猪肠球菌病病原分离鉴定及其分子致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠球菌为球形或卵圆形、呈链状排列的革兰阳性细菌。自从1984年从链球菌属中分离出来单独成属以来,其成员已由原来的2个种增加到41个种。肠球菌不但可引起住院病人的腹膜炎、心内膜炎、尿道炎和脑膜炎等,也可引起猪、羊、鸡和鸭等动物的感染。感染动物的肠球菌可直接传染给人,而食品中污染的肠球菌可导致人的食物中毒,因此肠球菌在公共卫生学上具有重要的意义。2003~2008年期间,我们在河南省许昌、南阳、郑州、洛阳等地送检的病死猪分离出43株疑似肠球菌的病原性细菌,该些细菌主要引起患猪败血症、脑膜炎和关节炎。对其进行了常规的形态学观察、耐受性试验、Vitek-32生化鉴定和全细胞蛋白型分析,并做了16S rRNA和RAPD等分子水平的研究。在此基础上,调查了各分离株的毒力基因携带情况,并建立了小鼠腹膜炎模型,进一步比较了毒力基因、毒力表型和抗生素抗性与分离菌的致病性关系,以期为研究细菌致病机制、猪感染的流行病学以至最终的预防和控制提供参考依据。
     细菌学检验结果表明,所有的分离菌均呈G(?),卵圆形或球形,并呈长短不一的链状排列,能够在6.5%NaCl肉汤、pH 9.6葡萄糖肉汤和10℃、45℃和60℃30 min条件下生长。Vitek-32全自动细菌鉴定系统仅成功鉴定出了43个分离株中的35株,分别为粪肠球菌(E.faecalis)11株、屎肠球菌(E. faecium)2株、铅黄肠球菌(E. casseliflavus)22株,另有8个分离菌株未能鉴定到种的水平。细菌全细胞蛋白型分析结果与Vitek-32有明显不同,43株分离菌全细胞蛋白条带的分子量差异主要在97 KDa、90 KDa、67 KDa和46 KDa处,其中具有蛋白分子量90 KDa条带的菌株有13个,与参考菌株ATCC29212和ATCC33186相似;而其余的菌株均具有46KDa、67 KDa和97 KDa 3个条带,故认为它们是另外一种不同于粪肠球菌的肠球菌种类。
     16S rRNA基因序列分析结果表明,43株肠球菌的16S rRNA序列与GenBank中登录的各种肠球菌同源性均较高。经利用DNAStar软件将感染猪的疑似肠球菌分离株与GenBank中32种肠球菌的16S rRNA序列进行序列同源性分析,所有43个分离株均被鉴定到种的水平,其中13株与GenBank中登录的4株粪肠球菌(E.faecalis)模式菌株AF515223、AJ301831、EU728747、NC_004668的同源性在99.3%~99.9%之间;而另30个分离株除HE25之外均与GenBank中登录的3株屎肠球菌(E.faecium)模式菌株EU547780、DQ411813、Y18294的同源性在99.3%~100%之间;HN-25与其余29个屎肠球菌菌株的同源性在99%~99.4%之间。所测定的42株肠球菌(HN-N1~HN-N42)16S rRNA序列已被GenBank收录,其登录序列号依次为FJ378656~FJ378697。
     合成了19条随机引物对肠球菌基因组DNA多态性进行分析,以从基因组水平上进一步验证鉴定的正确性,并通过分析各菌株亲缘关系为肠球菌的流行病学积累资料。结果显示4条引物对所有菌株均扩增出了多态性较好的条带,通过SPSS11.5软件计算其相似性系数,发现HN-3和HN-6菌株间遗传距离指数为0.000,可能为同源菌株,其他菌株亲缘关系则较远。在聚类分析中,聚类重新标定距离(rescaled distance cluster combine)为21时,具有鉴定肠球菌至种水平的能力,试验的肠球菌菌株聚类成4人类群,分别为粪肠球菌聚类群、屎肠球菌聚类群、鸟肠球菌聚类群和仅有HN-25菌株聚类群。在粪肠球菌聚类分析中,聚类重新标定距离为19时,可将试验的粪肠球菌分成4个聚类群;而屎肠球菌在聚类重新标定距离为19时,则分成2个聚类群,除HN-25菌株为一聚类群外,其他屎肠球菌形成一个人的聚类群。
     为了研究肠球菌致病机制,通过调查猪临床菌株、肉品菌株和猪粪便菌株12种毒力基因携带情况,发现粪肠球菌较屎肠球菌携带更多的毒力基因(7.83:3.73);而3种来源的肠球菌中以临床菌株毒力基因最多,其次是肉品菌株,粪便菌株携带毒力基因最少。临床粪肠球菌分离株中毒力基因gelE、efaA和sprE的检出率为100%,ace、cylA和esp的检出率分别达到84.6%、84.6%和69.2%,均明显高于其他来源的菌株;而在临床屎肠球菌菌株中,cylA和gelE的检出率分别为83.3%和66.7%,也明显比其他来源的高。
     在小鼠腹膜炎模型中,粪肠球菌均比屎肠球菌致病性强,而在试验的粪肠球菌中,各菌株的致病性也不相同,其中,以HN-41的致病性最强,其LD50为106.01/ml,而HN-1致病性最弱,其LD50为107.01。屎肠球菌HN-32也较HN-15的LD50高。通过分析各菌株的毒力基因、毒力表型和抗生素抗性与致病性关系时发现,致病性的大小与毒力基因携带多少成正相关,gelE、cylA、ace和esp等毒力基因对致病性影响较大;毒力表型与致病性大小关系与肠球菌种有关,同种肠球菌中,β溶血性表型比明胶溶解表型与致病性大小更密切:肠球菌耐药种类多少与其致病性关系不明显。
ABSTRACT Enterococci are globular or orbicular-ovate, catenulate gram-positive bacteria. Since Enterococcus was separated from Streptoococcus as a new genus in 1984, its members have increased from the original two species to forty-one. Enterococci may not only cause peritonitis, endocarditis, urethritis and meningitis in hospital patients, but may lead to infection in animals such as swine, sheep, chicken, duck, and so on. Enterococcus that infects animals may directly infect humans, and Enterococcus-contaminated food may also cause food poisoning, therefore Enterococcus is of great significance in public health. During the years 2003 to 2008,43 Enterococcus-like isolates were obtained from dead pigs, respectively from farms in Xuchang, Nanyang, Zhengzhou and Luoyang of Henan province, which showed symptoms of septicaemia, meningitis and arthritis. Conventional morphological observation, tolerance experiments, Vitek-32 automatic biochemical bacteria identification and whole-cell protein profiles (WCPP) analysis were carried out, followed by the 16S rRNA and RAPD molecular approaches. Upon these bases, virulence factor genes carried by those strains were investigated and mice peritonitis models were set up with selected isolates, and further analysis was done on the relevance between pathogenicity of the isolates and virulence genes, virulence phenotypes, and antibiotic tolerance, so that information could be provided on epidemiology, pathogenicity, and eventually prevention and control of swine enterococcal infections.
     The conventional morphological observation and tolerance experiments showed the characteristics of the isolates were:gram-positive, globular or orbicular-ovate, catenulately arrayed, tolerant to 6.5% NaCl broth、pH 9.6 glucose broth, and temperatures of 10℃,45℃and 60℃in 30 minutes.35 among the 43 isolates were identified to species level by the Vitek-32 method, with a result of 11 strains of E. faecalis,2 of E. faecium and 22 of E. casseliflavus, whereas 8 others remained unidentified. The whole-cell protein profiles (WCPP) analysis presented a different conclusion that the predominant difference among the 43 isolates dwelled at 97KDa, 90KDa, 67KDa and 46KDa bands of protein molecular weight in electrophoresis. Accordant to the reference strains ATCC29212 and ATCC33186, thirteen isolates presented the 97KDa band, whilst the others had 46KDa,67 KDa and 97 KDa ones, implying another group of Enterococcci.
     The results of 16S rRNA gene sequence analysis indicated a high homology between the trial strains and those registered in the GenBank database. By comparison through the software DNAStar, all the 43 clinical isolates were successfully identified at the species level, among which 13 trial strains showed homology of 99.3%~99.9% to 4 E. faecalis type strains (AF515223, AJ301831, EU728747, NC_004668), and the other 30 isolates except HE25 presented homology of 99.3%~100% to 3 E. faecium strains (EU547780, DQ411813, Y18294), the HE25 strain showing 99%~99.4% homology the other 29 identified E.faecium strains. The 16S rRNA gene sequences of forty-two enterococci(HN-Nl to HN-N42) were registered to GenBank, with accession numbers FJ378656 to FJ378697 respectively.
     Nineteen random primers were synthesized and the genomic polymorphism of the isolates was analysed so as to clarify in genomic level the identification results, and then to collect reference information for epidemiological purpose. It showed that all the isolates performed good polymorphism straps when amplified with 4 of the random primers. The similarity coefficients and genetic distance index were calculated by SPSS11.5 software, and the phylogenetic tree was drawn with the method of nearest neighbor. The result indicated that the genetic distance index of HN-N3 and HN-N6 was 0.000, suggesting an identical origin of them. When the rescaled distance cluster combine was 21, the test strains could be identified to species level, and they dropped into four clustering groups, namely E.faecalis, E.faecium and E. avium groups, and the forth which had a single member of HN-25. Under a rescaled distance cluster combine of 19, the cluster of E. faecalis could be further divided into four subgroups, whereas the E. faecium members except HN-25 belonged to one large cluster.
     Genes of twelve virulence factors, which were predominant in E. faecalis and E. faecium, were detected on test strains of different origins -clinically infected pigs, fresh pork and 15 healthy-looking feces. Generally, E. faecalis strains carried more virulence factor genes than the E. faecium ones(7.83:3.73); clinically originated strains carried the highest numbers of virulence genes, pork strains being the second and fecal ones the fewest. Among the clinical E.faecalis isolates, the virulence genes gelE, efaA and sprE were 100% detectable, and the percentage of ace、cylA and esp genes were 84.6%、84.6% and 69.2%, which were much higher than those of other origins; likewise, the percentages of virulence genes cylA and gelE (83.3% and 66.7%) in clinical E.faecium isolates were also higher than the other counterparts.
     In the mice peritonitis models, pathogenicity of E. faecalis strains were more potent than the E.faecium bacteria, and different E. faecalis isolates also varied in their capacity of infection, among which HN-41was the most potent strain (LD50 of 106.01/ml), while HN-1 the weakest (LD50 of 107.01/ml). Similarly, E. faecium HN-32presented a higher LD50 than HN-15 did. Analysis implied a positive correlation between the pathogenecity of an isolate and its virulence gene numbers; different kinds of genes contributed unequally to the bacterial pathogenicity; the influence of virulence phenotypes on pathogenicity depended on the species of Enterococcus, and within the species theβ-hemolysis phenotype was more predominant than glutin liquefaction; the antibiotic resistance of an isolate, by contrast, did not show clear correlation with its potential, which remains to further study.
引文
[1]Klein G.Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract[J]. Internition Journal Food Microbiology,2003,88:123-131.
    [2]Shottmuller H. Die Artunterscheidung der fur den menschen Pathogen Streptokokken durch Blutagar[J]. Med Wochenschr. 1903,50:849-853..
    [3]Stiles ME, Holzapfel W H. Lactic acid bacteria of foods and their current taxonomy[J]. Internition Journal Food Microbiology,1997,36:1-29.
    [4]Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology,2009,155:1749-1757.
    [5]Schleifer K H, Kilpper-Balz R. Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci:a revie[J]. Syst. Appl. Microbiol,1987,10:1-19.
    [6]Shanks O C, Santo Domingo J W, et al. Use of competitive DNA hybridization to identify differences in the genomes of bacteria[J]. J Microbiol Methods,2006,66:321-330.
    [7]Van den Berghe E, De Winter T T, De Vuyst L,et al. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion[J]. Internition Journal Food Microbiology,2006,107:159-170.
    [8]Foulquie Moreno M R, Sarantinopoulos P, Tsakalidou E,et al. The role and application of enterococ- ci in food and health[J]. Internition Journal Food Microbiology,2006,106:1-24.
    [9]Domig K J, Mayer H K, Kneifel W,et al. Methods used for the isolation, enumeration, characterisa- tion and identification of Enterococcus spp.2. Pheno- and genotypic criteria[J]. Internition Journal Food Microbiology,2003,88:165-188.
    [10]Gardin F, Caruso M C, Galgano F, et al.Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecais[J]. Internition Journal Food Microbiology,2001,64:105-117.
    [11]Martinez S, Lopez M, Bernardo A, et al. Thermal inactivation of Enterococcus faecium:effect of growth temperature and physiological state of microbial cell[J]. Lett Appl Microbiol,2003,37:475-481.
    [12]Flahaut S, Giard J C, Boutibonnes P,et al. Defense against lethal treatments and de novo protein synthesis induced by NaCl in Enterococcus faecal is ATCC 1943[J]. Arch Microbiol,1996c,165:317-324.
    [13]Flahaut S, Frere J, Boutibonnes P, et al. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis[J]. Appl Environ Microbiol,1996b,62:2416-2420.
    [14]Flahaut S, Hartke A, Giard JC, et al. Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalsis[J]. FEMS Microbiol Lett,1996a,138:49-54.
    [15]Giard J C, Hartke A, Flahaut S,et al. Starvation-induced multiresistance in Enterococcus faecalis JH-2[J]. Curr Microbiol 1996,32:264-271.
    [16]Hartke A, Giard JC, Laplace J M, et al. Survival of Enterococcus faecalis in an oligotrophic microcosm:changes in morphology, development of general stress resistance, and analysis of protein synthesis[J]. Appl Environ Microbiol 1998, 64:4238-4245.
    [l7]Lleo M M, Bonato B, Tafi M C,et al. Resuscitation rate in different enterococcal species in the viable but non-culturable state [J]. Appl Microbiol 2001,91:1095-1102.
    [18]Nakajo K IY, Komori R, Ishikawa S, et al.The resistance to acidic and alkaline environments of endodontic pathogen Enterococcus faecalis [J]. Int Congr Ser,2005,1284:191-192.
    [19]Ivanov I T, Mihailova G, Mihailova G et al. Parallel study of thermal resistance and permeab- ility barrier stability of Enterococcus faecalis as affected by salt composition, growth temperature and preincubation temperature[J]. J Therm Biol,1999,24:217-227.
    [20]Franz C M A P, Holzapfel W, Holzapfel H, et al. Enterococci at the crossroads of food safety? [J]. Internition Journal Food Microbiology.1999.47:1-24.
    [21]Watanabe T, Shimohashi H, Kavvai Y, et al. Studies on streptococci:Distribution of faecal streptococci in man[J] Micro bioogy and Immunology,1981.25:257-269..
    [22]Blaimont B, Charlier J, Wauters G, et al. Comparative distribution of Enterococcus species in faec- es and clinical samples[J]. Microbial Ecology in Health and Disease.1995,8:87-92.
    [23]Devriese LA, Hommez J, Wijfels R, et al. Composition of the enterococcal and streptococcal intestinal flora of poultry[J]. Journal of Applied Bacteriology, 1991b.71:46-50..
    [24]Devriese L A. Van de Kerckhove A. Kilpper BR, et al. Characterization and identification of Enterococcus species isolated from the intestines of animals[J]. International Journal of Systematic Bacteriology,1987,37:257-259.
    [25]Kuhn 1, Iversen A, Burman L G, et al. Comparison of enterococcal populations in animals, humans, and the environment a European study[J]. Internition Journal Food Microbiology,2003,88:133-145.
    [26]Peters J, Mac K, Wichmann-Schauer H,et al. Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany[J]. Internition Journal Food Microbiology,2003,88:311-314.
    [27]Macovei L, Zurek L. Influx of Enterococci and Associated Antibiotic Resistance and Virulence Genes from Ready-To-Eat Food to the Human Digestive Tract[J]. Applied and Environmental Microbiology,2007,73(21): 6740-6747.
    [28]Mutnick AH, Biedenbach D J, Jones R N,et al. Geographic variations and trends in anti micro bial resistance among Enterococcus faecalis and Enterococcus faecium in the SENTRY AntimicrobialSurveillance Program (1997-2000) [J]. DiagnMicrobiol Infect Dis.,2003,46:63-68.
    [29]Love R M. Enterococcus faecalis-a mechanism for its role in endodontic failure[J]. Internition Journal Food Microbiology,2001,34:399-405.
    [30]Murray BE. The life and times of the Enterococcus[J]. Journal of Clinical Microbiology Reviews,1990,3:46-65.
    [31]吕萍.肠球菌的耐药性研究进展[J].国外医药抗生素分册,2006,27(3):132-135.
    [32]Fontana R, Aldegheri M, Ligozzi M,et al. Overproduction of a low-affinity penicillin-binding protein andhigh-level ampicillin resistance in Enterococcus faecium[J]. Antimicrob Agents Chemother,1994,38:1980-1983.
    [33]瞿婷婷,陈亚岗,俞云松,等.肠球菌耐药性的研究进展[J].国外医学·流行病学传染病学分册,2005,32(6):374-376.
    [34]Perichon B, Reynolds P, Courvalin P, et al.VanD-type glycopeptideresistant Enterococcus faecium BM4339[J]. Antimicrob Agents Chemother,1997,41:2016-2018.
    [35]Patino L A, Courvalin P, Perichon B ,et al. vanE Gene Cluster of Vancomycin-Resistant Enteroco- ccus faecalis BM4405[J]. Bacteriology,2002,184:6457-6464.
    [36]Mc Kessar S J, Berry A M, Bell j M, et al. Genetic characterization of VanG, A novel vancomycin resistance locus of Enterococcusfaecalis[J]. Antimicrob Agents Chemother,2000,44:3224.
    [37]Lynch C, Courvalin P, Nikaido H,et al. Active efflux of antimicrobial agents in wild-type strains of enterococci[J]. Antimicrob Agents Chemother,1997,41:869-781.
    [38]Portilo A, Ruiz-LRlTea F, Zarazaga M,et al. Mrcrolide resistance genes in Enterococcus spp[J]. Antimicrob Agents Chemother,2000,44(4):967.
    [39]Soltan M, Beighton D,Philpott-Howard J,et al. Mechanism of resistance to quinupristin- delfo- prist in among isolates of Enterococcus faecium from animals,raw meat,and hospital patients in west- ern Europe[J]. Antimicrob Agents Chemother,2000,44(1):433.
    [40]Dalla Costa L M, Reynilds P E, Souza H A, et al.Characterization of a divergent vanD-type resistance element from the first glycopetide-resistent strain of Enterococcus faecium isolated in Brazil[J]. Antimicrob Agents Chemother, 2000,44(12):3444
    [41]Kawalec M, Gniadkowski M, Zaleska M,et al. Outbreak of vancomycin resistant Enterococcus faecium of the phenotype VanB in a hospital in Warsaw,Poland:probable transmission of the resistance determinant into an endemic vancomycinsusceptible strain[J]. Clin Microbiol,2001.39(5):1781.
    [42]Arias CA. Rcyes J, Zuniga M.et al. Multicentre surveillance of antimicrobial resistance in cnterococci and staphylococci from Colombian hospital,2001-2002[J]. Antimicrob Chemother,2003,51(1):59.
    [43]汪复,朱德妹,胡付品,等.上海地区细菌耐药性监测分析[J].中华医学杂志,2001,81:17.
    [44]刘宏博,张志杰,何平,等.连续4a肠球菌耐药监测分析[J].中国误诊学杂志,2007,7(13):2974-2975.
    [45]Kuzucu C, Cizmeci Z, Durmaz R,et al. The prevalence of fecal colonization of enterococci,the resistance of the isolares to ampicilin,vancomycin,and high level aminoglycosides and the clonal relationship among isolates[J]. Microb Drug Resist,2005,11(2):159-165.
    [46]Kapoor L, Randhawa V S. Deb M, et al. Antimicrobial resistance of enterococcal blood isolates at a pediatric care hospital in India[J]. Infect Dis,2005,58(2):101-104.
    [47]Maschieto A, Martinez R, Palazzo I C, et al. Darini. Antimicrobial resistance of Enterococcus sp. isolated from the intestinal tract of patients from a university hospital in Brazil[J]. Mem Inst Oswaldo Cruz,2004,99(7):763-767.
    [48]周青,杨祚升,唐曼娟,等.254株肠球菌的分布及耐药性分析[J].中国现代医学杂志,2006,16:11.
    [49]Sustackova A, Napravnikova E, Schlegelova J, et al.Antimicrobial resistance of Enterococcus spp. isolates from raw beef and meat products[J]. Folia Microbiol (Praha),2004,49(4):411-417.
    [50]孔繁荣,王照艳.肠球菌属的临床分布与耐药性变迁[J].医学理论与实践,2008.21(1):1297-1298.
    [51]Hayes J R, English L L, Carter P J, et al. Prevalence and antimicrobial resistance of enterococcus spec- ies isolated from retail meats[J]. Appl Environ Microbiol,2003,69(12):7153-7160.
    [52]李惠卿,李志安.384株肠球菌耐药性分析[J].河北医科大学学报,2008:29(6):904-905.
    [53]Mundy L M, Sahm D F, Gilmore M, et al. Relationships between Enterococcal Virulence and Antimicrobial Resistance Clinical Microbiology Reviews[J],2000,13(4):513-522.
    [54]Collado, Surono I S, Meriluoto J,et al. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization[J]. Food Prot,2007,70(3): 700-705.
    [55]Franz C M, Stiles M E, Schleifer K H, et al. Enterococci in foods--a conundrum for food safety[J]. Internition Journal Food Microbiology,2003,88(2-3):105-122.
    [56]Creti R, Imperi M, Bertuccini L,et al. Survey for virulence determinants among Enterococcus fae- calis isolated from different sources[J]. Med Microbiol,2004,53:13-20.
    [57]Poh C H. Oh H M L, Tan A L. Epidemiology and clinical outcome of enterococcal bac- teraemia in an acute care hospital[J]. Infection,2006,52:383-386.
    [58]Jett.B D, HuyckeM M, Gilmorem S,et al. Virulence of Enterococci[J]. Clinical Microbiology Reviews,1994,7(4): 462-478.
    [59]Tzipori S, Hayes J, Sims L, et al. Enterococcus durans: unexpected pathogen of foals[J]. Journal of Infectious Diseases,1984,150:589-593.
    [60]Collins G E, Bergeland ME, Lindeman C.I, et al. Enterococcus (Streptococcus) durans adherence in the small intestine of a diarrheic pup[J]. Veterinary Pathology,1988,25:396-398.
    [61]Doo-Sung C, Chanhee Chae. Outbreak of diarrhea associated with Enterococcus durans in piglets [J].Vet Diagn Invest, 1996,8:123-124.
    [62]Etheridge M E, Vonderfecht S L. Diarrhea caused by a slow-growing Enterococcus-like agent in neonatal rats[J]. Lab Anim Sci,1992,42(6):548-550.
    [63]Lapointe JM, Higgins R, Barrette M, et al. Enterococcus hirae enteropathy with ascending chola- ngitis and pancreatitis in a kitten[J]. Veterinary Pathology,2000,37:282-284.
    [64]Rogers D G, Zeman D H, Erickson E D,et al. Diarrhea associated with Enterococcus durans in calves[J].Vet Diagn Invest,1992,4:471-472.
    [65]Devriese L A, Ducatelle R, Uyttebroek E, et al. Enterococcus hirae infection and focal necrosis of the brain of chicks[J]. Veterinary Record,1991a,129:316
    [66]Devriese LA, Chiers K. De Herdt P, et al. Enterococcus hirae infections in psittacine birds:epide- miological. pathological and bacteriological observations[J]. Avian Pathology,1992a,24:523-531.
    [67]Abe Y, Nakamura K, Yamada M. et al. Encephalomalacia with Enterococcus durans infection in the brain stem and cerebral hemisphere in chicks in Japan[J].Avian Dis,2006,50(1):139-141.
    [68]齐景文,于长泳,闫明媚,等.铅黄肠球菌引起雏鸡发病死亡的诊治报告[J].中圈家禽,2006,28(19):88.
    [69]陈一资,蒋文灿,胡滨,等.对鸭场暴发罕见的粪链球菌病的研究[J].中国兽医学报,2003,23(4):324-325.
    [70]韩梅红,谷长勤,胡薛英,等.4株鸭源肠球菌的鉴定和致病性[J].中国兽医学报,2007,27(6):821-829.
    [71]齐亚银,剡根强,王静梅,等.致羔羊脑炎型粪肠球菌的分离及鉴定[J].石河子大学学报,2005,23(2):200-202.
    [72]Petersen A, Chadfield MS, Christensen J P, et al. Characterization of Small-Colony Variants of Enterococcus faecalis Isolated from Chickens with Amyloid Arthropathy[J]. Journal of Clinical Micr- obiology,2008,46(8):2686-2691.
    [73]Hong-Zhou Lu. Xin-Hua Weng, Haijing Li, et al. Enterococcus faecium-Related Outbreak with Molecular Evidence of Transmission from Pigs to Humans[J]. Journal of Clinical Microbiology,2002,40(3):913-917.
    [74]Vandamme P, Pot B. Gillis M. et al. Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics[J]. Microbiology Reviews,1996,60(2):407-438.
    [75]Petts DN. Evaluation of a modified nitrous acid extraction latex agglutination kit for grouping beta-haemolytic streptococci and enterococci[J]. Journal of Clinical Microbiology,1995,33:1016-1018.
    [76]Willey B M, Jones RN, McGeer A,et al. Practical approach to the identification of clinically relevant Enterococcus species[J].Diagn.Microbiol. Infect.Dis,1999,34:165-171.
    [77]Nowlan S S, Deibel R H. Group Q Streptococci[J]. Journal of Bacterology,1967,94(2):291-296.
    [78]Facklam R. What Happened to the Streptococci:Overview of Taxonomic and Nomenclature Changes[J]. Clinical Microbiology Reviews,,2002,15(4):613-630.
    [79]Facklam R R, Collins M D. Identification of Enterococcus Species Isolated from Human Infecti -ons by a Conventional Test Scheme[J]. Journal of Clinical Microbiology,1989,27 (4):731-734.
    [80]Facklam R R. Recognition of Group D Streptococcal Species of Human Origin by Biochemical and Physiological Tests[J]. Applied Microbiology,1972,23(6):1131-1139.
    [81]Qadri SMH, Flournoy D J, Qadri S G M. Sodium chloride-esculin hydrolysis test for rapid identification of enterococci[J]. Journal of Clinical Microbiology,1987,25:1107-1108.
    [82]Gordon LP. M. Damm A S, Anderson J D. Rapid presumptive identification of streptococci directly from blood cultures by serologic tests and the L-pyrrolidonyl-3-naphthylamide reaction [J]. Clin. Microbiol.,1987,25:238-241.
    [83]Facklam R, HOLLIS D.Collins MD. Identification of Gram-Positive Coccal and Coccobacillary Vancomycin- Resistant Bacteria[J]. Journal of Clinical Microbiology,1989,27(4):724-730.
    [84]You M S, Facklam RR. New test system for identification of Aerococcus, Enterococcus. and Stre- ptococcus species[J]. Journal of Clinical Microbiology,1986,24:607-611.
    [85]Jorgensen J H, Crawford S A, Alexander G A. Rapid identification of group D streptococci with the API 20S system[J]. Journal of Clinical Microbiology,1983,17:1096-1098.
    [86]Facklam R R., Rhoden DL, Smith P B,et al. Evaluation of the Rapid Strep system for the identification of clinical isolates of Streptococcus species[J]. Journal of Clinical Microbiology,1984,20:894-898.
    [87]Facklam R. Bosley G S, Rhoden D, et al. Comparative evaluation of the API 20S and Auto- Micro -bic Gram-Positive Identification systems for non-beta-hemolytic streptococci and aerococci [J]. Journal of Clinical Microbiology,1985,21: 535-541.
    [88]Appelbaum P C, Jacobs M R, Palko W M, et al. Accuracy and reproducibility of the IDS RaplD STR system for species identification of streptococci[J]. Journal of Clinical Microbiology,1986.23:843-846.
    [89]Appelbaum P C, Jacobs M R, Heald J I, et al. Comparative evaluation of the API 20S system and the AutoMicrobic system Gram-Positive Identification card for species identification of streptococci[J]. Journal of Clinical Microbiology. 1984.19:164-168.
    [90]Devriese L A. Pot B. Kersters K, et al. Acidification of methyl-a-D-glucopyranoside: a useful test to differentiate Enterococcus casseliflavus and Enterococcus gallinarum from Enterococcus faecium species group and from Enterococcus faecalis[J]. Journal of Clinical Microbiology,1996,34:2607-2608
    [91]Carvalho M D G, Telxeira LM, Faclam R R,et al. Use of Tests for Acidification of Methyl-a-D-Glucopyranoside and Susceptibility to Efrotomycin for Differentiation of Strains of Enterococcus and Some Related Genera[J]. Journal of Clinical Microbiology,1998,36(6):1584-1587.
    [92]Carvalho M G S, Steigerwalt A GMorey R E,et al. Characterization of Three New Enterococcal Species, Enterococcus sp. nov. CDC PNS-E1, Enterococcus sp. nov. CDC PNS-E2, and Enterococcus sp. nov. CDC PNS-E3, Isolated from Human Clinical Specimens[J]. Journal of Clinical Microbiology,2004,42(3):1192-1198.
    [93]Elliot JA, Collins M D, Pigott N E, et al. Differentiation of Lactococcus lactis and Lactococcus garvieae from Humans by Comparison of Whole-Cell Protein Patterns[J]. Journal of Clinical Microbiology,1991,29:2731-2734.
    [94]Elliot J A, Facklam R R, Richter C B, et al.Whole-cell protein patterns of non-hemolytic group B type lb streptococci isolated from human, mice, cattle, frogs and fish[J]. Journal of Clinical Microbiology,1990,28:628-630.
    [95]Thompson-Carter F M, Pennington T H, Espinola M M B,et al. Characterization of coagulase negative staphylococi by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and immunoblot analysis[J]. Journal of Clinical Microbiology,1989.27:2199-2203.
    [96]Teixeira L M, Carvalho Maria da Gloria S., Espinola M M B, et al. Enterococcus porcinus sp. nov. and Enterococcus ratti sp. nov., associated with enteric disorders in animals[J]. International Journal of Systematic and Evolutionary Microbiology,2001,51:1737-1743.
    [97]Donabedian SM, Chow JW, Boyce JM, et al. M Molecular typing of ampicillin-resistant, non-beta-lactamaseproducing Enteroeoccus faecium isolates from diverse geographic areas[J]. Journal of Clinical Microbiology,1992,30:2757-2761.
    [98]Merquior V L C,Peralta J M, Facklam R R, et al. Analysis of Electrophoretic Whole-Cell Protein Profiles as a Tool for Characterization of Enterococcus Species[J]. Current Microbiology,1994,28:149—153.
    [99]Hook L A, Odelson D A, Bogardt A H, et al. Numerical analysis of restriction fragment length polymorphisms and whole-cell protein banding patterns:a means of bacterial identification at the species and subspecies level[J]. USFCC Newslett,1991,21:1-10.
    [100]Vandamme P, Pot B, Falsen E. et al. Intra-and interspecific relationships of veterinary campyl- obacters revealed by numerical analysis of electrophoretic protein profiles and DNA:DNA hybridi -zations[J]. Syst. Appl Microbiol,1990, 13:295-303.
    [101]Farrow J A E, Jones Dorothy, Phillips B A, et al. Taxonomic studies on some group D streptococci[J]. Gene Microbiology,1983,129:1423-1432.
    [102]Kilpper-Balz R, Gabriele Fischer, Schleifer K H, et al. Nucleic acid hybridization of group N and group D streptococci[J]. Curr.Microbiol,1982,7:245-250.
    [103]Schleifer K H, Kilpper-Balzr. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus norn. rev. as Enterococcus faecalis comb. nov.and Enterococcus faecium comb. nov[J]. Internition Journal of Systimatic Bacteriology,1984.34(1):31-34.
    [104]Naser S M, Marc Vancanneyt, Evelyne De Graef, et al. Enterococcus canintestini sp. nov., from faecal samples of healthy dogs Int J Syst Evol Microbiol,2005b.55:2177-2182.
    [105]Tyrrell G J, Turnbull L. Teixeira L M, et al. Enterococcus gilvus sp. nov. and Enterococcus palle- ns sp. nov. Isolated from Human Clinical Specim[J]. Journal of Clinical Microbiology,2002,40(4):1140-1145.
    [106]Roth A. Fischer M. Hamid M E. et al. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences[J]. Clin. Microbiol,1998.36:139-147.
    [107]Rantakokko-Jalava, Nikkari K S. Jalava J. et al. Direct amplification of rRNA genes in diagnosis of bacterial infections[J]. Journal of Clinical Microbiology,2000.38:32-39.
    [108]Song J, Lee S C, Kang J W, et al. Phylogenetic analysis of Streptomyces spp. isolated from pota- to scab lesions in Korea on the basis of 16S rRNA gene and 16S-23S rDNA internally transcribed spac- er sequences. Int[J]. Syst. Evol. Microbiol.,2004.54:203-209.
    [109]Jill E Clarridge. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases [J].Clinical Microbiology Reviews,2004,17(4):840-862.
    [110]Kattar M M, Chavez J F, Limaye A P, et al. Application of 16S rRNA gene sequencing to identify Bordetella hinzii as the causative agent of fatal septicemia[J]. Journal of Clinical Microbiology,2001,38:789-794.
    [111]Bosshard P P, Abels S, Zbinden R, et al. Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation) [J]. Journal of Clinical Microbiology,2003,41:4134-4140.
    [112]Fox G E, Wisotzkey J D, Jurtshuk P, et al. How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity. Int[J]. Syst. Bacteriol.,1992,42:166-170.
    [113]Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s[J]. Clinical Microbiology Reviews,2003,16:319-354.
    [114]Tang Y W, Graevenitz A V, Waddington M G. et al. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis[J]. Clin. Microbiol.,2000,38:1676-1678.
    [115]Chen H, Hulten K, Clarridge Ⅲ J E, et al. Taxonomic subgroups of Pasteurella multocida correlate with clinical presentation[J]. Clin. Microbiol.,2002,40:3438-3441.
    [116]Fournier P E, Dumler J S, Greub G, et al. Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov[J]. Clin. Microbiol.,2003,41:5456-5465.
    [117]Singh A, Goering R V, Simjee S, et al. Application of Molecular Techniques to the Study of Hos- pital Infection[J], Clinical Microbiology Reviews,2006,19(3):512-530.
    [118]Tenover F C, Arbeit R D, Goering R V, et al. Interpreting Chromosomal DNA Restriction Pattern- s Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing[J]. Journal of Clinical Microbiology,1995,33(9): 2233-2239.
    [119]A E van den Bogaarda, et al. Antibiotic resistance of faecal enterococci in poultry, poultry farmer- s and poultry slaughterers[J]. Journal of Antimicrobial Chemotherapy,2002,49:497-505.
    [120]Donabedian S, Chow J W, Shlaes D M, et al. DNA hybridization and contourclamped homogene- ous electric field electrophoresis for identification of Entercocci to the species level[J]. Clin Microbiol,1995,33 (1):141.
    [121]Barbiern N, Saulnier P, Chachaty E, et al. Random Amplified Polymorphic DNA Typing versus Pulsed-Field Gel Electrophoresis for Epidemiological Typing of Vancomycin-Resistant Enterococci[J]. Journal of Clinical Microbiology,1996,34(5):1096-1099.
    [122]Belkum A V. DNA Fingerprinting of Medically Important Microorganisms by Use of PCR[J].Clinical Microbiology Reviews,1994,7(2):174-184.
    [123]Vancanneyt M, Lombardi A, Andrighetto C, et al. Intraspecies Genomic Groups in Enterococcus faecium and Their Correlation with Origin and Pathogenicity. Applied and Environmental Microbiolog- y.,2002,68(3):1381-1391.
    [124]van den Braak N, Power E, Anthony R, et al. Random amplification of polymorphic DNA versus pulsed field gel electrophoresis of Smal DNA macrorestriction fragments for typing strains of vancom- ycin-resistant enterococci[J]. FEMS Microbiol Lett.,2000,192(1):45-52.
    [125]Willems R J L, Top J, van den Braak N, et al. Host Specificity of Vancomycin-Resistant Enteroco- ccus faecium[J]. The Journal of Infectious Diseases,2000,182:816-823.
    [126]Coque T M. Willems R J. Fortun J, et al. Population structure of Enterococcus faecium causing bacteremia in a Spanish university hospital:setting the scene for a future increase in vancomycin resist- ance[J].Antimicrob Agents Chemother, 2005,49(7):2693-700.
    [127]Borgen K, Wasteson Y, et al. Vancomycin-Resistant Enterococcus faecium (VREF) from Norweg- ian Poultry Cluster with VREF from Poultry from the United Kingdom and The Netherlands in an Am- plified Fragment Length Polymorphism[J]. Genogroup Applied and Environmental Microbiology,2002,68(6):3133-3137.
    [128]Vankerckhoven V, Huys G. Vancanneyt M, et al. Genotypic Diversity. Antimicrobial Resistance, and Virulence Factors of Human Isolates and Probiotic Cultures Constituting Two Intraspecific Groups of Enterococcus faecium Isolates[J]. Applied and Environmental Microbiology,2008.74(14):4247-4255.
    [129]Werner Guido, Willems R J L, Bianca H, et al. Influence of Transferable Genetic Determinants on the Outcome of Typing Methods Commonly Used for Enterococcus faecium[J].Clinical Microbiol- ogy,2003,41(4):1499-1506.
    [130]Devriese L A, Colque J I C, De Herdt P, et al. Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats[J]. Appl Bacteriol,1992.73:421-425.
    [131]Jarvis W R. Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention.. Infect. Control Hosp[J]. Epidemiol,1996,17:552-557.
    [132]Fisher K. Phillips C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology,2009,155: 1749-1757.
    [133]Boyle J F, Soumakis S A, Rendo A, et al. Epidemiologic analysis and genotypic characterization of a nosocomial outbreak of vancomycin-resistant enterococci[J]. Clin. Microbiol.,1993,31:1280-1285.
    [134]Chow J W, Kuritza A, Shlaes D M, et al. Clonal spread of vancomycin-resistant Enterococcus faecium between patients in three hospitals in two states[J]. Clin. Microbiol,1993,31:1609-1611.
    [135]Patrick R M Descheemaeker, Chapelle S, Devriese L A, et al. Comparison of Glycopeptide- Resistant Enterococcus faecium Isolates and Glycopeptide Resistance Genes of Human and Animal Or- igins Antimicrobial Agents and Chemotherapy,1999,43(8):2032-2037.
    [136]Wells C L. Erlandsen S L. Localization of translocating Escherichia coli, Proteus mirabilis, and Enteroc- occus faecalis within cecal and colonic tissues of monoassociated mice[J]. Infection and Immunity,1991,59:4693-4697.
    [137]Huycke M M, Gilmore M. Frequency of aggregation substance and cytolysin genes among ente- rococcal endocarditis isolates[J]. Plasmid,1995,34:152-156.
    [138]Waters C M, Wells C L, Dunny G M. et al. The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes[J]. Infection and Immuni- ty,2003,71:5682-5689.
    [139]Rodzinski E, Marre R, Susa M, Wirth R, et al. Aggregation substance mediated adherence of Ent- erococcus faecalis to immobilized extracellular matrix proteins[J]. Microb Pathog,2001,30:211-220.
    [140]Rakita, R M, Vanek N N, Jacques-Palaz K, et al. Enterococcus faecalis Bearing Aggregation Sub- stance Is Resistant to Killing by Human Neutrophils despite Phagocytosis and Neutrophil Activation[J]. Infection and Immunity,1999, 67(11):6067-6075.
    [141]Schlievert P M, Gahr P, Assimacopoulos AP, et al. Aggregation and binding substances enhance pat- hogenicity in rabbit models of Enterococcus faecalis endocarditis[J]. Infect Immun,1998,66:218-223.
    [142]Chow J W, Thai L A, Perri M B, et al. Plasmid-Associated Hemolysin and Aggregation Substan- ce Production Contribute to Virulence in Experimental Enterococcal Endocarditis[J]. Antimicrobial Agents and Chemotherapy, 1993,37(11):2474-2477.
    [143]Berti M, Candiani G Kaufhold A, et al. Does aggregation substance of Enterococcus faecalis contribute to development of endocarditis[J]. Infection,1998,26:48-53.
    [144]Hienz S A, Stefan T, Heimdahl A, et al. Collagen binding of Staphylococcus aureus is a virulence fac- tor in experimental endocarditis[J]. Infect Dis,1996,174:83-88.
    [145]Foulquie Moreno M R, Sarantinopoulos P, Tsakalidou E, et al. The role and application of entero- cocci in food and health[J]. Int J Food Microbiol,2006.106:1-24.
    [146]Toledo-Arana A, Valle J, Solano C. et al. The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation[J]. Applied and Environmental Microbiology,2001,67(10):4538-4545.
    [147]Shankar N, Lockatell C, Baghdayan A S. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection[J]. Infect Immun,2001,69:4366-4372.
    [148]Latasa C, Solano C, Penade's J R, et al. Biofilm-associated proteins[J]. C R Biol,2006,329:849.
    [149]Shankar N. A S Baghdayan, M S Gilmore, et al. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis[J]. Nature,2002.417:746-750.
    [150]Leavis H, Top J, Shankar N, et al. A Novel Putative Enterococcal Pathogenicity Island Linked to the esp Virulence Gene of Enterococcus faecium and Associated with Epidemicity[J]. Journal of Bacte-riology,2004,186(3):672-682.
    [151]Singh K. V, Coque T. Weinstock G M, et al. In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification[J]. FEMS Immunol Med Microbiol,1998a,21:323-331.
    [152]Low Y L, Jakubovics N, Flatman J C,et al. Manganese-dependent regulation of the endocarditis- associated virulence factor EfaA of Enterococcus faecalis[J]. Med Microbiol,2003,52:113-119.
    [153]Nallapareddy S R, S K, Duh R-W, et al. Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of Ace during human infections[J]. Infect Immun,2000a,68:5210-5217.
    [154]Nallapareddy S R, Qin X, Weinstock GM, et al. Enterococcus faecalis adhesin, Ace, mediates attac- hment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I[J]. Infect Immun,2000b,68: 5218-5224.
    [155]Kayaoglu G, D Orstavik. Virulence Factors of Enterococcus Faecalis:Relationship to Endodontic Disease[J]. Crit Rev Oral Biol Med,2004.15(5):308-320.
    [156]Clewell D B, W K. Sex pheromones and plasmid transfer in Enterococcus faecalis[J]. Plasmid,1989,21:175-184.
    [157]Sannomiya P, Craig R, Clewell D B, et al. Characterization of a class of nonformylated Enteroc- occus faecalis-derived neutrophil chemotactic peptides:the sex pheromones. [J],Proc Natl Acad Sci USA,1990,87:66-70.
    [158]Buchmann R, Hasilik A, Nunn M E, et al. PMN responses in chronic periodontal disease:evalu- ation by gingival crevicular fluid enzymes and elastase-alpha-1-proteinase inhibitor complex[J]. Clin Periodont-ol,2002,29:563-572.
    [159]Torabinejad M, Eby W, Naidorf I J. Inflammatory and immunological aspects of the pathogenesis of human periapical lesions[J] Endod,1985,11:479-488.
    [160]Haas W, Gilmore M. Molecular nature of a novel bacterial toxin:the cytolysin of Enterococcus faecalis [J]. Med Microbiol Immunol,1999,187:183-190.
    [161]Haas W, Shepard B, Gilmore M S. et al. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction[J]. Nature,2002,415:84-87.
    [162]Day A M, J H Cove, Phillips-Jones MK, et al. Cytolysin gene expression in Enterococcus faecalis is regulated in res-ponse to aerobiosis conditions[J]. Mol Genet Genomics,2003,269(1):31-39.
    [163]Ike Y, Hashimoto H, Clewell D B, et al. High incidence of hemolysin production by Enterococc- us (Streptococcus) faecalis strains associated with human parenteral infections[J]. J Clin Microbiol,1987,25:1524-1528.
    [164]Semedo T, Santos M A, Martins P, et al. Comparative Study Using Type Strains and Clinical and Food Isolates To Examine Hemolytic Activity and Occurrence of the cyl Operon in Enterococci [J]. Journal of Clinical Microbiology, 2003,41(6):2569-2576.
    [165]Ike Y, Hashimoto H, Clewell D B, et al. Hemolysin of Streptococcus faecalis subspecies zymo- genes contributes to virulence in mice[J]. Infect Immun,1984,45:528-530.
    [166]Jeti B D, Jensen H G, Nordquist R E, et al. Contribution of the pADi-Encoded Cytolysin to the Severity of Experimental Enterococcus faecalis Endophthalmitis[J]. Infection and Immunity,1992,60 (6):2445-2452.
    [167]Jett B D, Jensen H. Nordquist R E, et al. Contribution of the pADI-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis[J]. Infect Immun,1992,60:2445-2452.
    [168]Kanemitsu K. Nishino T, Kunishima H, et al. Quantitative determination of gelatinase activity among enterococci[J].J Microbiol Methods,2001,47:11-16.
    [169]Elsner H A, Sobottka I, Mack D, et al. Virulence factors of Enterococcus faecalis and Enterococ- cus faecium blood culture isolates[J]. Eur Journal of Clinical Microbiologylnfect Dis,2000,19(1):39-42.
    [170]Singh K V, Qin X. Weinstock G M, et al. Generation and testing of mutants of Enterococcus faeca- lis in a mouse peritonitis model[J].J Infect Dis,1998b,178:1416-1420.
    [171]Waters C M, Antiporta M H, Murray B E. et al. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins[J]. Bacteriol,2003,185(12):3613-3623.
    [172]Park S Y, Kim K M, Lee J H, et al. Extracellular Gelatinase of Enterococcus faecalis Destroys a Defense System in Insect Hemolymph and Human Serum[J]. Infection and Immunity,2007,5(4):1861-1869.
    [173]Rice L B, Carias L, Rudin S, et al. A Potential Virulence Gene, hylEfm, Predominates in Entero- coccus faecium of Clinical Origin[J]. The Journal of Infectious Diseases,2003,187:508-512.
    [174]Kostyukova N N, Volkova M, Ivanova V V, et al. A study of pathogenic factors of Streptococcus pneu- moniae strains causing meningitis[J]. FEMS Immunol Med Microbiol,1995,10:133-137.
    [175]Takao A, Nagashima H, Usui H, et al. Hyaluronidase activity in human pus from which Strepto- coccus int- ermedius was isolated[J]. Microbiol Immunol,1997,41:795-798.
    [176]Chardin H, Londono I, Goldberg M, et al. Visualization of glycosaminoglycans in rat incisor extracellular matrix using a hyaluronidase-gold complex[J]. Histochem J,1990,22:588-594.
    [177]Etheridge M, Yolken R H, Vonderfecht S L, et al. Enterococcus hirae Implicated as a Cause of Diarrhea in Suckling Rats[J].Journal of Clinical Microbiology,1988,26(9):1741-1744.
    [178]Vancanneyt M, Snauwaert C, Cleenwerck, et al. Enterococcus villorum sp. nov., an enteroadhere- nt bacterium associated with diarrhoea in piglets[J]. International Journal of Systematic and Evolution- ary Microbiology,2001,51: 393-400.
    [179]王亚宾,陈丽颖,张红英,等,仔猪感染粪肠球菌的病原鉴定及病原特性初报[J].中国农学通报,2008,24(5):39-43.
    [180]Cheon D S, Chae C. Outbreak of diarrhea associated with Enterococcus durans in piglets[J]. Journal of Veterinary Diagnostic Investigation,1996,8:123-124.
    [181]Descheemaeker P, Lammens C,Pot B, et al. Evaluation of arbitrarily primed PCR analysis and pulsed-field gel electrophoresis of large genomic DNA fragments for identification of enterococci imp- ortant in human medicine[J]. Int J Syst Bacteriol,1997,47(2):555-561.
    [182]Blanch A R, Caplin J L, Iversen A, et al. Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions[J]. J Appl Microbiol,2003,94(6):994-1002.
    [183]Sepulveda M, Bello H,Ruiz M, et al. Classic and molecular methodologies for the identification of Enterococcus species[J]. Rev Med Chil,2002,130(1):45-49.
    [184]Hudson C R, Fedorka-Cray P J, Jackson-Hall M C,et al. Anomalies in species identification of e- nterococci from veterinary sources using a commercial biochemical identification system[J]. Lett Appl Microbiol,2003,36(4):245-250.
    [185]Cheng W, Liu C H, Hsu J P, et al. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus[J]. Fish Shellfish Immunol,2002,13(5):351-365.
    [186]Cartwright C P, Stock F, Fahle G A, et al. Comparison of pigment production and motility tests with PCR for reliable identification of intrinsically vancomycin-resistant enterococci[J]. J Clin Microbiol,1995,33(7):1931-1933.
    [187]Garcia-Garrote F, Cercenado E. Bouza E, et al. Evaluation of a New System. VITEK 2, for Ident- ification and Antimicrobial Susceptibility Testing of Enterococci[J]. Journal of Clinical Microbiology,2000,38(6):2108-2111.
    [188]Messick J B, Cooper S K. Huntley M, et al. Development and evaluation of a ploymerase chain reaction assay using the 16SrRNA gene for detection of Epery throzoon suis infection[J]. J Vet Diagn Invest,1999,11(3):229-236.
    [189]Shukla J. 16SrRNA PCR for diferentiation of pathogenic and non-pathogenic leptospira Isolate[J]. Indian J Med Mierobiol, 2003,21:25-30.
    [190]Weisburg WG, Barns S, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study [J]. Becteriol, 1991,173(2):697-703.
    [191]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南(第三版)[M].黄培堂等译.北京:科学出版社,2002:141-142.
    [192]Manero A, Blanch A R. Identification of Enterococcus spp. based on specific hybridization with 16S rDNA probes[J].J Microbiol Methods,2002,50(2):115-121.
    [193]Hall L M C. Duke B, Guiney M, et al. Typing of Enterococcus Species by DNA Restriction Frag- ment Analysis[J]. Journal of Clinical Microbiology 1992,30(4):915-919.
    [194]桂炳东,胡龙华,贾坤如,等.随机扩增DNA多态性技术在肠球菌流行病学分型中的应用[J].江西医学检验,1999,17(1):5-6.
    [195]蒋汉茂,肖湘瑛,周维新,等.肠球菌随机扩增多态性DNA分型及应用研究[J].中华医学研究杂志,2005,25(7):607—609.
    [196]汪铭书,程安春,李淑梅,等.鸭疫里氏杆菌鸭源致病性大肠埃希氏菌和鸭沙门菌的RAPD研究[J].中国兽医科技,2004,34(10):3-8.
    [197]王彦文,鲁兴萌,牟志美,等.家蚕来源肠球菌DNA多态性的RAPD分析[J].蚕业科学,2005,31(1):59-63.
    [198]Petersom L R, Connie S,Pfailer M A, et al. Comparison of genomic methods for differentiating strains of Enterococcus faecium:assessment using clinical epidmiologic data[J]. Journal of Clinical MicrobiologyRev,1998,36(11): 3327-3331.
    [199]吴天星,金勇丰,曹广力,等.鸡肠道菌基因组DNA的RAPD分类的研究[J].畜牧兽医学报,2002,33(3):247-249.
    [200]Teixeira L M, Facklam R R, Steigerwalt A G, et al. Correlation between Phenotypic Characteris- tics and DNA Relatedness within Enterococcus faecium Strains[J]. Journal of Clinical Microbiology,1995,33(6):1520-1523.
    [201]Weinstein M P, Murphy J R, Reller L B, et al. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. Ⅱ[J]. Clinical observations, with special reference to factors influencing prognosis. Rev. Infect. Dis,1983,5:54-69.
    [202]Dupre I, Zanetti S, Schito A M, et al. Incidence of virulence determinants in clinical Enterococc- us faecium and Enterococcus faecalis isolates collected in Sardinia (Italy) [J]. J Med. Microbiol.,2003,52:491-498.
    [203]Qin X, Singh K V, Weinstock G M, et al. Characterization of fsr, a regulator controlling expres- sion of gelatinase and serine protease in Enterococcus faecalis OG1RF[J]. Bacteriol., 2001,183:3372-3382.
    [204]Roberts J C, Singh K V, Okhuysen P C, et al. Molecular Epidemiology of the fsr Locus and of Gelatinase Production among Different Subsets of Enterococcus faecalis Isolates[J]. Journal of Clinical Microbiology,2004,42(5): 2317-2320.
    [205]Jett B D, Huycke M M, Gilmmore M S, et al.Virulence of Enterococci[J]. Clinical Microbiology Reviews,1994,7(4): 462-478.
    [206]Creti R, Imperi M, Bertuccini L, et al. Survey for virulence determinants among Enterococcus faecalis isolated from different sources[J]. J Med Microbiol,2004,53:13-20.
    [207]Semedo T, Santosb M A, Lopes M F, et al. Virulence factors in food, clinical and reference Enterococci:A common trait in the genus[J]. Syst Appl Microbiol,2003,26(1):13-22.
    [208]单金华,袁钦华.一起粪肠球菌食物中毒的调查[J].实用预防医学,2001,8(5):394.
    [209]姚国兴.一起由肠球菌引起的食物中毒[J].职业与健康,2006.22(4):269.
    [210]Eaton T J, Gasson M J. Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical Isolates[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001,67(4): 1628-1635.
    [207]韩素娟,剡根强,周霞,等.致绵羊脑炎型肠球菌溶血素CylA基因的克隆及序列测定[J].中国预防兽医学报,2007,29(4):281-284.
    [211]Mundy L M, Sahm D F, Gilmore M. et al. Relationships between Enterococcal Virulence and Antimicrobial Resistance[J]. Clinical Microbiology Reviews,2000,13(4):513-522.
    [212]Lund B, Edlund C. Bloodstream Isolates of Enterococcus faecium Enriched with the Enterococcal Surface Protein Gene, esp, Show Increased Adhesion to Eukaryotic Cells[J].Journal of Clinical Microbiology,2003,41(11):5183-5185.
    [213]Poeta P, Costa D, Klibi N, et al. Phenotypic and genotypic study of gelatinase and beta-haemolysis activities in faecal
    enterococci of poultry in Portugal[J]. J Vet Med B Infect Dis Vet Public Health,2006,53(5):203-208.
    [214]Kristieh C J, Li Y H, Cvitkoviteh D G. Esp-Independent Biofilm formation by Enterococcus faecalis[J]. J Bacteriology, 2004,186(1):154-163.
    [215]Pai S R, Singh K M B. In Vivo Efficacy of the Ketolide ABT-773 (Cethromycin) against Enterococei in a Mouse Peritonitis Model[J]. Antimierobial Agents and Chemotherapy,2003,47(8):2706-2709.
    [216]贾占军,余学清,王欣,等.抗生素治疗对急性腹膜炎大鼠腹膜组织炎症因子表达及腹膜转运功能的影响[J].中国病理生理杂志,2005,21(7):1298-1304.
    [217]罗涛,黄文祥,吴利先,等.低毒力菌株小鼠细菌性性腹膜炎模型的建立[J].第三军医大学学报,2008,30(1):67-69.
    [218]王玉琨,王乃玉,大白鼠大肠杆菌性腹膜炎模型的建立[J].大连医科大学学报,1996,18(2):81-85.
    [219]马立艳,许淑珍,马纪平,等.肠球菌部分致病基因和表型的检测[J].中华检验医学杂志,2005,28(5):529-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700