷光材料的方式制备了有机电致发光器件,设计了一种适于研究电致磷光过程的器件结构。器件的结构为:ITO/NPB(40 nm)/CBP:铼系磷光材料(30 nm)/BCP(30 nm)/LiF(0.5 nm)/Al(120 nm),获得了发射橙红及黄光的器件。对掺杂不同材料以及不同浓度的器件的发光特性进行了表征,确定了DMFbpy-Re、Dpphen-Re、Dmphen-Re、phen-Re的最佳掺杂浓度分别为6%、6%、6%、10%,在最佳掺杂浓度时器件的最大效率分别为1.28cd/A、6.10cd/A、7.15cd/A、6.67cd/A ,最大亮度分别为582cd/m2、1836cd/m2、3686cd/m2、1955cd/m2。发现在器件实际使用的亮度100cd/m2时,掺杂Dpphen-Re(6%)、Dmphen-Re(6%)、phen-Re(10%)磷光材料的器件,保持了比较高的效率(>5.5cd/A),这在磷光材料掺杂器件中是比较好的结果。
     基于自旋电子学的研究进展,首次提出通过选择合适的磁性材料来控制注入到有机电致发光器件中的载流子的自旋方向,使在发光区只形成单线态激子,从而提高电致荧光器件的效率的设想。我们认为如果能控制从阳极注入的空穴都是下自旋(自旋量子数为-1/2)从阴极注入的电子都是上自旋(自旋量子数为+1/2),这样当他们在发光区相遇时,就只形成单线态激子而不形成三线态激子了。初步研究了有机电致发光器件的自旋注入,制作了以铁磁金属Ni做电极的有机电致发光器件,并测试了Ni做阳极的器件所发射的光的偏振特性,对实验结果进行了分析,根据自旋保持长度lsf∝μ1/2,从而认为要实现上述实验设想,需要选用具有高迁移率的有机材料,在低温条件下进行测试,施加强磁场等。
Up to date, Flat Panel Displays (FPDs) are playing important roles for mankind to get information and their effects are significant. Organic light-emitting devices (OLEDs) are important members of FPDs and attract world wide attention in the fields of science and industry due to their many merits of light weight, low cost, broad visual angle, high response speed, spontaneous light-emitting, high brightness and efficiency, etc. Since C. W. Tang and et al. report the high brightness OLEDs at low operating voltage for the first time in 1987, many progress have been made. By the use of novel materials, suitable structures and the efforts of world-known companies, OELDs are being moved out of the laboratory and made into commodities. Although the performances of some OLEDs are high, further improving the performances of OLEDs is still the research focus in the world.
     In this thesis, we have made some meaningful works relating to the improving efficiency of OLEDs and the degradation mechanism of OLEDs.
     1. Time-resolved photoluminescence spectra are firstly used to study the energy transfer processes in the co-doped organic red light-emitting devices.
     The energy transfer rates from Alq3 to DCJTB, from Alq3 to rubrene, and from rubrene to DCJTB are proximately calculated to be 1.04×109 s-1, 3.89×
引文
[1] M. Pope, H. Kallmann, P. J. Magnante, Electroluminescence in organic crystals J. Chem. Phys. (1963) 38, 2042.
    [2] W. Helfrich, W. G. Schneider, Recombination radiation in anthracene crystals Phys. Rev. Lett. (1965)14, 229.
    [3] F. Lohmann, W. Mehl, Dark injection and radiative recombination of electrons and holes in naphthalene crystals J. Chem. Phys. (1969) 50, 500.
    [4] D. F. Williams, M. Schadt, A simple electroluminescence diode Proc. IEEE, (1970)58, 476.
    [5] P. S. Vincett, W. A. Barlow, R. A. Hann, G. B. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films Thin Solid Film, (1982)94, 171.
    [6] C. W. Tang, U. S. Patent-4, (1982)356.
    [7] S. A. Vanslyke, C. W. Tang, U.S.Patent-4, (1985)539, 507.
    [8] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett (1987)51,913.
    [9] C. Adachi, S. Tolito, T. Tsutsui, S. Saito, Organic electroluminescence device with a three layer structure Jpn. J. Appl. Phys. 27 (1988) L713.
    [10] Chishio Hosakawa et al. 2001 SID International Symposium Digest of Technical Papers. 31.3.
    [11] S. K. Heeks et al. 2001 SID International Symposium Digest of Technical Papers. 31.2.
    [12] M. A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998)395, 151.
    [13] B.W. D’Andrade, M. E. Thompson, S.R. Forrest. Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices Adv. Mater. (2002)14, 147.
    [14] M. A. Baldo, S. Lamamsky, P. E. Burrows, M.E. Thompson, S.R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence Appl. Phys. Lett. (1999)75, 4.
    [15] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M.E. Thompson, R.C. Kwong,High-efficiency red electrophosphorescence devices Appl. Phys. Lett. (2001)78, 1622.
    [16] B.W. D’Andrade, M.A. Baldo, Chihaya Adachi, J.Brook, M.E. Thompson, S.R. Forrest, High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluotescence Appl. Phy. Lett. (2001)79, 1045.
    [17] C. Adachi, M.A. Baldo, M.E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device J. Appl. Phys. (2001)90, 5048.
    [18] Chihaya Adachi, Raymond C. Kwong, Peter Djurovich, Vadim Adamovich, Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest,Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials Appl. Phys. Lett. (2001) 79, 2082.
    [19] Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi, and Tatsuro Usuki, Red organic light-emitting diodes using an emitting assist dopantAppl. Phys. Lett. (1999) 75, 1682.
    [20] Jing Feng, Feng Li, Wenbao Gao, Gang Cheng, Wenfa Xie, and Shiyong Liu, Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices Appl. Phys. Lett. (2002) 81, 2935.
    [21] F. F. So, S. R. Forrest, Y. Q. Shi, and W. H. Steier, Quasi-epitaxial growth of organic multiple quantum well structures by organic molecular beam deposition Appl. Phys. Lett. (1990) 56, 674.
    [22] F. F. So and S. R. Forrest, Evidence for exciton confinement in crystalline organic multiple quantum wells Physical Review Letters (1991) 66, 2649.
    [23] Yutaka Ohmori, Akihiko Fujii, Masao Uchida, Chikayoshi Morishima, and Katsumi Yoshino, Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode Appl. Phys. Lett. (1993) 62, 3250.
    [24] Jingsong Huang, Kaixia Yang, Zhiyuan Xie, Baijun Chen, Hongjin Jiang, and Shiyong Liu, Effect of well number on organic multiple-quantum-well electroluminescent device characteristics Appl. Phys. Lett. (1998) 73, 3348.
    [25] Jingsong Huang, Zhiyuan Xie, Kaixia Yang, Hongjin Jiang and Shiyong Liu, Optical and electrical characteristics of organic electroluminescentdevices with multiple-quantum-well structure J. Phys.D: Appl. Phys. (1999) 32, 2841.
    [26] Z. Y. Xie, J. S. Huang, C. N. Li, S. Y. Liu, Y. Wang, Y. Q. Li, and J. C. Shen, White light emission induced by confinement in organic multiheterostructures Appl. Phys. Lett (1999) 74, 641.
    [27] Jingsong Huang, Kaixia Yang, and Shiyong Liu, High-brightness organic double-quantum-well electroluminescent devices Appl. Phys. Lett. (2000) 77, 1750.
    [28] Yang Kai-Xia, Gao Wen-Bao, Liu Hong-Yu, Li Chuan-Nan, Zhao Yi, Liu Shi-Yong and Huang Jing-Song, An Organic Quantum-Well Electroluminescent Device with Enhanced Performance Chin. Phys. Lett. (2001) 18, 1658.
    [29] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, W. R. Salaneck, Fluorine Tin Oxide as an Alternative to Indium Tin Oxide in Polymer LEDs Adv. Mater. (1998) 10, 859.
    [30] I. Park, H. Kim, Fabrication of polymer light-emitting diodes using doped silicon electrodes, Appl. Phys. Lett. (1994) 64, 1774.
    [31] Y. Yang, A. J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency Appl. Phys. Lett. (1994) 64, 1245.
    [32] J. Shi, C. W. Tang, Doped organic electroluminescent devices with improved stability Appl. Phys. Lett. (1997) 70, 1665.
    [33] A. Yamamori, C. Adachi, T. Koyama, Y. Taniguchi, Doped organic light emitting diodes having a 650-nm-thick hole transport layer Appl. Phys. Lett. (1998) 72, 2147.
    [34] Z.Gao, C.S.Lee, I.Bello, S.T.Lee, R.Chen, T.Luh, J.Shi, C.W.Tang Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative Appl.Phys.Lett. (1999) 74, 865.
    [35] W.-F.A.Su, R.M.Young, K.F.Schoch, Jr.J.D.B.Smith, Z.K.Kun, Electroluminescent edge emission from poly(phenylene vinylene) films Thin Solid Films (1995) 254, 216.
    [36] Y. Shirota, Y. Kuwabara, H. Inada, Takeo Wakimoto, Hitoshi Nakada, Yoshinobu Yonemoto, Shin Kawami, and Kunio Imai Multilayered, organic electroluminescent device using a novel starburst molecule, 4,4,4-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material Appl. Phys. Lett. (1994) 65, 807.
    [37] Y. Sato, S. Ichinosawa, H. Kanai, Proc.1996 International Workshop on Electroluminescence, Berlin, p.255.
    [38] A. C. Arias, J. R. de Lima, I. A. Hummelgen, Tin Oxide as a Cathode in Organic Light-Emitting Diodes Adv. Mater. (1998) 10, 392.
    [39] L. S. Hung, C. W. Tang, M. G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode Appl. Phys. Lett. (1997) 70, 152.
    [40] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Ink-jet printing of doped polymers for organic light emitting devices Appl. Phys. Lett. (1998) 72, 519.
    [41] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burnsan, A. B. Holmes, Nature (1990) 347, 539.
    [42] D. Brown, A. J. Heeger, Visible light emission from semiconducting polymer diodes Appl. Phys. Lett. (1991) 58,1982.
    [43] Tatsuya Sasaoka and et al. 2001 SID International Symposium Digest of Technical Papers. 24. 4L.
    [44] J. Bharathan, Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo Appl. Phys. Lett. (1998) 72, 2660.
    [45] T. Tsutsui, E. Aminaka, C. P. Lin, S. Saito, Proc. 1994, International Workshop on Electroluminescence, Beijing, 135.
    [46] H. Hamada, C. Adachi, T. Tsutsui, S. Saito, Optoelectronics Devices and Technologies, (1992) 7, 83.
    [47] C. Adachi, T. Tsutsui, S. Saito, Confinement of charge carriers and molecular excitons within 5-nm-thick emitter layer in organic electroluminescent devices with a double heterostructure Appl. Phys. Lett. (1990)57, 531.
    [48] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode Appl. Phys. Lett., (1993)62, 3250.
    [49] Y. Ohmori, A. Fujii, M. Yoshida, et al, Novel Characteristics of Electroluminescent Diode with Organic Multiple-Quantum-Well Structure Jpn. J. Appl. Phys. (1995) 34, 3790.
    [50] A. Fujii, M. Yoshida, Y. Ohmori, K. Yoshino, Polarization Anisotropyof Organic Electroluminescent Diode with Periodic Multilayer Structure Utilizing 8-Hydroxyquinoline Aluminum and Aromatic Diamine Jpn. J. Appl. Phys. (1995)34, L621.
    [51] Jingsong Huang, Kaixia Yang, Zhiyuan Xie, Baijun Chen, Hongjin Jiang, and Shiyong Liu, Effect of well number on organic multiple-quantum-well electroluminescent device characteristics Appl. Phys. Lett. (1998) 73, 3348.
    [52] A. Fujii, M. Yoshida, Y. Ohmori, K. Yoshino, Color-Variable Electroluminescent Diode with Single Quantum Well Structure Utilizing 8-Hydroxyquinoline Aluminum and Aromatic Diamine Jpn. J. Appl. Phys. (1995)34, L499.
    [53] B. J. Chen, S. Y. Liu, Fabrication of a Tris(8-hydroxyquinoline) Aluminum (Alq3)/Poly(N-vinylcarbazole) (PVK) Superlattice Structure and Its Use for Electroluminescent Device Jpn. J. Appl. Phys. (1998)37, 1665.
    [54] H. An, B. Chen, J. Hou, S. Liu, Exciton confinement in organic multiple quantum well structures J. Phys D: Appl. Phys. (1998)31, 1144.
    [55] A. Dodabalapur, L. J. Rothberg, T. M. Miller, Color variation with electroluminescent organic semiconductors in multi-mode resonant cavities Appl. Phys. Lett., 65 (1994) 2308.
    [56] A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, Microcavity effects in organic semiconductors Appl. Phys. Lett., 64 (1994) 2486.
    [57] J. Kido, M. Kimura, K. Nagai, Science, 267 (1995) 1332.
    [58] E. Aminaka, T. Tsutsui, S. Saito, Electroluminecent behaviors in multi-layer thin-film electroluminescent devices using 9,10-bissty rylanthracene deriratives Jpn.J.Appl.Phys. (1994)33, 1061.
    [59] S. R. Forrest, P. E. Burrows, M. E. Thompson, Laser Focus World, (1995) 99.
    [60] I. D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes J. Appl. Phys. (1994)75, 1656.
    [61] P. E. Burrows, S. R. Forrest, Electroluminescenct from trap-limited current transport in vacuum deposited organic light emitting devices Appl. Phys. Lett. (1994) 64, 2285.
    [62] S. Karg, M. Meier, W. Riess, Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport J. Appl. Phys. (1997) 82, 1951.
    [63] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices J. Appl. Phys. (1996)79, 7991.
    [64] M. Strukelj, T. M. Miller, F. Papadimitrakopoulos, S. Son, J. Am. Chem. Soc., 117 (1995) 11976.
    [65] P. W. Blom, M. J. Mdejong, J. J. Vieggaar, Electron and hole transport in poly(p-phenylene vinylene) devices Appl. Phys. Lett. (1996)68, 3308.
    [66] M. Matsumura, T. Akai, M. Masayuki, T. Kimura, Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices J. Appl. Phys. (1996)79, 264.
    [67] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo High brightness and efficiency blue light-emitting polymer diodes Appl. Phys. Lett. (1998)73, 629.
    [68] H. Aziz, Z. Popovic, Humidity-induced crystallization of tris(8-hydroxyquinoline)aluminum layers in organic light-emitting devices Appl. Phys. Lett. (1998)72, 756.
    [69] M. Yan, L. Rothberg, M. E. Galvin, T. M. Miller, Defect Quenching of Conjugated Polymer Luminescence Phys. Rev. Lett. (1994)73, 744.
    [70] Y. Hamada, T. Sano, K. Kuroki, Influence of the emission site on the running durability of organic electroluminescent devices Jpn. J. Appl. Phys. (1995)34, L824.
    [71] L. M. Do, E. M. Han, Observation of degradation processes of Al microscopy, atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy J. Appl. Phys. (1994)76, 5118.
    [72] Y. Hirose, A. Kahn, Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact: In/perylenetetracarbosylic dianhydride Appl. Phys. Lett. (1996)68, 217.
    [73] I. D. Parker, Y. Cao, C. Y. Yang, Lifetime and degradation effects in polymer light-emitting diodes J. Appl. Phys. (1999)85, 2441.
    [1] J. Shi, C. W. Tang, Doped organic electroluminescent devices with improved stability Appl. Phys. Lett. (1997) 70, 1665.
    [2] J. Kido and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer Appl. Phys. Lett. (1998)73, 2866.
    [3] J. Chung, B. Chio and H. H. Lee, Polyaniline and poly(N-vinylcarbazole) blends as anode for blue light-emitting diodes Appl. Phys.Lett. (1999)74, 3645.
    [4] T. Vergili, D. Lidzey and D. Bradley, Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes Adv. mat. (2000)12, 58.
    [5] J. Kim, R. Friend and F. Cacialli, Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium–tin–oxide anodes Appl. Phys. Lett. (1999)74, 3084.
    [6] S. Tokito, K. Noda and T. Tsutsui, Metal oxides as a hole-injecting layer for an organic electroluminescent device J. Phys.D: Appl. Phys. (1996)29, 2750.
    [7] F. Rohlfing, T.Yamada and T. Tsutsui, Electroabsorption spectroscopy on tris-(8-hydroxyquinoline) aluminum-based light emitting diodes J. Appl. Phys. (1999) 86, 4978.
    [8] A. Campbell, D. Bradley, J. Laubender and M. Sokolowski, Thermally activated injection limited conduction in single layer N,N-diphenyl-N,N-bis(3-methylphenyl)1-1-biphenyl-4,4-diamine light emitting diodes J. Appl. Phys. (1999)86, 5004.
    [9] T. Mori, K. Obata and Mizutani, Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative J. Phys. D: Appl. Phys. (1999)32, 1198.
    [10] T. Noda, H. Ogawa ans Y. shirota, A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5'-Bis(dimesitylboryl)-2,2'-bithiophene Adv. Mater. (1999) 11, 283.
    [11] Z. Shen, P.E. Burrows, V. Bulovic, S. R. Forrest and M. E. Thompson, Three-Color, Tunable, Organic Light-Emitting Devices Science (1997)276, 2009.
    [12] T. Tetsuo, T. Noriyuki and S. Shogo, Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure Appl. Phys. Lett. (1994)65, 1868.
    [13] K. Junji, H. Hiromichi, H. Kenichi, N. Katsutoshi and O. Katsuro, Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter Appl. Phys. Lett. (1994)65, 2124.
    [14] O. Keizou, Y. Wang and N. Tadao, A novel red organic electroluminescent device using Eu complex as an emitting layer Synth. Met. (1998)97, 113.
    [15] P. E. Burrows, S. R. Sibley and M. E. Thompson. Color-tunable organic light-emitting devices Appl. Phys. Lett. (1996)69, 2959.
    [16] Y. Hamada, IEEE Trans. Electron Devices 44 (1997) 1208
    [17] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Silbley, M. E. Thompson and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998)395, 151.
    [18] Y. Sakakibara, S. Okutsu, T. Enokida and T. Tani, Red organic electroluminescence devices with a reduced porphyrin compound, tetraphenylchlorin Appl. Phys. Lett. (1999)74, 2587.
    [19] C. W. Tang, S. A. VanSlyke and C. H. Chen, Electroluminescence of doped organic thin films J. Appl. Phys. (1989)65, 3610.
    [20] V. Bulvoic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson and S. R. Forrest, Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts Chem. Phys. Lett. (1998)287, 455.
    [21] Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi, and Tatsuro Usuki, Red organic light-emitting diodes using an emitting assist dopantAppl. Phys. Lett. (1999) 75, 1682.
    [22] Tatsuo Mori, Hyeong-Gweon Kim, Teruyoshi Mizutani, Duck-Chooi Lee, Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes Jpn. J. Appl. Phys. (2001)40, 5346.
    [23] Yutaka Ohmori, Hirotake Kajii, Takumi Sawatani, Hiroshi Ueta, Katsumi Yoshino, Enhancement of electroluminescence utilizing confined energy transfer for red light emission Thin Solid Films (2001)393, 407.
    [24] I. Sokolik, R. Priestley, A. D. Walser, R. Dorsinville, and C. W. Tang, Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum Appl. Phys. Lett. (1996)69, 4168.
    [1] M.A. Baldo, D.F. O’Brien, M.E. Thompson, S.R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film Phys. Rev. B (1999) 60, 14422.
    [2] B.W. D’Andrade, J. Brooks, V. Adamovich, M.E. Thompson, S.R. Forrest, White light emission using triplet excimers in electrophosphorescent organic light-emitting devices Adv. Mater. (2002)14, 1032.
    [3] B.W. D’Andrade, M. E. Thompson, S.R. Forrest. Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices Adv. Mater. (2002)14, 147.
    [4] Pei-Pei Sun, Jiun-Pey Duan, Huai-Ting Shih, Chien-Hong Cheng, Europium complex as a highly efficient red emitter in electroluminescent devices Appl. Phys. Lett. (2002)81, 792.
    [5] B.W. D’Andrade, M.A. Baldo, Chihaya Adachi, J.Brook, M.E. Thompson, S.R. Forrest, High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluotescence Appl. Phy. Lett. (2001)79, 1045.
    [6] P.E. Burrows, S.R. Forrest, T. X. Zhou, L. Michalski, Operating lifetime of phosphorescent organic light emitting devices Appl. Phys. Lett. (2000)76, 2493.
    [7] R.C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S.R. Forrest, M.E. Thompson, Saturated red organic light emitting devices based on phosphoresccent platinum(II) porphyrins Chem. Mater. Efficient, (1999)11, 3709.
    [8] R.C. Kwong, S. Lamansky, M.E. Thompson, Organic light-emitting devices based on phosphotescent hosts and dyes Adv. Mater. (2000)12, 1134.
    [9] Shih-Chun Lo, N.A.H. Male, J.P.J. Markham, S.W. Magennis, P.L. Burn, O.V. Salata, I.D.W. Samue, Green phosphorescent dendrimer for light-emitting diodes Adv. Mater. (2002)14, 975.
    [10] D. Hertel, S. Setayesh, H.G. Nothofer, U. Scherf, K. Mullen, H. Bassler, Phosphorescence in conjugated poly(para-phenylene)-derivatives Adv. Mater. (2001)13, 65.
    [11] X. Gong, M.R. Robinson, J.C. Ostrowski, D. Moses, G.C. Bazan, A. J. Heeger, High-efficiency polymer-based electrophosphotescent devices Adv. Mater. (2002)14, 581.
    [12] Yuguang Ma, Chi-Ming Che, Hsiu-Y Chao, Xuemei Zhou, Wing-Han Chan, Jiacong Shen, High luminescence gold(I) and copper(I) complexes with a triplet excited state for use in light-emitting diodes Adv. Mater. (1999)11, 852.
    [13] Yuguang Ma, Xuemei Zhou, Jiacong Shen, Hsiu-Y Chao, Chi-Ming Che, Tripletluminescent dinuclear-gold(I) complex-based light-emitting diodes with low turn-on voltage Appl. Phys. Lett. (1999)74, 1361.
    [14] Fang-Chung Chen, Yang Yang, M. E. Thompson, J. Kido, High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex Appl. Phys. Lett. (2002)80, 2308.
    [15] C. Adachi, M.A. Baldo, M.E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device J. Appl. Phys. (2001)90, 5048.
    [16] D.F. O’Brien, M. A. Baldo, M.E. Thompson, S.R. Forrest, Improved energy transfer in electrophosphorescent devices Appl. Phys. Lett. (1999)74, 442.
    [17] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M.E. Thompson, R.C. Kwong, High-efficiency red electrophosphorescence devices Appl. Phys. Lett. (2001)78, 1622.
    [18] M. A. Baldo, S. Lamamsky, P. E. Burrows, M.E. Thompson, S.R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence Appl. Phys. Lett. (1999)75, 4.
    [19] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer Appl. Phys. Lett. (2001)79, 156.
    [20] C. Adachi, R. Kwong, S. R. Forrest, Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film Organic Electronics (2001)2, 37.
    [21] C. Adachi, M.A. Baldo, S. R. Forrest, M.E. Thompson, High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electon-transporting materials Appl. Phys. Lett. (2000)77, 904.
    [22] H.Z. Xie, M. W. Liu, O. Y. Wang, X.H. Zhang, C.S. Lee, L. S. Hung, S.T. Lee, P. F. Teng, H.L. Kwong, H. Zheng, C.M. Che, Reduction of self-quenching effect in organic electrophosphorescence emitting devices via the using of sterically hindered spacers in phosphorescence molecules Adv. Mater. (2001)13, 1245.
    [23] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices Nature (1998)395, 151.
    [24] V. Cleave, G. Yahioglu, P.L. Barny, R. H. Friend, N. Tessler, Havesting singlet and triplet energy in polymer LEDs Adv. Mater. (1999)11, 285.
    [25] P. A. Lane, L. C. Palilis, D.F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Origin of electrophosphorescence from a doped polymer light emitting diode Physical Review B (2001)63, 235206.
    [1] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film Phys. Rev. B (1999) 60, 14422.
    [2] Chihaya Adachi, Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. (2001) 90, 5048.
    [3] R. C. Kwong, S. Lamansky, M. E. Thompson, Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes Adv. Mater. (2000) 12, 1134.
    [4] H. Munekata, H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki, Diluted magnetic III-V semiconductors, Phys. Rev. Lett. (1989) 63, 1849.
    [5] G. A. Prinz,Spin-polarized transport Physics Today (1995) 48, 58.
    [6] G. A. Prinz, Magnetoelectronics Science (1998) 282, 1660.
    [7] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnár, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Spintronics: a spin-based electronics vision for the future Science (2001) 294, 1488.
    [8] H. Ohno, Acta Physica Polonica A 94 (1998) 155.
    [9] H. Ohno, F. Matsukura, T. Omiya, N. Akiba, Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As J. Appl. Phys. (1999)85, 4277.
    [10] M. Tannka, K. Saito, T. Nishinaga, Epitaxial MnAs/GaAs/MnAs trilayer magnetic heterostructures Appl. Phys. Lett. (1999)74, 64.
    [11] H. Ohno, H. Munekata, S. V. Molnar, L. L. Chang, New III-V diluted magnetic semiconductors J. Appl. Phys. (1991)69, 6103.
    [12] Y. L. Soo, S. W. Huang, Z. H. Ming , Y. H. Kao, H. Munekata, L. L. Chang, III-V diluted magnetic semiconductor: Substitutional doping of Mn in InAs Phys. Rev. B (1996)53, 4905.
    [13] N. Karar, S. Basu, R. Venkataraghavan, B. M. Aroa, Absorption and photoluminescence spectra of the diluted magnetic semiconductor Ga1–xFexSb J. Applied Phys. (2000) 88, 924.
    [14] P. W. Anderson, Concepts in Solids, W. A. Benjamin, Inc., New York (1963) 7.
    [15] H. M. McConnell, J. Chem. Phys. 39(1963) 1910.
    [16] K. Mukai, H. Nishiguchi, Y. Deguchi, J Phys. Soc. Jpn. 23 (1967)125.
    [17] K. Mukai, Bull. Chem. Soc. Jpn. 42 (1969) 40.
    [18] Joel S. Miller, Organic Magnets - A History Adv. Mater. (2002)14, 1105.
    [19] J. M. Manriquez, G.T. Yee, R.S. McLean, A. J. Epstein, J. S. Miller, A room-temperature molecular/organic-based magnet Science (1991)252, 1415.
    [20] S.Ferlay, T.Mallah, R. Ouahes, P. Veillet, M. Verdaguer, Nature 378 (1995)701
    [21] S. D. Holmes, G.. Girolami, J. Am. Chem. Soc. 121 (1999)5593.
    [22] D. H?gele, M. Oestreich, W. W. Rühle, N. Nestle, K. Eberl, Spin transport in GaAs Appl. Phys. Lett (1998)73, 1580.
    [23] C. M. Hu, Junsaku Nitta, A. Jensen, J. B. Hansen, and Hideaki Takayanagi, Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts Phys. Rev. B (2001)63, 125333-1.
    [24] J. S. Noodera, L. R. Kinder, T. M. Wong, R. Meservey, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions Physical Review Letters (1995)74, 3273.
    [25] D. Chiba, N. Akiba, F. Matsukura, Y. Ohno, H. Ohno, Magnetoresistance effect and interlayer coupling of (Ga, Mn)As trilayer structures Appl. Phys. Lett. (2000)77, 1873.
    [26] U. Rüdiger, J. Yu, L. Thomas, S. S. P. Parkin, A. D. Kent, Magnetoresistance, micromagnetism, and domain-wall scattering in epitaxial hcp Co films Phys. Rev. B (1999) 59, 11914.
    [27] S. F. Alvarado, Philippe Renaud, Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs Physical Review Letters (1992) 68, 1387.
    [28] P. R. Hammer, B. R.Bennett, M. J. Yang, Mark Johnson, Observation of Spin Injection at a Ferromagnet-Semiconductor Interface Physical Review Letters (1999) 83, 203.
    [29] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Sch?nherr, K. H. Ploog, Room-Temperature Spin Injection from Fe into GaAs Physical Review Letters (2001)87, 016601-1.
    [30] T. Manago and H. Akinaga, Spin-polarized light-emitting diode using metal/insulator/semiconductor structures Appl. Phys. Lett. (2002) 81, 694.
    [31] V. F. Motsnyi, J. D. Boeck, J. Das, W. V. Roy, G. Borghs, E.Goovaerts and V. I.Safarov, Electrical spin injection in a ferromagnet/tunnelbarrier/semiconductor heterostructure Appl. Phys. Lett. (2002) 81, 265.
    [32] A. T. Hanbichi, B. T. Jonker, G. Itskos, G. Kioseoglou and A. Petrou, Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor Appl. Phys. Lett. (2002) 80, 1240.
    [33] M.Oestreich, J. Hübner, D. H?gele, P.J. Klar, W. Heimbrodt, W. W. Rühle, D. E. Ashenford, B. Lunn, Spin injection into semiconductors Appl. Phys. Lett. (1999) 74, 1251.
    [34] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure Nature (1999) 402, 790.
    [35] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag and L. W. Motonkamp, Injection and detection of a spin-polarzed current in a light-emitting diodes Nature (1999) 402, 787.
    [36] B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou and A. Petrou, Robust electrical spin injection into a semiconductor heterostructure Phys. Rev. B (2000) 62, 8180.
    [37] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanere, Room temperature spin polarized injection in organic semiconductor Solid State Communications (2002) 122, 181.
    [38] F. Meier, B. P. Zakharchenya, Optical Orientation Vol. 8, North-Holland, Amsterdam, 1984.
    [39] J.F. Gregg, I. Petej, E. Jouguelet, C. Dennis, J. Phys. D:Appl. Phys. Spin electronics-a review 35 (2002) R121.
    [1] Lin Ke, Soo-jin Chua, K. Zhang, N. Yakovlev, Degradation and failure of organic light-emitting devices Appl. Phys. Lett. (2002) 80, 2195.
    [2] P.E. Burrows, V. Bulovic, S.R. Forrest, L.S. Sapochak, D.M. McCarty, M.E. Thompson, Reliability and degradation of organic light emitting devices Appl. Phys. Lett. (1994) 65, 2922.
    [3] J.C. Scott, J.H. Kautman, P.J. Brock, R. DiPietro, J. Salem, J. A. Goitia, Degradation and failure of MEH-PPV light-emitting diodes J. Appl. Phys. (1996)79, 2745.
    [4] D.M. Lee, O. Mitsuaki, K. Amane, H. M. Eun, Y. Noritaka, F. Masamichi, Morphological change in the degradation of Al electrode surfaces of electroluminescent devices by fluorescence microscopy and AFM Thin Solid Films (1996)273, 209.
    [5] J. McElvain, H. Antoniadis, M.R. Hueschen, J.N. Miller, D.M. Roitman, J.R. Sheats, R.L. Moon, Formation and growth of black spots in organic light-emitting diodes J. Appl. Phys. (1996)80, 6002.
    [6] H. Aziz, Z. Popovic, C.P. Tripp, Nan-Xing Hu, Ah-Mee Hor, Gu Xu, Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes Appl. Phys. Lett. (1998)72, 2642.
    [7] H. Aziz, Z. Popovic, S. Xie, Ah-Mee Hor, Nan-Xing Hu, C. Tripp, Gu Xu, Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices Appl. Phys. Lett. (1998)72, 756.
    [8] Yoon-Fei Liew, H. Aziz, Nan-Xing Hu, H.S. Chan, Gu Xu, Z. Popovic, Investigation of the sites of dark spots in organic light-emitting devices Appl. Phys. Lett. (2000)77, 2650.
    [9] S.F. Lim, Lin Ke, W. Wang, S. J. Chua, Correlation between dark spot growth and pinhole size in organic light-emitting diodes Appl. Phys. Lett. 78(2001)2116.
    [10] H. Aziz, G. Xu, Electric-field-induced degradation of poly(p-phenylenevinylene) electroluminescent devices J.Phys. Chem. B (1997)101, 4009.
    [11] H. Aziz, Z.D. Popovic, Nan-Xing Hu, A.M. Hor, Gu Xu, Degradation mechanism of small molecule-based organic light-emitting devices Science (1999)283, 1900.
    [12] H. Aziz, Z.D. Popovic, Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer Appl. Phys. Lett. (2002)80, 2180.
    [13] R.H. Young, C.W. Tang, A.P. Marchetti, Current-induced fluorescence quenching in organic light-emitting diodes Appl. Phys. Lett. (2002)80, 874.
    [14] Jianmin Shi, C.W. Tang, Doped organic electroluminescent devices with improved stability Appl. Phys. Lett. (1997)70, 1665.
    [15] Dechun Zou, Masayuki Yahiro, Tetsuo Tsutsui, Study on the degradation mechanism of organic light-emitting diodes Synthetic Metals (1997)91, 191.
    [16] Dechun Zou, Masayuki Yahiro, Tetsuo Tsutsui, Improvement of current-voltage characteristics in organic light emitting diodes by application of reversed-bias voltage Jpn. J. Appl. Phys. (1998)37, L 1406.
    [17] Toshiki Yamada, Dechun Zou, Hyein Jeong, Yoji Akaki, Tetsuo Tsutsui Recoverable degradation and internal field forming process accompanied by the orientation of dipoles in organic light emitting diodes Synthetic Metals (2000)111, 237.
    [18] G.C.M. Silvetre, M. T. Johnson, A. Giraldo, J.M. Shannon, Light degradation and voltage drift in polymer light-emitting diodes Appl. Phys. Lett. (2001)78, 1619.
    [19] Vi-En Choong, S. Shi, J. Curless, Chan-Long Shieh, H.-C. Lee, J. Shen, J. Yang, Organic light-emitting diodes with a bipolar transport layer Appl. Phys. Lett. (1999)75, 172.
    [20] Vi-En Choong, J. Shen, J. Curless, S. Shi, J. Yang, Efficient and durable organic alloys for electroluminescent displays J. Phys. D: Appl. Phys. (2000)33, 760.
    [21] Vi-En Choong, S. Shi, J. Curless, F. So, Bipolar transport organic light emitting diodes with enhanced reliability by LiF doping Appl. Phys. Lett. (2000)76, 958.
    [22] S.A. VanSlyke, C.H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability Appl. Phys. Lett. (1996)69, 2160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700