芴苯聚合物的合成、光物理性能、聚集态结构及相互关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机聚合物材料在光电方面的应用开拓了一个全新的信息功能材料及其器件的研究开发领域,在全世界引起了越来越多人的重视。在各种有机聚合物材料当中,聚芴及其衍生物由于具有宽的能隙、高的发光效率等特点引起了广泛的研究,并被认为是最具商业应用前景的蓝光材料之一。目前,关于聚芴及其衍生物的研究大多集中在新型结构材料的开发领域,而对于材料的结构尤其是聚集态结构与光物理性能之间关系的研究尚处于起步阶段,详细而系统地研究此类材料的结构与性能之间的关系无疑对新材料的开发以及高性能器件的制备具有十分重要的理论意义和实践价值。因此,本论文设计合成了一系列含芴苯结构的发光聚合物,同时通过各种表征手段详细研究了所制备的系列聚合物分子设计-聚集态结构-光电等物理性能之间的关系,并得到了一些非常有意义的研究结果。
     一、通过合理的分子设计并采用Suzuki偶联聚合的方法合成了一系列化学结构明确、侧基性质(长度、体积、给吸电子性质)不同、主链共轭的Hairy-rod型芴苯共聚物。通过光谱、电化学和模拟计算等手段研究了苯环上不同性质的侧基取代芴苯聚合物的发光性质、电化学性质和溶剂化效应等,同时研究了侧基性质的变化对这些物理性质的影响规律。苯环上烷基侧链长度的改变对取代共聚物的光谱、电化学和发光效率等影响很小;而随着苯环上烷氧基侧链长度的增加,聚合物的光谱稳定性逐渐增强,荧光发射光谱中的0-1转变逐渐被抑制,荧光发射半峰宽减小。苯环上取代侧基的给吸电子性质变化对聚合物的光电性能具有全面的影响,改变取代侧基的给吸电子性质可调节芴苯共聚物的发光颜色和HOMO、LUMO能级以及HOMO-LUMO能隙等,因此,通过引入不同性质的侧基可以实现对此类聚合物光物理性能的调控。溶剂的极性对聚合物溶液的光谱性能有显著的影响,溶液光谱随溶剂极性的增大逐渐向长波移动。当聚合物本身带有强极性基团时,在强极性溶剂中将发生聚合物分子链与溶剂分子间的强极性相互作用,从而导致或引起更复杂的结果。
     二、通过薄膜退火实验研究了聚合物的光谱稳定性。苯环上未取代聚合物PF6P的薄膜在空气中退火后在长波(515 nm)出现一个新的荧光发射峰,随退火温度的升高或退火时间的延长,该长波荧光发射峰的强度逐渐增大,薄膜的紫外吸收峰变宽。苯环上烷基、烷氧基取代的聚合物则具有优异的光谱热稳定性能,其在空气退火的薄膜没有出现低能的长波发射。通过红外光谱和瞬态荧光等测试手段以及对比实验进一步研究了PF6P空气退火薄膜长波发射的来源。一方面,未取代的PF6P薄膜和烷氧基取代苯的PF60C6薄膜在空气中退火后都产生了芴酮结构,随退火温度的升高所生成的芴酮结构的含量逐渐增大;另一方面,新的长波发射随退火温度的升高其荧光寿命明显增加,因此确定PF6P空气退火薄膜的长波发射是来源于芴酮的激基缔合物。
     三、通过X-射线衍射(XRD)、示差扫描量热仪(DSC)和形貌表征等手段研究了苯环上取代基烷基、烷氧基长度对聚合物形貌、相转变过程等的影响。苯环上烷基、烷氧基取代的聚合物都具有纤维状的特征形貌,当烷基、烷氧基碳原子数为6时在高温都存在一个向列液晶相,当烷基碳原子数增加到10时液晶相消失,而烷氧基碳原子数增加到12时该向列液晶相仍然存在。苯环上烷氧基取代的聚合物能自组装形成一种层状结构,其相转变行为具有明显的烷氧基链长依赖性。烷氧基碳原子数为6时,聚合物(PF60C6)具有一个稳定的结晶相C1和一个不稳定的结晶相C2,当烷氧基长度增加后,PF60C8等均只有一个结晶相;存DSC升温曲线上PF60C8具有多重熔融行为,而随烷氧基长度的继续增加,多重熔融现象逐渐被抑制,在PF60C12中被完全抑制而消失。苯环上烷氧基取代的聚合物薄膜的荧光发射光谱与薄膜形貌密切相关,薄膜的有序性增大,0-1转变减小。
     四、通过DSC研究了聚合物PF60C10和PF60C12的非等温熔体结晶行为以及PF60C10分子量对非等温结晶和结晶后熔融行为的影响。Ozawa方程和Avrami方程在描述聚合物PF60C10和PF60C12的非等温熔体结晶过程时均有一定的局限性,而用Avrami和Ozawa联合的方法能有效地处理该非等温结晶动力学过程。PF60C10的结晶速率随分子量的增加而增大,PF60C12由于侧链长度增加使其分子链活动性减小,与PF60C10相比其结晶速率减小。另外,分别用Kissinger,Takhor和Augis-Bennett三种模型对PF60C10和PF60C12的非等温结晶活化能进行了估算。PF60C10经非等温结晶后的熔融行为具有明显的预冷速率和分子量依赖性,在一定分子量范围内在其DSC升温曲线上出现双重熔融现象,随着分子量的增大此双重熔融行为逐渐被抑制。
     五、通过分子设计并采用Suzuki偶联聚合的方法合成了一系列主链结构刚柔交替的Rod-coil型芴苯聚合物,并对这类聚合物的光物理性能及相转变行为等进行了初步的探索性研究。主链中柔性链段长度的变化对聚合物的光物理性能没有明显的影响,而随主链中共轭链段长度的增加,聚合物光谱向长波移动,氧化电位逐渐增大,还原电位逐渐降低,HOMO-LUMO能隙增大。该Rod-coil型芴苯聚合物玻璃化转变温度随主链中柔性链段比例的增大而减小。聚合物P1(PF6P4P)在较低温度形成一种具有条带织构的液晶相,在DSC曲线的高温区具有典型的双重熔融行为。
Organic polymer materials have attracted much attention in the past decade because of their potential applications in light emitting diodes, field-effect transistors, photovoltaic cells, non-linear optical materials, and electrochromic devices. Among these polymers, fiuorene-based polymers are a kind of most promising blue-light-emitting materials for commercial applications due to their excellent properties such as high photoluminescence (PL) efficiency, good processability and thermal stability. However, much research about polyfluorenes and fluorene-based derivatives is mainly focused on the synthesis of polymers with novel chemical structures, and the investigations on condensed state structure, photophysical properties and their relationship are surprisingly lacking. In fact, it is of great significance to in-depth understand the relationship between condensed state structure and photophysical properties, which can provide more insights into the design of novel optoelectronic polymers as well as the fabrication of high performance devices. In this work, a series of fluorene-benzene based polymers were thus designed and successfully synthesized, and the relationship of molecular structure-condensed state structure-photophysical properties of these polymers were investigated in detail by using various characterization techniques.
     1. A series of so-called hairy-rod fluorene-alt-benzene based polymers with different substituted groups on phenylene were synthesized through Suzuki route. The optical properties, fluorescence quantum yields (QY) and electrochemical properties of these polymers were investigated. It was found that the optical properties of the polymers did not show obvious dependence on the alkyl length on phenylene. However, the spectral stability was increased, and the 0-1 transition and the full width at the half-maximum (fwhm) of photoluminescence (PL) spectra was decreased with the increase of the alkoxy length on phenylene. The nature (e.g. electron-donating and electron-withdrawing) of the substituted side groups on phenylene has obvious effect on the optical properties, QY and electrochemical properties of the polymers. Thus, the photophysical properties of the polymers can be tuned by attaching different substituted side groups onto the phenylene. The spectra of the polymers in solutions exhibit dependence on dielectric constants of the solvents used, and the spectra of the polymer solutions shift to longer wavelength with increasing the dielectric constants of the solvents.
     2. The thermal stability of the spectra of the polymers was investigated by annealing experiments. A new emission peak located at long wavelength (at about 515 nm) appeared in PL spectra of the unsubstituted polymer (PF6P) films annealed in air, and the intensity of the long wavelength emission increased with the increase of annealing temperature or annealing time. However, the long wavelength emission did not appear in PL spectra of the polymers substituted with alkyl and alkoxy. By comparing the PL spectra of PF6P and the substituted polymers, Fourier-transform infrared (FTIR) Spectroscopy, and PL lifetime measurements have revealed that the long wavelength emission could be attributed to the formation of fluorenone-based excimers. Compared with PF6P, the attachment of alkyl or alkoxyl groups on phenylene effectively inhibits the formation of fluorenone-based excimers and thus remarkably improves the thermal stability of the spectra.
     3. Morphology and phase behavior of the polymers substituted with alkyl and alkoxyl groups on phenylene were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and other techniques. These polymers exhibit typical fibrillar morphology in the films. During heating in DSC, all the polymers substituted with alkoxy on phenylene show a nematic phase. The polymers substituted with hexyl and octyl on phenylene also show a nematic phase, however, the nematic phase disappears for the polymer substituted with decyl. The polymers substituted with alkoxy on phenylene self-organize into a lamellar structure, and their phase behavior shows obvious dependence on the alkoxy length. PF6OC6 shows two crystalline phases; further increasing the length of alkoxy, PF6OC8, PF6OC10 and PF6OC12 only show one crystalline phase. During heating in DSC, PF6OC8 exhibits a melting-recrystallization phenomenon, which is steadily inhibited as the length of alkoxy on phenylene increases. In addition, for the polymers substituted with alkoxy on phenylene, the 0-1 transition in PL spectra of the films decreases with the increase of ordered structure.
     4. The nonisothermal crystallization kinetics of PF6OC10 and PF6OC12 was investigated by using differential scanning calorimetry (DSC) under different cooling rates from the melt. It was found that the Ozawa method failed to describe the nonisothermal crystallization behavior of the two polymers. Although the Avrami method did not effectively describe the nonisothermal crystallization kinetics of the two polymers for overall process, it was valid for describing the early stage of crystallization. The combined Avrami-Ozawa method proposed by Liu was able to satisfactorily describe the nonisothermal crystallization behavior of the two polymers. The crystallization activation energies determined by Kissinger, Takhor and Augis-Bennett models were comparable. The melting temperature of PF6OC10 increased with increasing molecular weight. For low molecular weight sample, PF6OC10 showed the characteristic of double melting phenomenon. The interval between the two melting peaks decreased with increasing molecular weight, and only one melting peak was observed for the high molecular weight sample.
     5. A series of so-called rod-coil fluorene-benzene based polymers were synthesized through Suzuki coupled polymerization, and the photophysical properties and phase behavior of these polymers were investigated. The photophysical properties of the polymers did not show obvious dependence on the fraction of coil segments in backbone. However, with increasing the fraction of rod segments in backbone, the spectra of the polymers shift to long wavelength and the HOMO-LUMO energy gap increases. The glass transition temperature of the polymers steadily decreases with the increase of the fraction of coil segments in backbone. The polymer (P1(PF6P4P)) shows complex phase behavior, and a strip liquid crystalline texture is observed at low temperature and the typical double melting behavior can be observed at high temperature.
引文
[1] Pope M., Kallmann H. P., Magnante P., Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38(11): 2042-2043.
    [2] Helfrich W., Schneider W. G, Recombination radiation in athracene crystals [J]. Phys. Rev. Lett, 1965,14(7): 229-231.
    [3] Vincett P. S., Barlow W. A., Harm R. A., Robert G G, Electrical conduction and low voltage blue electroluminescence in vacuum deposited organic films [J]. Thin Solid Films, 1982, 94(2): 171-174.
    [4] Tang C. W., Vanslyke S. A., Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [5] Burroughes J. H., Bradley D. D. C, Brown A. R., Marks R. N., Mackay K., Friend R. H., Burn P. L., Holmes A. B., Light-emitting diodes based on conjugated polymer [J]. Nature, 1990, 347: 539-541.
    [6] Gustufsson G, Cao Y., Treacy G M., Klavetter F., Colaneri N., Heeger A. J., Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477-479.
    [7] Cao Y., Treacy G. M., Smith P., Heeger A. J., Solution-cast films of polyaniline: optical-quality transparent electrodes [J]. Appl. Phys. Lett., 1992, 60(22): 2711-2713.
    [8] Gu G, Shen Z., Burrows P. E., Forrest S. R., Transparent flexible organic light-emitting devices [JJ. Adv. Mater.,1997, 9(9): 725-728.
    [9] Bernanose A., Vouaux P., Sur un nouveau mode d' emission lumineuse. chez certains composes organiques [J]. J. Chim. Phys., 1953, 50(2): 261-263.
    [10] Chiang C. K., Fincher C. R., Park Y. W., Hegger A. J., Shirakawa H., Louis E. J., Gau S. C., Macdiarmjol G., Electrical conductivity in doped polyacetylene [J]. Phys. Rev. Lett., 1977, 39(17): 1098-1101.
    [11] Uchida M., Ohmori Y., Morishima C, Yoshino K., Visible and blue electroluminescent diodes utilizing poly(3-alky(thiophene)s and poly(alkylfluorene)s [J]. Synth. Met., 1993, 57(1): 4168-4173.
    [12] Grem G, Leditzky G, Ulrich B., Leising G, Blue electroluminescent device based on a conjugated polymer [J]. Synth. Met, 1992, 51(1-3): 383-389.
    [13] Sokolik I., Zhou Y., Karasz F. E., Morton D. C., Blue-light Electroluminescence form P- phenylene Vinylene- based Copolymers [J]. J. Appl. Phys., 1993, 74(5): 3584-3586.
    [14] Burn P. L., Holmes A. B., Kraft A., Bradley D. D. C., Beown A. R., Friend R. H.,
    Gymer R. W., Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning [J]. Nature, 1992, 356:47-49.
    [15] Yang Z., Karasz F. E., Geise H. J., Synthesis of electrically conducting copoiymers with short alternating conjugated and non-conjugated blocks [J]. Polymer, 1994, 35(2): 391-397.
    [16] Yan M., Rothberg L. J., Papadimitrakopoulos F., Galvin M. E., Miller T. M., Defect quenching of conjugated polymer luminescence [J]. Phys. Rev. Lett., 1994, 73(5): 744-747.
    [17] Dyreklev P., Berggren M., Inganas O., Andersson M. R., Wennerstrom O., Hjertberg T., Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode [J]. Adv. Mater, 1995, 7(1): 43-45.
    [18] Fou A. C., Onitsuka O., Ferreira M., Rubner M. T., Hsieh B. R., Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene) [J]. J. Appl. Phys., 1996, 79(10): 7501-7509.
    [19] Epstein A. J., Blatchford J. W., Wang Y. Z., Jessen S. W., Gebler D. D., Lin L. B., Gustafson T. L., Wang H. L., Park Y. W, Swager T. M., MacDiamid A. G., Poly(p-pyridine)- and poly(p-pyridyl vinylene)-based polymers: Their photophysics and application to SCALE devices [J]. Synth. Met., 1996, 78(3): 253-261.
    [20] Kido J., Matsumoto T., Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J]. Appl. Phys. Lett., 1998, 73(20): 2866-2868.
    [21] Hebner T. R., Wu C. C, Marcy D., Erohne H., Nuyken O., Becker H., Meerholz K., Ink-jet printing of doped polymers for organic light emitting devices [J]. Appl. Phys. Lett., 1998, 72(5): 519-521.
    [22] Muller C. D., Falcou A., Reckefuss N., Rojahn M., Wiederhirn V., Rudati P., Multi-colour organic light-emitting displays by solution processing [J]. Nature, 2003, 421:829-831.
    [23] Neef C. J., Ferrais J. P., MEH-PPV: Improved synthetic procedure and molecular weight control [J]. Macromolecules, 2000, 33(7): 2311-2314.
    [24] Anderson M. R., Yu G, Heeger A. J., Photoluminescence and electroluminescence of films from soluble PPV-polymers [J]. Synth. Met, 1997, 85(1-3): 1275-1276.
    [25] Riehn R., Morgado J., Iqbal R., Moratti S. C., Holmes A.B., Volta S., Cacialli F., Electrochemical and electroluminescent properties of random copolymers of fluorine-and alkoxy- substituted poly(p-phenylene vinylene)s [J]. Macromolecules, 2000, 33(9): 3337-3341.
    
    [26] Kim S. T., Hwang D. H., Li X. C., Gruner J., Friend R. H., Holmes A. B., Shim H. K,, Efficient green light-emitting diodes based on poly(2-dimerhyloctylsily 1-1,4- phenylene vinylene) [J]. Adv. Mater, 1996, 8(12): 979-982.
    [27] Song S. Y, Jang M. S., Shim H. K., Song I. S., Kim W. H., Light emitting diodes of the multilayer structures with modified PVK polymers [J]. Synth Met., 1999, 102(1-3): 1116-1117.
    [28] Yang X., Hua Y, Yin S., Wang Z., Hou Y. Xu Z., Xu X., Peng J., Li W., A novel oligomer poly(phenylene vinylene) derivative containing oxadiazole segment [J]. Synth. Met., 2000,111/112: 455-457.
    [29] Moratti S. C., Bradley D. D. C, Friend R. H., Greenham N. C, Holmes A. B., Poly(cyanoterephthalylidene). A versatile polymer efficient light emitting diodes with stable electrodes [J]. Polym. Prepr. ACS, 1994, 35(1): 214.
    [30] Chen Z. K., Lee N. H. S., Huang W., Xu Y. S., Cao Y, New phenyl-substituted PPV derivatives for polymer light-emitting diodes-synthesis, characterization and structure-property relationship study [J]. Macromolecules, 2003,36(4): 1009-1020.
    [31] Yoshino K., Hirohata M, Hidayat R., Kim D. W., Tada K., Ozaki M., Teraguchi M., Matsuda T., Optical properties and electroluminescence characteristics of polyacetylene derivatives dependent on substituent and layer structure [J]. Synth. Met., 1999,102(1-3): 1159.
    [32] Yoshino K., Hirohata M., Hidayat R., Tada K., Ozaki M., Teraguchi M., Matsuda T., Sada T., Frolov S. V., Shkunov M., Vardeny Z. V., Hamaguchi M., Optical properties and electroluminescence characteristics of polyacetylene derivatives dependent on substituent and layer structure [J]. Synth. Mel, 1997, 91(1-3): 283-287.
    [33] Sun R., Masuda T., Kobayashi T., Visible electroluminescence of polyacetylene derivatives [J]. Synth Met, 1997,91(1-3): 301-303.
    [34] Yuang Y. M., Ge W., Lam J. W. Y, Tang B. Z., Strong photoluminescence from monosubstituted polyacetylenes containing biphenylyl chromophores [J]. Appl. Phys. Lett, 1999, 75(26): 4094-4096.
    [35] Sun R., Masuda T., Kobayashi T., Blue electroluminescence of substituted polyacetilenes [J]. Jpn. J. Appl. Phys.: Part 2,1996, 35(12B): L1673-1675.
    [36] Kovacic P., Jones M. B., Dehydro coupling of aromatic nuclei by catalyst-oxidant system: poly(p-phenylene) [J]. Chem. Rev., 1989, 87(2): 357-379.
    [37] Grem G, Leditzky G, Ulrich B., Leising G., Realization of a blue light emitting device using poly(pphenylene) [J]. Adv. Mater., 1992, 4(1): 36-37.
    
    [38] Yamamoto T., Morita A., Muyazaki Y., Maruyama T., Wakayama H., Zhou Z. H., nakamura Y., Kanbara T., Sasaki S., Kubota K., Preparation of pi-conjugated poly(thiophene-2,5-diyl), poly(p-phenylene), and related polymers using zerovalent nickel complexes. Linear structure and properties of the pi-conjugated polymers [J].Macromolecules, 1992,25(4): 1214-1223.
    
    [39] Suzuki A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles [J]. J. Organomet. Chem., 1999, 576(1/2): 147-168.
    
    [40] Remmers M., Schulze M., Wegner Q, Synthesis, optical absorption and fluorescence of new poly(para-phenylene)-related polymers [J]. Macromol. Rapid Commun., 1996,17(4): 239-252.
    
    [41] Keegstra M. A., Cimrova V., Neher D., Scherf U., Synthesis and electroluminescent properties of quaterphenyl and sexyphenyl containing polymers [J]. Macromol. Chem. Phys., 1996, 197(8): 2511-2519.
    
    [42] Wagner Z. R., Roenigk T. K., Goodson F. E., Rigid-flexible alternating block copolymers that contain poly(p-phenylene) units of defined length as rigid blocks [J]. Macromolecules, 2001, 34(17): 5740-5743.
    
    [43] McCarthy T. F., Witteler H., Pakula T., Wegner G, Structure and properties of poly(2,5-di-n-dodecyl-l,4-phenylene) depending on chain length [J]. Macromolecules, 1995, 28(24): 8350-8362.
    
    [44] Lauter U., Meyer W. H., Wegner G, Molecular composites from rigid-rod poly(p-phenylene)s with oligo(oxyethylene) side chains as novel polymer electrolytes [J]. Macromolecules, 1997, 30(7): 2092-2101.
    
    [45] Ohmori Y. Uchida M., Muro K., Yoshino K., Visible light electroluminescent diodes utilizing poly(3-alkythiophene) [J]. Jpn. J. Appl. Phys., 1991, 30(118): L1938-1991.
    
    [46] Ohmori Y., Uchida M., Muro K., Yoshino K., Effects of alkyl chain length and carrier confinement layer on characteristics of poly(3-alkylthiophene) electroluminescent diodes [J]. Solid State Commun., 1991, 80(8): 605-608.
    
    [47] Yamamoto T., Sanechika K., Yamamoto A., Preparation of thermostable and electric-conducting poly(2,5-Ithienylene) [J]. J. Polym. Sci. Polym. Lett. Ed., 1980, 8(1): 9-12.
    
    [48] Hernandez R., Diaz A. F., Waltman R. J., Bargon J., Surface characteristics of thin films prepared by plasma and electrochemical polymerizations [J]. J. Phys.
    Chem., 1984, 88(15): 3333-3337.
    [49] Kossmehl G, Chatzitheodorou G., Electrical conductivity of poly(2,5 -thiophenediyl)-AsFs-complexes [J]. Makromol. Chem. Rapid Commun., 1981, 2(9-10): 551-555.
    [50] Hotta S., Soga M., Sonoda N., Novel organosynthetic routes to polythiophene and its derivatives [J]. Synth. Met., 1988, 26(3): 267-279.
    [51] Diaz A. F., Lacroix J. C, Synthesis of electroactive conducting polymer-films electrooxidation of heteraromatic compounds [J]. New J. Chem., 1988, 12(2): 171-180.
    [52] Adamcova Z., Dempirova L., Film-forming electropolymerization [J]. Prog. Org. Coat, 1989,16(4): 295-320.
    [53] Granstrom M., Inganas O., Wight light emission from a polymer blend light diode [J]. Appl. Phys. Lett., 1996, 68(2): 147-149.
    [54] Jen K. Y., Elsenbaumer R. L., Facile preparation of electrically conductive poly(isothianaphthene) [J]. Synth. Met., 1986, 16(3): 379-380.
    [55] Chen T. A., Rieke R. D., Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity [J]. Synth. Met., 1993, 60(2): 175-177.
    [56] Leclerc M., Bergeron J. Y., Structural effects on the thermochromic properties of polythiophene derivatives [J]. Synth. Met., 1993, 55(1): 287-292.
    [57] Roux C., Bergeron J. Y, Leclerc M., Thermochromie properties of polythiophenes-structural aspects [J]. Makromol. Chem., 1993,194(3): 869-877. [58] Ruhe J., Berlin A., Wegner G., Poly(cycloalkyl[c]thiophene)s - syntheses, electrical properties and charge transport mechanism [J]. Macromol. Chem. Phys., 1995, 196(1): 225-242.
    [59] Wang C, Schindler J. L., Kannewurf C. R., Kanatzidis M. G, Poly(3,4- ethylenedithiathiophene). A new soluble conductive polythiophene derivative [J]. Chem. Mater., 1995, 7(1): 58-68.
    [60] Eckhardt H., Shacklette L. W, Jen K. Y, Elsenbaumer R. L., The electronic and electrochemical properties of poly(phenylene vinylene) and poly(thienylene vinylene): An experimental and theoretical study [i\.J. Chem. Phys., 1989,91(2): 1303-1315.
    [61] Roncali J., Thobie-Gautier C, Elandaloussi E. H., Frere P., X-conjugated system leads to a reduction of the bandgap [J]. J. Chem. Soc, Chem. Commun., 1994,2249.
    [62] Lakshmikantham M. V., Lorcy D., Scordilis-Kelley C., Wu X. L., Parakka J. P., Metzger R. M.. Cava M. P.. Low-temperature synthesis of polv(p-phenvlenevinvlene)
    by the sulfonium salt route [J]. Adv. Mater., 1993, 5(7-8): 562-564.
    [63] Yun H., Kwei T. K., Okamoto Y., Effects of acidity and methylation on the UV and fluorescence spectra of poly(pyridine)s in aqueous acidic solutions and in the solid state [J]. Macromolecules, 1997,30(16): 4633-4638.
    [64] Wang Y. Z., Epstein A. J., Interface control of light-emitting devices based on pyridine-containing conjugated polymers [J].Acc. Chem. Res., 1999,32(3): 217-224.
    [65] Epstein A. J., Blatchford J. W., Yang Y. Z., Poly(p-pyridine)- and poly(p-pyridyl vinylene)-based polymers: their photophysics and applications in SCALE devices [J]. Synth. Met., 1996, 78(3): 253-261.
    [66] Vaschetto M. E., Monkman A. P., Springborg M., First-principles studies of some conductiong polymers PPP, PPY, PPV, PpyV and PANI [J]. J. Mol. Struct. (Theochem.), 1999,468(3): 181-191.
    [67] Yao Y., Lamba J. J. S., Tour J. M., Synthesis of highly functionalized pyridines for planar polymers. Maximized π-conjugation in electron deficient macromolecules [J]. J. Am., Chem. Soc, 1998, 120(12): 2805-2810.
    [68] Wang H. L., Park J. W, Fu D. K., Marsella M. J., Swager T. M., MacDiarmid A. G., Wang Y. Z., Gebler D. D., Epstein A. J., Symmetrically configured alternating current light emitting (SCALE) devices: use of copper as an electron- and as a hole-injection electrode [J]. ACS Polym. Prepr., 1995, 36(2): 45-46.
    [69] Chayet H., Faraggi E. Z., Hong H., Sawate'ev V. N., Neumann R., Avny Y., Davidov D., Transient and AC electroluminescence in pyridylene copolymers of PPV [J]. Synth. Met., 1997, 84(1-3): 621-622.
    [70] Wang Y. Z., Gebler D. D., Fu D. K., Swager T. M., MacDiarmid A. G, Epstein A. J., Light-emitting devices based on pyridine-containing conjugated polymers [J]. Synth. Met., 1997, 85(1-3): 1179-1182.
    [71] Ng S. C., Lu H. F., Chan H. S. O., Fujii A., Laga T., Yoshino K., Novel efficient blue fluorescent polymers comprising alternating phenylene pyridine repeat units: their syntheses, characterization, and optical properties [J]. Macromolecules, 2001, 34(20): 6895-6903.
    [72] Monkman A. P., Palsson L. O., Higgins R. W. T., Wang C, Bryce M. R., Batsanov A. S., Howard J. A. K., Protonation and subsequent intramolecular hydrogen bonding as a method to control chain structure and the luminescence in heteroatomic conjugated polymers [J]. J. Am. Chem. Soc, 2002,124(21): 6049-6055.
    [73] Pei Q., Yang Y, Bright blue electroluminescence from an oxadiazole-containing
    copolymer [J].Adv. Mater., 1995, 7(6): 559-561.
    [74]汪伟志.其它种类的高分子电致发光材料[A].见:黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005:300.308.
    [75] Fukuda M., Sawada K., Yoshino K., Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics [J]. J. Polym. Sci. A: Polym. Chem., 1993, 31(10): 2465-2471.
    [76] Pei Q. B., Yang Y, Efficient photoluminescence and electroluminescence from a soluble polyfluorene [J]. J. Am. Chem. Soc, 1996,118(31): 7416-7417.
    [77] Woo E. P., Inbasekaran M., Shiang W., Roof G. R., International Patent Application WO 97/05184,1997 [Chem. Abs. 1997, 126, 225 700y].
    [78] Bernius M. T., Inbasekaran M., O'Brien J., Wu W. S., Progress with light-emitting polymers [J].Adv. Mater., 2000,12(23): 1737-1750.
    [79] Ranger ML, Leclerc M., New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping [J]. Macromolecules, 1997, 30(25): 7686-7691.
    [80] Nothofer H. G, Meisel A., Miteva T., Neher D., Forster M., Oda M., Lieser G, Sainova D., Yasuda A., Lupo D., Knoll W., Scherf U., Liquid crystalline polyfluorenes for blue polarized electroluminescence [J]. Macromol. Sympos., 2000, 154(1): 139-148.
    [81] Zhu R., Wen G A., Feng J. C., Chen R. F., Zhao L., Yao H. P., Fan Q. L., Wei W, Peng B., Huang W., Di-channel polyfluorene containing spiro-bridged oxadiazole branches [J]. Macromol. Rapid Commun., 2005,26(21): 1729-1735.
    [82] Wu F. I., Reddy S. D., Shu C. F., Liu M. S., Jen A. K. Y., Novel oxadiazole- containing polyfluorene with efficient blue electroluminescence [J]. Chem. Mater., 2003,15(1): 269-274.
    [83] Ding J., Day ML, Robertson G, Roovers J., Synthesis and characterization of alternating copolymers of fluorene and oxadiazole [J]. Macromolecules, 2002, 35(9): 3474-3483.
    [84] Sung H. H., Lin H. C, Novel alternating fluorene-based conjugated polymers containing oxadiazole pendants with various terminal groups [J]. Macromolecules, 2004,37(21): 7945-7954.
    [85] Xin Y., Wen G A., Zeng W. J., Zhao L., Zhu X. R., Fan Q. L., Feng J. C., Wang L. H., Wei W., Peng B., Cao Y, Huang W, Hyperbranched oxadiazole-containing polyfluorenes: toward stable blue light PLEDs [J]. Macromolecules, 2005, 38(16): 6755-6758.
    
    [86] Liu B., Yu W. L., Lai Y. H., Huang W., Blue-light-emitting fluorene-based polymers with tunable electronic properties [J]. Chem. Mater., 2001, 13(6): 1984-1991.
    [87] Liu B., Yu W. L., Lai Y. H., Huang W., Synthesis, characterization, and structure-property relationship of novel fluorene-thiophene-based conjugated copolymers [J]. Macromolecules, 2000,33(24): 8945-8952.
    [88] Wang R., Wang W. Z., Yang G Z., Wang M., Liu T. X., submitted.
    [89] Zhu Y, Babel A., Jenekhe S. A., Phenoxazine-based conjugated polymers: A new class of organic semiconductors for field-effect transistors [J]. Macromolecules, 2005, 38(19): 7983-7991.
    [90] Peng Q., Peng J. B., Kang E. T., Neoh K. G, Cao Y, Synthesis and electroluminescent properties of copolymers based on fluorene and 2,5-di(2-hexyloxyphenyl) thiazolothiazole [J]. Macromolecules, 2005, 38(17): 7292-7298.
    [91] Bouillud A. D., Levesque I., Tao Y, D'lorio M., Beaupre S., Blondin P., Ranger M., Bouchard J., Leclerc M., Light-emitting diodes from fluorene-based π-conjugated polymers [J]. Chem. Mater., 2000,12(7): 1931-1936.
    [92] Setayesh S., Grimsdale A. C., Weil T., Enkelmann V., Mullen K., Meghdadi F., List E. J. W, Leising G, Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers [J]. J. Am. Chem. Soc, 2001, 123(5): 946-953.
    [93] Akcelrud L., Electroluminescent polymers [J]. Prog. Polym. Sci, 2003, 28(6): 875-962.
    [94] Du J., Fang Q., Bu D., Ren S., Cao A., Chen X., A new poly(fluorine-co-carbazole) with a large substituent group at the 9-position of the carbazole moiety: An efficient blue emitter [J]. Macromol. Rapid Commun., 2005,26(20): 1651-1656.
    [95] Liu X. M., Lin T., Huang J., Hao X. T., Ong K. S., He C, Hyperbranched blue to red light-emitting polymers with tetraarylsilyl cores: Synthesis, optical and electroluminescence properties, and ab initio modeling studies [J]. Macromolecules, 2005, 38(10): 4157-4168.
    [96] Kanibolotsky A. L., Berridge R., Skabara P. J., Perepichka I. F., Bradley D. D. C, Koeberg M., Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures [J]. J. Am. Chem. Soc, 2004, 126(42): 13695-13702.
    [97] Cao X. Y, Zhou X. H., Zi H., Pei J., Novel blue-light-emitting truxene-
    containing hyperbranched and zigzag type copolymers: Synthesis, optical properties, and investigation of thermal spectral stability [J]. Macromolecules, 2004, 37(24): 8874-8882.
    [98] Zeng G, Yu W. L., Chua S. J., Huang W., Spectral and thermal spectral stability study for fluorene-based conjugated polymers [J]. Macromolecules, 2002, 35(18): 6907-6914.
    [99] Inbasekaran M., Shiang W. R., Woo E. P., Roof G R., US Patent 5962631 to Dow Company, 1999.
    [100] Becker S., Ego C, Grimsdale A. C, List E. J. W., Marsitzky D., Pogantsch A., Setayesh S., Leising G, Mullen K., Optimization of polyfluorenes for light emitting applications [J]. Synth. Met., 2002, 125(1-2): 73-80.
    [101] Li Z. H., Wong M. S., Fukutani H., Tao Y., Full emission color tuning in bis-dipolar diphenylamino-endcapped oligoarylfluorenes [J]. Chem. Mater., 2005, 17(20): 5032-5040.
    [102] McGehee M. D., Bergstedt T., Zhang C, Saab A. P., O'Regan M. B., Bazan G C, Srdanov V. I., Heeger A. J., Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes [J]. Adv. Mater., 1999, 11(16): 1349-1354.
    [103] Sinha A. P. B., In Spectroscopy in Inorganic Chemistry, Rao C. N. R., Ferraro J. R., Eds., Academic: New York, 1971, Vol. 2.
    [104] Hou Q., Zhang Y, Li F., Peng J., Cao Y, Red electrophorescence of conjugated organoplatinum (II) polymers prepared via direct metalation of poly(fluorine-co-tetraphenylporphyrin) copolymers [J]. Organometallics, 2005, 24(19): 4509-4518.
    [105] Ling Q. D., Kang E. T., Neoh K. G., Huang W, Synthesis and nearly monochromatic photoluminescence properties of conjugated copolymers containing fluorene and rare earth complexes [J]. Macromolecules, 2003, 36(19): 6995-7003.
    [106] Jiang J., Jiang C, Yang W, Zhen H., Huang F., Cao Y, High-efficiency electrophosphorescent fluorene-alt-carbazole copolymers N-grafted with cyclometalated Ir complexes [J]. Macromolecules, 2005, 38(10): 4072-4080.
    [107] Liu B., Yu W. L., Lai Y. H., Huang W., Blue-light-emitting cationic water-soluble polyfluorene derivatives with tunable quaternization degree [J]. Macromolecules, 2002,35(13): 4975-4982.
    [108] Lu S., Fan Q. L., Chua S. J., Huang W., Synthesis of conjugated-ionic block copolymers by controlled radical polymerization [J]. Macromolecules, 2003, 36(2):
    304-310.
    [109] Chochos C. L., Tsolakis P. K., Gregoriou V. G, Kallitsis J. K., Influence of the coil block on the properties of rod-coil diblock copolymers with oligofluorene as the rigid segment [J]. Macromolecules, 2004, 37(7): 2502-2510.
    [110] Chochos C. L., Kallitsis J. K., Gregoriou V. G, Rod-coil block copolymers incorporating terfluorene segments for stable blue light emission [J]. J. Phys. Chem. B, 2005, 109(18): 8755-8760.
    [111] Lu S., Fan Q. L., Liu S. Y., Chua S. J., Huang W., Synthesis of conjugated-acidic block copolymers by atom transfer radical polymerization [J]. Macromolecules, 2002, 35(27): 9875-9881.
    [112] Janietz S., Bradley D. D. C., Grell M., Giebeler C, Inbasekaran M., Woo E. P., Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene) [3).Appl. Phys. Lett., 1998, 73(17): 2453-2455.
    [113] Bliznyuk V. N., Carter S. A., Scott J. C., Klarner G, Miller R. D., Miller D. C., Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices [J]. Macromolecules, 1999, 32(2): 361-369.
    [114] Teetsov J., Fox M. A., Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes [J]. J. Mater. Chem., 1999, 9(9): 2117-2122.
    [115] Weinfurtner K. H., Fujikawa H., Tokito S. Taga Y., Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency [J]. Appl. Phys. Lett., 2000, 76(18): 2502-2504.
    [116] Cadby A. J., Lane P. A., Mellor H., Martin S. J., Grell M., Giebeler C., Bradley D. D. C, Wohlgenannt M., An C., Vardeny Z. V., Film morphology and photophysics of polyfluorene [J]. Phys. Rev. B, 2000, 62(23): 15604-15609.
    [117] Cadby A. J., Lane P. A., Wohlgenannt M., An C., Vardeny Z. V., Bradley D. D. C., Optical studies of photoexcitations of poly(9,9-dioctyl fluorene) [J]. Synth. Met., 2000,111-112: 515-518.
    [118] Herz L. M., Phillips R. T., Effects of interchain interactions, polarization anisotropy, and photo-oxidation on the ultrafast photoluminescence decay from a polyfluorene [J]. Phys. Rev. B, 2000, 61(20): 13691-13697.
    [119] Teetsov J. A., Bout D. A. V., Imaging molecular and nanoscale order in conjugated polymer thin films with near-field scanning optical microscopy [J]. J. Am.
    Chem. Soc, 2001, 123(15): 3605-3606.
    [120] Rothe C., Monkman A., Dynamics and trap-depth distribution of triplet excited states in thin films of the light-emitting polymer poly(9,9-di(ethylhexyl)fluorene) [J]. Phys. Rev. B, 2002,65(7): 073201-073204.
    [121] Babel A., Jenekhe S. A., Charge carrier mobility in blends of poly(9,9-dioctylfluorene) and poly(3-hexylthiophene) [J]. Macromolecules, 2003, 36(20): 7759-7764.
    [122] Tanto B., Guha S., Martin C. M., Scherf U., Minokur M. J., Structural and Spectroscopic Investigations of Bulk Poly[bis(2-ethyl)hexylfluorene] [J]. Macromolecules, 2004, 37(25): 9438-9448.
    [123] Chen P., Yang G Z., Liu T. X., Li T. C., Wang M., Huang W., Optimization of optoelectronic property and device efficiency of polyfluorenes by tuning structure and morphology [J]. Polym. Int., 2006, 55(5): 473-490.
    [124] Gong X., Iyer P. K., Moses D., Bazan G. C, Heeger A. J., Xiao S. S., Stabilized blue emission from polyfluorene-based light-emitting diodes: Elimination of fluorenone defects [JJ. Adv. Fund. Mater, 2003,13(4): 325-330.
    [125] Jenekhe S. A., Osaheni J. A., Excimer and exciplexes of conjugated polymers [J]. Science, 1994, 265: 765-768.
    [126] Cimrova V., Scherf U., Neher D., Microcavity devices based on a ladder-type poly(p-phenylene) emitting blue, green, and red light [JJ. Appl. Phys. Lett., 1996, 69(5): 608-610.
    [127] Lee J. I., Klamer G, Miller R. D., Oxidative stability and its effect on the photoluminescence of polyfluorene derivatives: End group effects [J]. Chem. Mater., 1999,11(4): 1083-1088.
    [128] Yu W. L., Cao Y., Pei J., Huang W., Heeger A. J., Blue polymer light-emitting diodes from poly(9,9-dihexylfluorene-alt-co-2,5-didecyloxy-para-phenylene) [J]. Appl Phys., Lett., 1999, 75(21): 3270-3272.
    [129] Jacob J., Oldridge L., Zhang J., Gal M., List E. J. W., Grimsdale A. C, Progress towards stable blue light-emitting polymers [JJ. Curr. Appl. Phys., 2004, 4(2-4): 339-342.
    [130] Palsson L. O., Wang C., Monkman A. P., Bryce M. R., Rumbles G, Samuel I. D. W., Fluorene co-polymer luminescence: implications for molecular interactions [J]. Synth Met., 2001,119(1-3): 627-628.
    [131] Sims M., Bradley D. D. C., Ariu M., Koeberg M., Asimakis A., Grell M.,
    Lidzey D. G., Understanding the origin of the 535 tun emission band in oxidized poly (9,9-dioctylfluorene): The essential role of inter-chain/inter-segment interactions [J]. Adv. Fund. Mater, 2004,14(8): 765-781.
    [132] Prieto I., Teetsov J., Fox M. A., Bout D. A. V., Bard A. J., A study of excimer emission in solutions of poly(9,9-dioctylfluorene) using electrogenerated chemilurainescence [J]. J. Phys. Chem. A, 2001,105(3): 520-523.
    [133] Pei J., Liu X. L., Chen Z. K., Zhang X. H., Lai Y. H., Huang W., First hydrogen-bonding-induced self-assembled aggregates of a polyfluorene derivative [J]. Macromolecules, 2003, 36(2): 323-327.
    [134] Lemmer U., Hem S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., Gobel E. O., Mullen K., Bassler H., Aggregate fluorescence in conjugated polymers [J]. Chem. Phys. Lett., 1995,240(4): 373-378.
    [135] Kreyenschmidt M., klaerner G, Fuhrer T., Ashenhurst J., Karg S., Chen W. D., Lee V. Y., Scott J. C., Miller R. D., Thermally stable blue-light-emitting copolymers of poly(alkylfluorene) [J]. Macromolecules, 1998,31(4): 1099-1103.
    [136] Yu W. L., Pei J., Huang W., Heeger A. J., Spiro-functionalized polyfluorene derivatives as blue light-emitting materials [J]. Adv. Mater, 2000,12(11): 828-831.
    [137] Tetsov J., Bout D. A. V., Near-field scanning optical microscopy (NSOM) studies of nanoscale polymer ordering in pristine films of poly(9,9-dialkylfluorene) [J]. J. Phys. Chem. B, 2000,104(40): 9378-9387.
    [138] Silva C., Russell D. M., Dhoot A. S., Herz L. M., Daniel C, Greenham N. C., Arias A. C, Setayesh S., Mullen K., Friend R. H., Exciton and polaron dynamics in a step-ladder polymeric semiconductor: the influence of interchain order [J]. J. Phys. Condensed Matter, 2002,14(42): 9803-9824.
    [139] Ariu M., Lidzey D. G, Sims M., Cadby A. J., Lane P. A., Bradley D. C. C, The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9,9-dioctylfluorene) [J]. J. Phys. Condensed Matter, 2002,14(42): 9975-9986.
    [140] Ariu M., Sims M., Rahn M. D., Hill J., Fox A. M., Lidzey D. G, Oda M., Cabanillas-Gonzalez J., Bradley D. D. C, Exciton migration in P-phase poly(9,9- dioctylfluorene) [J]. Phys. Rev B, 2003,67(19): 195333(1-11).
    [141] Kulkarni A. P., Kong X., Jenekhe S. A., Fluorenone-containing polyfiuorenes and oligofluorenes: pbotophysics, origin of the green emission and efficient green electroluminescence [J]. J. Phys. Chem. B, 2004,108(25): 8689-8701.
    
    [142] Surin M., Hennebicq E., Ego C, Marsitzky D., Grimsdale A. C, Muller K., Correlation between the microscopic morphology and the solid-state photoluminescence properties in fluorene-based polymers and copolymers [J]. Chem. Mater., 2004,16(6): 994-1001.
    [143] Chen S. H., Su A. C, Chen S. A., Noncrystalline phase in poly(9,9-di-n-octyl- 2,7-fluorene) [J]. J. Phys. Chem. B, 2005,109(20): 10067-10072.
    [144] Grell M., Bradley D. D. C., Inbasekaran M., Woo E. P., A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications [J].Adv. Mater., 1997,9(10): 798-802.
    [145] Blondin P., Bouchard J., Beaupre S., Belletete M., Durocher G, Leclerc M., Molecular design and characterization of chromic polyfluorene derivatives [J]. Macromolecules, 2000, 33(16): 5874-5879.
    [146] Kawana S., Durrell M., Lu J., Macdonald J. E., Grell M., Bradley D. D. C, Jukes P. C, Jones R. A. L., Bennett S. L., X-ray diffraction study of the structure of thin polyfluorene films [J]. Polymer, 2002,43(6): 1907-1913.
    [147] Chen S. H., Su A. C, Su C. H., Chen S. A., Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene) [J]. Macromolecules, 2005, 38(2): 379-385.
    [148] Chen S. H., Chou H. L., Su A. C., Chen S. A., Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene) [J]. Macromolecules, 2004, 37(18): 6833-6838.
    [149] Chen S. H., Su A. C, Su C. H., Chen S. A., Phase behavior of poly(9,9-di-n- hexyl-2,7-fluorene) [J]. J. Phys. Chem. B, 2006,110(9): 4007-4013.
    [150] Grell M., Bradley D. D. C, Polarized luminescence from oriented molecular materials [J].Adv. Mater., 1999,11(11): 895-905.
    [151] Whitehead K. S., Grell M., Bradley D. D. C, Jandke M., Strohriegl P., Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene) [J]. Appl. Phys. Lett., 2000, 76(20): 2946-2948.
    [152] Misaki M., Ueda Y., Nagamatsu S., Yoshida Y, Tanigaki N., Yase K., Formation of single-crystal-like poly(9,9-dioctylfluorene) thin film by the friction-transfer technique with subsequent thermal treatments [J]. Macromolecules, 2004, 37(18): 6926-6931.
    [153] Meng H., Bao Z., Lovinger A. J., Wang B. C, Mujsce A. M., High field-effect mobility oligofluorene derivatives with high environmental stability [J]. J. Am. Chem. Soc, 2001,123(37): 9214-9215.
    
    [1] Liu B., Yu W. L., Lai Y. H., Huang W., Blue-light-emitting fluorene-based polymers with tunable electronic properties [J]. Chem. Mater., 2001, 13(6): 1984-1991.
    [2] Sung H. H., Lin H. C., Novel alternating fluorene-based conjugated polymers containing oxadiazole pendants with various terminal groups [J]. Macromolecules, 2004, 37(21): 7945-7954.
    [3] Zeng G, Chua S. J., Huang W., Influence of donor and acceptor substituents on the electronic characteristics of poly(fluorene-phenylene) [J]. Thin Solid Films, 2002, 417(1-2): 194-197.
    [4] Lemmer U., Hem S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., Gobel E. O., Mullen K., Bassler H., Aggregate fluorescence in conjugated polymers [J]. Chem. Phys. Lett., 1995,240(4): 373-378.
    [5] Lee J. I., Klamer G., Miller R. D., Oxidative stability and its effect on the photoluminescence of polyfluorene derivatives: End group effects [JJ. Chem. Mater., 1999,11(4): 1083-1088.
    [6] Jacob J., Oldridge L., Zhang J., Gal M., List E. J. W., Grimsdale A. C, Progress towards stable blue light-emitting polymers [J]. Curr. Appl. Phys., 2004, 4(2-4): 339-342.
    [7] Ranger M., Leclerc M., New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping [J]. Macromolecules, 1997, 30(25): 7686-7691.
    [8] Miyaura N., Suzuki A., Palladium-catalyzed cross-coupling reactions of organoboron compounds [J]. Chem. Rev., 1995,95(7): 2457-2483.
    [9] Ruiz J. P., Dharia J. R., Reynolds J. R., Repeat unit symmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly[1,4-bis(2-thienyl)phenylenes] [J]. Macromolecules, 1992,25(2): 849-860.
    [10] Shaw H., Perlmutter H. D., Gu C., Arco S. D., Quibuyen T. O., Free-radical bromination of selected organic compounds in water [J]. J. Org. Chem., 1997, 62(2): 236-237.
    [11] Fkyerat A., Dubin G M., Tabacchi R., The synthesis of natural acetylenic compounds from stereum hirsutum [J]. Helv. Chim. Acta, 1999, 82(9): 1418-1422. [12] Wang H. Y, Feng J. C, Wen G A., Jiang H. J, Wan J. H., Zhu R., Wang C. M., Wei W., Huang W, Cruciform p-n diblock conjugated oligomers for electroluminescent applications [J]. New J. Chem., 2006, 30(5): 667-670.
    
    [1] Gong X., Iyer P. K., Moses D., Bazan G C., Heeger A. J., Xiao S. S., Stabilized blue emission from polyfluorene-based light-emitting diodes: Elimination of fluorenone defects [J]. Adv. Funct. Mater, 2003,13(4): 325-330.
    [2] Uckert F., Tak Y. H., Mullen K.. Bassler H., 2,7-poly(9-fluorenone): a trap-free electron-injection material with a high charge carrier mobility for use in light-emitting diodes [J]. Adv. Mater., 2000,12(12): 905-908.
    [3] Bliznyuk V. N., Carter S. A., Scott J. C, Klarner G, Miller R. D., Miller D. C., Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices [J]. Macromolecules, 1999,32(2): 361-369.
    [4] Setayesh S., Grimsdale A. C., Weil T., Enkelmann V., Mullen K., Meghdadi F., List E. J. W., Leising G, Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers [J]. J. Am. Chem. Soc, 2001, 123(5): 946-953.
    [5] Akcelrud L., Electroluminescent polymers [J]. Prog. Polym. Sci., 2003, 28(6): 875-962.
    [6] Du J., Fang Q., Bu D., Ren S., Cao A., Chen X., A new poly(fluorine-co- carbazole) with a large substituent group at the 9-position of the carbazole moiety: An efficient blue emitter [J]. Macromol. Rapid Commun., 2005, 26(20): 1651-1656.
    [7] Wu C. W., Lin H. C, Synthesis and characterization of kinked and hyperbranched carbazole/fluorene-based copolymers [J]. Macromolecules, 2006, 39(21): 7232-7240.
    [8] Lu J., Tao Y., Diorio M., Li Y., Ding J., Day M., Pure deep blue light-emitting diodes from alternating fluorene/carbazole copolymers by using suitable hole-blocking materials [J]. Macromolecules, 2004, 37(7): 2442-2449.
    [9] Zeng G, Yu W. L., Chua S. J., Huang W., Spectral and thermal spectral stability study for fluorene-based conjugated polymers [J]. Macromolecules, 2002, 35(18): 6907-6914.
    [10] Liu B., Yu W. L., Lai Y. H., Huang W., Blue-light-emitting fluorene-based polymers with tunable electronic properties [JJ. Chem. Mater., 2001, 13(6): 1984-1991.
    [11] Zeng G, Chua S. J., Huang W., Influence of donor and acceptor substituents on the electronic characteristics of poly(fluorene-phenylene) [J]. Thin Solid Films, 2002, 417(1-2): 194-197.
    [12] Palsson L. O., Wang C. S., Russell D. L., Monkman A. P., Bryce M. R., Rumbles
    G, Samuel I. D. W., Photophysics of a fluorene co-polymer in solution and films [J|. Chem. Phys., 2002, 279(2-3): 229-237.
    [13] Palsson L. O., Wang C. S., Monkman A. P., Bryce M. R., Rumbles G, Samuel I. D, W,, Fluorene co-polymer luminescence: implications for molecular interactions [J]. Synth. Met., 2001,119(1-3): 627-628.
    [14] Huang H. M., He Q. G, Song Y, Lin H. Z., Yang J. L., Bai F. L., Synthesis and photophysical properties of alternating copolymers containing triphenylamine moieties [J]. Polym. Adv. Technol, 2003,14(3-5): 309-313.
    [15] Lemmer U., Heun S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., Gobel E. O., Mullen K., Bassler H., Aggregate fluorescence in conjugated polymers [J]. Chem. Phys. Lett, 1995, 240(4): 373-378.
    [16] Nguyen T. Q., Dian V., Schwartz B. J., Conjugated polymer aggregates in solution: Control of interchain interactions [J]. J. Chem. Phys., 1999, 110(8): 4068-4078.
    [17] Zheng M., Bai F. L., Zhu D. B., Photophysical process of MEH-PPV solution [J]. J. Photoch. Photobio. A: Chem., 1998,116(2): 143-145.
    [18] Diaz-Garcia M. A., Hide F., Schwartz B. J., Andersson M. R., Pei Q. B., Heeger A. J., Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials [J]. Synth. Met., 1997, 84(1-3): 455-462.
    [19] Traiphol R., Sanguansat P., Srikhirin T., Kerdcharoen T., Osotchan T., Spectroscopic study of photophysical change in collapsed coils of conjugated polymers: Effects of solvent and temperature [J]. Macromolecules, 2006, 39(3): 1165-1172.
    [20] Levitus M, Schmieder K., Ricks H., Shimizu K. D., Bunz U. F. H., Garcia-Garibay M. A., Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene [J]. J. Am. Chem. Soc, 2001, 123: 4259-4265.
    [21] Wang H. Y., Feng J. C, Wen G. A., Jiang H. J, Wan J. H., Zhu R., Wang C. M., Wei W, Huang W, Cruciform p-n dibJock conjugated oligomers for electroluminescent applications [J]. New J. Chem., 2006, 30(5): 667-670.
    [22] Yang L., Liao Y, Feng J. K., Ren A. M., Theoretical studies of the modulation of polymer electronic and optical properties through the introduction of the electron-donating 3,4-ethylenedioxythiophene or electron-accepting pysidine and
    1,3,4-oxadiazole moieties [J]. J. Phys. Chem. A., 2005,109(34): 7764-7774.
    [23] Cornil J., Gueli L, Dkhissi A., Sancho-Garcia J. C., Hennebicq E., Calbert J. P., Lemaur V, Beljonne D., Bredas J. L., Electronic and optical properties of polyfluorene and fluorene-based copolymers: A quantum-chemical characterization [ J].J. Chem. Phys., 2003, 118(14): 6615-6623.
    [24] Hay P. J., Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory [J]. J. Phys. Chem. A., 2002, 106(8): 1634-1641.
    [1] Gaal M., List E. J. W., Scherf U., Excimers or emissive on-chain defects [J]. Macromolecules, 2003, 36(11): 4236-4237.
    [2] Gong X., Iyer P. K., Moses D., Bazan G. C., Heeger A. J., Xiao S. S., Stabilized blue emission from polyfluorene-based light-emitting diodes: Elimination of fluorenone defects [J]. Adv. Funct. Mater., 2003, 13(4): 325-330.
    [3] Bliznyuk V. N., Carter S. A., Scott J. C, Klarner G, Miller R. D., Miller D. C, Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices [J]. Macromolecules, 1999, 32(2): 361-369.
    [4] Zeng G, Yu W. L., Chua S. J., Huang W., Spectral and thermal spectral stabilit y study for fluorene-based conjugated polymers [J]. Macromolecules, 2002, 35(18): 6907-6914.
    [5] Uckert F., Tak Y. H., Mullen K., Bassler H., 2,7-poly(9-fluorenone): a trap-free electron-injection material with a high charge carrier mobility for use in light-emitting diodes [J]. Adv. Mater., 2000,12(12): 905-908.
    [6] Weinfurtner K. H., Fujikawa H., Tokito S., Taga Y., Highly efficient pure blueelectroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency [J]. Appl. Phys. Lett., 2000, 76(18): 2502-2504.
    [7] Setayesh S., Grimsdale A. C, Weil T., Enkelmann V., Mullen K., Meghdadi F., List E. J. W., Leising G, Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers [J]. J. Am. Chem. Soc., 2001, 123(5): 946-953.
    [8] Xin Y, Wen G A., Zeng W. J., Zhao L., Zhu X. R., Fan Q. L., Feng J. C, Wang L. H., Wei W., Peng B., Cao Y, Huang W., Hyperbranched oxadiazole-containing polyfluorenes: toward stable blue light PLEDs [J]. Macromolecules, 2005, 38(16): 6755-6758.
    [9] Du J., Fang Q., Bu D., Ren S., Cao A., Chen X., A new poly(fluorine-co- carbazole) with a large substituent group at the 9-position of the carbazole moiety: An efficient blue emitter [J]. Macromol. Rapid Commun., 2005, 26(20): 1651-1656.
    [10] Liu X. M., Lin T. T., Huang J. C., Hao X. T., Ong K. S., He C. B., Hyperbranched blue to red light-emitting polymers with tetraarylsilyl cores: Synthesis, optical and electroluminescence properties, and ab initio modeling studies [J]. Macromolecules, 2005, 38(10): 4157-4168.
    
    [11] Kanibolotsky A. L., Berridge R., Skabara P. J., Perepichka I. F., Bradley D. D. C., Koeberg M., Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures [J]. J. Am. Chem. Soc, 2004, 126(42): 13695-13702.
    [12] Cao X. Y, Zhou X. H., Zi H., Pei J., Novel blue-light-emitting truxene- containing hyperbranched and zigzag type copolymers: Synthesis, optical properties, and investigation of thermal spectral stability [JJ. Macromolecules, 2004, 37(24): 8874-8882.
    [13] Kreyenschmidt M., Klaerner G., Fuhrer T., Ashenhurst J., Karg S., Chen W. D., Lee V. Y., Scott J. C, Miller R. D., Thermally stable blue-light-emitting copolymers of poly (alky lfluorene) [J]. Macromolecules, 1998,31(4): 1099-1103.
    [14] Lemmer U., Hem S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., G6bel E. O., Mtillen K., Bassler H., Aggregate fluorescence in conjugated polymers [J]. Chem. Phys. Lett., 1995, 240(4): 373-378.
    [15] Lee J. I., Klamer G, Miller R. D., Oxidative stability and its effect on the photoluminescence of polyfluorene derivatives: End group effects [J]. Chem. Mater., 1999,11(4): 1083-1088.
    [16] Teetsov J., Fox M. A., Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes [J]. J. Mater. Chem., 1999, 9(9): 2117-2122.
    [17] Silva C, Russell D. M., Dhoot A. S., Herz L. M., Daniel C, Greenham N. C, Arias A. C, Setayesh S., Mullen K., Friend R. H., Exciton and polaron dynamics in astep-ladder polymeric semiconductor: the influence of interchain order [J). J. Phys. Condensed Matter, 2002, 14(42): 9803-9824.
    [18] Jacob J., Oldridge L., Zhang J., Gal M., List E. J. W., Grimsdale A. C, Progress towards stable blue light-emitting polymers [J]. Curr. Appl. Phys., 2004, 4(2-4): 339-342.
    [19] List E. J. W., Guentner R., Freitas P. S., Scherf U., The effect of keto defect sites on the emission properties of polyfluorene-type materials [JJ. Adv. Mater., 2005,14(5): 374-178.
    [20] Zojer E., Pogantsch A., Hennebicq E., Beljonne D., Bredas J. L., Freitas P. S., Scherf U., List E. J. W., Green emission from poly(fluorene)s: the role of oxidation [J]. J. Chem. Phys., 2002,117(14): 6794-6802.
    [21] Kulkarni A. P., Kong X., Jenekhe S. A., Fluorenone-containing polyfluorenes and
    oligofluorenes: photophysics, origin of the green emission and efficient green electroluminescence [J]. J. Phys. Chem. B, 2004,108(25): 8689-8701.
    [22] Sims M., Bradley D. D. C., Ariu M., Koeberg M., Asimakis A., Grell M, Lidzey D. G., Understanding the origin of the 535 nm emission band in oxidized poly (9,9-dioctylfluorene): The essential role of inter-chain/inter-segment interactions [J]. Adv. Funct. Mater., 2004,14(8): 765-781.
    [23] Jenekhe S. A., Osaheni J. A., Excimer and exciplexes of conjugated polymers [J]. Science, 1994,265: 765-768.
    [24] Conwell E. M., Excimers in poly(phenylene vinylene) and its derivatives [J]. Synth. Met., 1997, 85(1-3): 995-999.
    [1] Krigbaum W. R., Hakemi H., Kotek R., Nematogenic polymers having rigid chains. 1. Substituted poly(p-phenylene terephthalates) [J]. Macromolecules, 1985, 18(5): 965-973.
    [2] Ballauff M., Stiff-chain polymers-structure, phase behavior, and properties [J]. Angew. Chem., Int. Ed. Engl., 1989, 28(3): 253-267.
    [3] Wegner G., Ultrathin films of polymers: architecture, characterization and properties [J]. Thin Solid Films, 1992, 216(1): 105-116.
    [4] Stepanyan R., Subbotin A., Knaapila M., Ikkala O., Brinke G., Self-organization of hairy-rod polymers [J]. Macromolecules, 2003, 36(10): 3758-3763.
    [5] Ballauff M., Rigid rod polymers having flexible side chains, 1. Thermotropic poly(1,4-phenylene 2,5-dialkoxyterephthalate)s [J]. Makromol. Chem. Rapid Commun., 1986, 7(6): 407-414.
    [6] Ballauff M., Schmidt G. F., Rigid rod polymers with flexible side chains, 2. Observation of a novel type of layered mesophase [J]. Makromol. Chem. Rapid Commun., 1987, 8(2): 93-97.
    [7] Steuer M., Horth M., Ballauff M., Rigid rod polymers with flexible side chains. Ⅹ. Thermotropic mesophases from aromatic stiff-chain polyamides bearing n-alkoxy side chains [J]. J. Polym. Sci., Part A: Polym. Chem., 1993, 31(6): 1609-1619.
    [8] Galda P., Kistner D., Martin A., Ballauff M., Characterization and analysis of the phase behavior of poly(1,4-phenylene 2,5-di-n-alkoxyterephthalate)s [J]. Macromolecules, 1993, 26(7): 1595-1602.
    [9] Winokur M. J., Wamsley P., Moulton J., Smith P., Heeger A. J., Structural evolution in iodine-doped poly(3-alkylthiophenes) [J]. Macromolecules, 1991, 24(13): 3812-3815.
    [10] Chen S. A., Ni J. M., Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkylthiophene)s [J]. Macromolecules, 1992, 25(23): 6081-6089.
    [11] McCarthy T. F., Witteler H., Pakula T., Wegner G., Structure and properties of poly(2,5-di-n-dodecyl-1,4-phenylene) depending on chain length [J]. Macromolecules, 1995, 28(24): 8350-8362.
    [12] Wang W., Lieser G., Wegner G., Extended-chain lamellar structure and chain segregation in lyotropic liquid crystals of poly{5,7-dodecadiyne-1,12-diol bis[((4-butoxycarbonyl)methyl)urethane]} [J]. Macromolecules, 1994, 27(4): 1027-1032.
    [13] Kline R. J., MeGehee M. D., Kadnikova E. N., Liu J., Frechet J. M., Toney M. F., Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight [J]. Macromolecules, 2005, 38(8): 3312-3319.
    [14] Surin M., Hennebicq E., Ego C., Marsitzky D., Grimsdale A. C., Müllen K., Brédas J. L., Lazzaroni R., Leclere P., Correlation between the microscopic morphology and the solid-state photoluminescence properties in fluorene-based polymers and copolymers [J]. Chem. Mater., 2004, 16(6): 994-1001.
    [15] Chen S. H., Su A. C., Su C. H., Chen S. A., Phase behavior of poly(9,9-di-n-hexyl-2,7-fluorene) [J]. J. Phys. Chem. B., 2006, 110(9): 4007-4013.
    [16] Teetsov J., Fox M. A., Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes [J]. J. Mater. Chem., 1999, 9(9): 2117-2122.
    [17] Grell M., Bradley D. D. C., Inbasekaran M., Woo E. P., A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications [J]. Adv. Mater., 1997, 9(10): 798-802.
    [18] Blondin P., Bouchard J., Beaupre S., Belletete M., Durocher G., Leclerc M., Molecular design and characterization of chromic polyfluorene derivatives [J]. Macromolecules, 2000, 33(16): 5874-5879.
    [19] Kawana S., Durrell M., Lu J., Macdonald J. E., Grell M., Bradley D. D. C., Jukes P. C., Jones R. A. L., Bennett S. L., X-ray diffraction study of the structure of thin polyfluorene films [J]. Polymer, 2002, 43(6): 1907-1913.
    [20] Huang H. M., He Q. G., Song Y., Lin H. Z., Yang J. L., Bai F. L., Synthesis and photophysical properties of alternating copolymers containing triphenylamine moieties [J]. Polym. Adv. Technol., 2003, 14(3-5): 309-313.
    [21] Lemmer U., Heun S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., Gobel E. O., Mullen K., Bassler H., Aggregate fluorescence in conjugated polymers [J]. Chem. Phys. Lett., 1995, 240(4): 373-378.
    [1] Liu S. L., Chung T. S., Crystallization and melting behavior of regioregular poly(3-dodecylthiophene) [J]. Polymer, 2000, 41 (8): 2781-2793.
    [2] Xu W. B., Ge M. L., He R S., Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites [J]. J. Polym. Sci. Part B: Polym. Phys., 2002, 40(5): 408-414.
    [3] Achilias D. S., Papageorgiou G. Z., Karayannidis G. R, Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate) [J]. J. Polym. Sci. Part B: Polym. Phys., 2004, 42(20): 3775-3796.
    [4] Ma J. S., Zhang S. M., Qi Z. N., Li G., Hu Y. L., Crystallization behavior of polypropylene/montmorillonite nanocomposites [J]. J. Appl. Polym. Sci., 2002, 83(9): 1978-1985.
    [5] Kim J. Y., Park H. S., Kim S. H., Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization [J]. Polymer, 2006, 47(4): 1379-1389.
    [6] Wang X. S., Yan D. Y., Tian G. H., Li X. G., Effect of molecular weight on crystallization and melting of poly(trimethylene terephthalate). 1: isothermal and dynamic crystallization [J]. Polym. Eng. Sci., 2001, 41(10): 1655-1664.
    [7] Cebe P., Hong S. D., Crystallization behavior of poly(ether-ether-ketone) [J]. Polymer, 1986, 27(8): 1183-1192.
    [8] Lopez L. C., Wilkes G. L., Non-isothermal crystallization kinetics of poly(p-phenylene sulphide) [J]. Polymer, 1989, 30(5): 882-887.
    [9] Zhang R. Y., Zheng H. F., Lou X. L., Ma D. Z., Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents [J]. J. Appl. Polym. Sci., 1994, 51(1): 51-56.
    [10] Supaphol P., Dangseeyun N., Srimoaon P., Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylenes terephthalate) blends [J]. Polym. Test., 2004, 23(2): 175-185.
    [11] Huang J. W., Hung H. C., Tseng K. S., Kang C. C., Nonisothermal crystallization of poly(ethylene-co-glycidyl methacrylate)/clay nanocomposites [J]. J. Appl. Polym. Sci., 2006, 100(2): 1335-1343.
    [12] Avrami M., Kinetics of phase change. I. General theory [J]. J. Chem. Phys., 1939, 7(12): 1103-1112.
    [13] Avrami M., Kinetics of phase change. Ⅱ. transformation-time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8(2): 212-224.
    [14] An Y. X., Dong L. S., Mo Z. S., Liu T. X., Feng Z. L., Nonisothermal crystallization kinetics of poly(β-hydroxybutyrate) [J]. J. Polym. Sci. Part B: Polym. Phys., 1998, 36(8): 1305-1312.
    [15] Wunderlich B., Macromolecular Physics [M], Vol. 2; Academic Press: New York, 1976.
    [16] Ozawa T., Kinetics of non-isothermal crystallization [J]. Polymer, 1971, 12(3): 150-158.
    [17] Ozawa T., A modified method for kinetic analysis of thermoanalytical data [J]. J. Therm. Anal., 1976, 9(3): 369-373.
    [18] Liu T. X., Mo Z. S., Wang S. E., Zhang H. F., Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polym. Eng. Sci., 1997, 37(3): 568-575.
    [19] Di Lorenzo M. L., Silvestre C., Non-isothermal crystallization of polymers [J]. Prog. Polym. Sci., 1999, 24(6): 917-950.
    [20] Eder M., Wlochowicz A., Kinetics of non-isothermal crystallization of polyethylene and polypropylene [J]. Polymer, 1983, 24(12): 1593-1595.
    [21] Kissinger H. E., Variation of peak temperature with heating rate in different thermal analysis [J]. J. Res. Natl. Bur. Stand., 1956, 57(4): 217-221.
    [22] Takhor R. L., Advance in Nucleation and Crystallization of Glasses [M]; American Ceramics Society: Columbus, 1971.
    [23] Augis J. A., Bennett J. E., Calculation of the Avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method [J]. J. Therm. Anal., 1978, 13(2): 283-292.
    [24] Kim S. H., Ahn S. H., Hirai T., Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate) [J]. Polymer, 2003, 44(19): 5625-5634.
    [25] Cheng S. Z. D., Wunderlich B., Glass transition and melting behavior of poly(ethylene 2,6-naphthalenedicarboxylate) [J]. Macromolecules, 1988, 21(3): 789-797.
    [26] Liu T. X., Yan S. K., Bonnet M., Lieberwirth I., Rogausch K. D., Petermann J., DSC and TEM investigations on multiple melting phenomena in isotactic polystyrene [J]. J. Mater. Sci., 2000, 35(20): 5047-5055.
    [27] Liu T. X., Petermann J., Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene [J]. Polymer, 2001, 42(15): 6453-6461.
    [28] Liu T. X., Petermann J., He C. B., Liu Z. H., Chung T. S., Transmission electron microscopy observation on lamellar melting of cold-crystallized isotactic polystyrene [J]. Macromolecules, 2001, 34(13): 4305-4307.
    [29] Duan Y. X., Zhang J. M., Shen D. Y., Yan S. K., In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene [J]. Macromolecules, 2003, 36(13): 4874-4879.
    [1] Widawski G., Rawiso M., Francois B., Self-organized honeycomb morphology of star-polymer polystyrene films [J]. Nature, 1994, 369: 387-389.
    [2] Muthukumar M., Ober C. K., Thomas E. L., Competing interactions and levels of ordering in self-organizing polymeric materials [J]. Science, 1997, 277: 1225-1232.
    [3] Stupp S. I., LeBonheur V., Walker K., Li L. S., Huggins K. E., Keser M., Amstutz A., Supramolecular materials: Self-organized nanostructures [J]. Science, 1997, 276: 384-389.
    [4] Percec V., Ahn C. H., Ungar G., Yeardley D. J. P., Moller M., Seiko S. S., Controlling polymer shape through the self-assembly of dendritic side-groups [J]. Nature, 1998, 391: 161-164.
    [5] Lee M., Cho B. K., Zin W. C., Supramolecular structures from rod-coil block copolymers [J]. Chem. Rev., 2001, 101(12): 3869-3892.
    [6] Jenekhe S. A., Chen X. L., Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes [J]. Science, 1998, 279(7): 1903-1907.
    [7] Zubarev E. R., Pralle M. U., Li L., Stupp S. I., Conversion of supramolecular clusters to macromolecular objects [J]. Science, 1999, 283: 523-526.
    [8] Stalmach U., de Boer B., Videlot C., van Hutten P. E., Hadziioannou G., Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques [J]. J. Am. Chem. Soc., 2000, 122(23): 5464-5472.
    [9] Stalmach U., de Boer B., Post A. D., van Hutten P. E., Hadziioannou G., Synthesis of a conjugated macromolecular initiator for nitroxide-mediated free radical polymerization [J]. Angew. Chem. Int. Ed., 2001, 40(2): 428-430.
    [10] Scherf U., List E. J. W., Semiconducting polyfluorenes-towards reliable structure-property relationships [J]. Adv. Mater., 2002, 14(7): 477-487.
    [11] Lu S., Fan Q. L., Chua S. J., Huang W., Synthesis of conjugated-ionic block copolymers by controlled radical polymerization [J]. Macromolecules, 2003, 36(2): 304-310.
    [12] Chochos C. L., Tsolakis P. K., Gregoriou V. G., Kallitsis J. K., Influence of the coil block on the properties of rod-coil diblock copolymers with oligofluorene as the rigid segment [J]. Macromolecules, 2004, 37(7): 2502-2510.
    [13] Lu S., Liu T. X., Ke L., Ma D. G., Chua S. J., Huang W., Polyfluorene-based light-emitting rod-coil block copolymers [J]. Macromolecules, 2005, 38(20): 8494-8502.
    [14] Yu X. F., Lu S., Ye C., Li T. C., Liu T. X., Liu S. Y., Fan Q. L., Chen E. Q., Huang W., ATRP synthesis of oligofluorene-based liquid crystalline conjugated block copolymers [J]. Macromolecules, 2006, 39(4): 1364-1375.
    [15] Mena-Osteritz E., Meyer A., Langeveld-Voss B. M. W., Janssen R. A. J., Meijer E. W., Bauerle P. Two-dimensional crystals of poly(3-alkyl-thiophene) Direct visualization of polymer folds in submolecular resolution [J]. Angew. Chem. Int. Ed., 2000, 39(15): 2679-2684.
    [16] Schmitt C., Nothofer H. G., Falcou A., Scherf U., Conjugated polyfluorene/polyaniline block copolymers [J]. Macromol. Rapid Commun., 2001, 22(8): 624-628.
    [17] Lu S., Fan Q. L., Liu S. Y., Chua S. J., Huang W., Synthesis of conjugated-acidic block copolymers by atom transfer radical polymerization [J]. Macromolecules, 2002, 35(27): 9875-9881.
    [18] Child A. D., Reynolds J. R., Water-soluble rigid-rod polyelectrolytes: A new self-doped, electroactive sulfonatoalkoxy-substituted poly(p-phenylene) [J]. Macromolecules, 1994, 27(7): 1975-1977.
    [19] Balanda P. B., Ramey M. B., Reynolds J. R., Water-soluble and blue luminescent cationic polyelectrolytes based on poly(p-phenylene) [J]. Macromolecules, 1999, 32(12): 3970-3978.
    [20] Jenekhe S. A., Chen X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers [J]. Science, 1999, 283: 372-375.
    [21] Sayar M., Solis F. J., Olivera de la Cruz M., Stupp S. I., Competing interactions among supramolecular structures on surfaces [J]. Macromolecules, 2000, 33(20): 7226-7228.
    [22] Pralle M. U., Urayama K., Tew G. N., Neher D., Wegner G., Stupp I. S., Piezoelectricity in polar supramolecular materials [J]. Angew. Chem. Int. Ed., 2000, 39(8): 1486-1489.
    [23] Liu J., Sneina E., Kowalewski T., McCullough R. D., Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: Nanowire morphologies in new di- and triblock copolymers [J]. Angew. Chem. Int. Ed., 2002, 41(2): 329-332.
    [24] Ruiz J. P., Dharia J. R., Reynolds J. R., Repeat unit symmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly[1,4-bis(2-thienyl)phenylenes] [J]. Macromolecules, 1992, 25(2): 849-860.
    [25] Liu B., Yu W. L., Lai Y. H., Huang W., Blue-light-emitting fluorene-based polymers with tunable electronic properties [J]. Chem. Mater., 2001, 13(6): 1984-1991.
    [26] Miyaura N., Suzuki A., Palladium-catalyzed cross-coupling reactions of organoboron compounds [J]. Chem. Rev., 1995, 95(7): 2457-2483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700