氡析出率测量若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国掺渣建材的广泛使用使得室内氡平均水平有所提高,按建设部刚刚结束的典型城市室内氡调查得到年均氡浓度超100Bqm~(-3)(WHO最新限值)房屋比率3.7%计算,在我国可能有数百万套房屋氡浓度超标,这是一个关系到国计民生与公众健康的重大社会问题。氡是一种可预防和可控制的环境因素,建筑工程上的防护与减缓是降低室内氡的关键和低成本的技术措施。国标《民用建筑工程室内环境污染控制规范(2010年版)》-GB50325-2010明确规定对建筑材料表面和土壤表面氡析出率进行测定。对建材氡的析出率进行限定,具有重要意义,可以从源头上控制室内氡浓度增高。研究快速可靠测量氡析出率的方法,对开展土壤及建材氡析出率测量与控制研究提供了技术保障。
     本文对国内、外氡析出率主流测量方法的发展现状进行了分析,由于建材表面氡析出率一般只有数mBq.m~(-2).s~(-1),我们通过半定量计算认为开环式氡析出率测量方法探测限过高,累积法测量氡析出率更加合适;累积法测量氡析出率也有很多方法,从快速测量出发,选择能实时得到氡浓度数据的静电收集法测氡仪来测量得到集氡罩内氡浓度的变化规律,考虑泄漏和反扩散效应就可以快速得到氡析出率。
     氡浓度测量的准确性决定了氡析出率的准确性。2003年11月南华大学氡实验室组织的“室内氡检测的现场比对”试验的结果表明:在参与比对试验的各类连续测氡仪之中,RAD7与参考值的偏差最小,而且其重复测量结果平均值的相对标准偏差也比较小。因此我们选择静电收集法测氡仪RAD7作为我们开展本研究的主要仪器。南华大学丘寿康、刘小松老师首先提出了利用RAD7这类静电收集法测氡仪测量氡析出率必须考虑218Po浓度与氡浓度的非平衡修正,并且根据他们的测量条件和参数,给出了一个修正的经验公式。但是,该经验公式只在特定的测量条件下适用,不是普适的。
     我们对RAD7这一类静电收集法测氡仪的测量原理进行了近似数学分析,发现其主要适用于对环境长期氡浓度的平均值进行测量;即使对于恒定的氡浓度,其测量也有数十分钟的延迟(使用大干燥管时延迟40分钟,使用小干燥管时延迟20-30分钟);对于变化的氡浓度,RAD7测量值也做了平滑处理。也就是说静电收集法测氡仪不适用于对变化的氡浓度进行追踪。从简化分析出发,我们只使用小干燥管来干燥空气,提出了两种修正算法来快速跟踪氡的浓度变化:(1)当泵的流率较大时,不考虑体积延迟,近似认为测量腔内的氡浓度与外界氡浓度同步变化,对测量腔内的氡浓度变化采用0阶线性近似并从放射性衰变方程出发得到~(218)Po非平衡修正的一般方法;(2)当泵的流率较小时,考虑体积延迟,对外界环境的氡浓度变化进行0阶近似,即外界的氡浓度在每个测量周期内是不变的常数,得到同时进行体积延迟修正和~(218)Po非平衡修正的一般方法。实验证明,这两种修正方法都能够较快的追踪氡浓度的变化。虽然用这两种修正方法对RAD7测量得到集氡罩内的氡浓度数据序列进行递推运算,就可以得到集氡罩内的实际氡浓度数据,然后通过对修正后的数据进行非线性拟合,就可以得到氡析出率,但是计算比较繁琐。
     在使用小干燥管时,我们根据集氡罩与静电收集法测氡仪的测量腔之间在泵的作用下氡的混合原理,得到了双室氡浓度变化规律,并同时考虑~(218)Po非平衡修正,得到了快速、可靠的氡析出率测量方法,只需要对静电收集法测氡仪测量得到的氡浓度数据序列进行一次非线性拟合就可以得到准确的氡析出率。对氡析出率测量的一般模型进行了简化,并且得到了简化的条件。通过实验证明了该氡析出率测量方法快速、准确。对理论模型上和实验中的误差来源进行了分析,并提出了改进的方向。
In recent years, the widespread use of mixed slag timbering make the average indoor radon level increased. In China, millions of houses may be excessive radon concentration calculated by the Ministry of Construction has just concluded investigation on the typical urban annual average indoor radon concentrations over 100Bqm-3 (WHO up to the minute limit) houses ratio of 3.7%, it is a matter of people's livelihood and public health major social problems. Radon is a preventable and can be controlled environmental factor. The protection and mitigation on construction work are the key and low-cost technical measures to reducing indoor radon. National standard " Indoor environmental pollution control criterion of civil architecture engineering (2010 Edition)"-GB50325-2010 clearly stipulates the radon exhalation rate from the surface of building materials and soil surface must be measured. Research on fast and reliable method for measuring radon exhalation rate is of great significance for measuring the radon exhalation rate and control of soil and building materials and the limiting the radon exhalation rate of building materials. The increase of indoor radon concentration can be controlled from the headtream.
     We analyze the development status of the mainstream measurement method of radon exhalation rate at home and abroad. Generally, the radon exhalation rate of the building materials' surface is only several mBq.m~(-2).s~(-1). We consider that the detection limit of open-loop measurement of radon exhalation rate is too high by semi-quantitative calculation, the accumulation chamber technique for measuring radon exhalation rate is more appropriate. There are many ways in accumulation chamber technique. For fast measurement, select the radon monitor which can obtain the radon concentration data in real time base on the electrostatic collection method to measure the evolution of the radon concentration in the accumulation chamber versus the time, consider the effects of leakage and back-diffusion, thus the radon exhalation rate can be quickly obtained easily.
     The accuracy of radon exhalation rate is determined by the accuracy of radon concentration measurement. The intercomparison results of the“The intercomparison of indoor radon measurement”conducted by the radon laboratory of South China University in 2003 November show that: comparing various types of the continuous radon monitor, the minimum deviation is the measured value of RAD7 from the reference value and its relative standard deviation from the average value of repetition measurement is small. So, we chose RAD7 based on electrostatic collection method as our main instrument for measuring radon concentration to carry out this study. Qiu Soukan and Liu Xiaosong first proposed that the non-equilibrium correction for the ~(218)Po concentrations and the radon concentration must be considered when the radon monitor based on electrostatic collection method such as RAD7 was used to perform the radon exhalation rate measurement, and they gave a correction empirical formula according to their measurement conditions and parameters. However, the empirical formula can only be applied under certain measurement conditions. It is not universal.
     We performed the approximate mathematical analysis on the measurement principle of the radon monitors based on electrostatic collection method such as RAD7. We found that they are mainly applied to the long-term environment average radon concentration measurement; tens of minute delay are needed for measuring even for a constant radon concentration (40-minute minutes delays are needed while using a large drying tube, 20-minute delays are needed while using a small drying tube); RAD7 also made a smooth treatment for measuring the variational radon concentration. In other words, the radon monitors based on electrostatic collection method are inapplicability for tracing the changes of radon concentration. For simplifying analysis, we only use a small drying tube to dry air. Two modified algorithms were proposed for quickly tracing the changes of radon concentration.(1) When the pump flow rate is high, the volume delay is negligible, we can be similar consider that the radon concentration in the internal cell synchronize with that of environment. We use a 0th order approximation to describe the evolution of the radon concentration in the internal cell and obtain the non-equilibrium correction general method for the ~(218)Po concentration and the radon concentration from the radioactive decay equation;(2) When the pump flow rate is small, the volume delay cannot be ignored, we use a 0th order approximation to describe the evolution of the radon concentration in the environment, that is, the radon concentration is a constant in each measurement period. We obtain the general method for correcting the volume delay and the non-equilibrium of the ~(218)Po concentration and the radon concentration at the same time. Experiments show that both correction methods are able to track the rapid changes of radon concentration. Although the actual radon concentration data can be recursive by the two kind correction methods using the radon concentration data sequence measured by RAD7, and then the radon exhalation rate can be obtained by nonlinear least squares fitting. However, the calculation is more complicated.
     Using of small drying tube, we obtain the radon concentration variation rule of two-chamber form the radon mixing principle between the accumulation chamber and the internal cell of the radon monitor based on the electrostatic collection method under the action of the pump, taking into account the non-equilibrium correction of ~(218)Po, then the quickly and reliable measurement method of the radon exhalation rate is obtained. The accurately radon exhalation rate can be obtained by only once nonlinear least squares fitting the measurement data sequence. The general model for measuring radon exhalation rate is simplified, and the simplified conditions have been obtained. Experiments show that the measurement method of radon exhalation rate is fast and accurate. The error sources of the theoretical model and experimental are analyzed, and the improved direction is proposed.
引文
[1]B. Papp, F. Deak, A. Horvath , A . Kiss, G. Rajnai, Cs. Szabo.A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole. Journal of Environmental Radioactivity. 2008. 99:1731-1735,
    [2]郭秋菊,许寿元.氡的危害及剂量估算.中华放射医学与防护杂志.2004.24(1): 85-86
    [3]陈凌,潘自强,刘森林,等.地下煤矿氡水平的影响因素分析.中国原子能科学研究院年报2006: 306-307
    [4]潘自强.我国空气中氡及其短寿命子体产生的照射.辐射防护.2003,23(3): 129-138
    [5]陈凌,潘自强,刘森林,等.中国地下煤矿222Rn和220Rn水平的初步调查研究.中国原子能科学研究院年报. 2005:234-235
    [6]程业勋,王南萍,侯胜利,等.空气氡的大地来源理论研究.辐射防护通讯.2001, 21(2):51-53
    [7]尚兵,崔宏星,杨万全,李宏洲.中国传统窑洞和土炕~(222)Rn、~(220)Rn浓度及其分布的研究.辐射防护, 2003,(3):184-188
    [8]尚兵,曹吉生,张淑蓉,崔宏星.平凉地区居民住宅中~(222)Rn、~(220)Rn浓度的研究.中华放射医学与防护杂志.2000,(3):181-183
    [9]尚兵,王作元,高平印,雷苏文.甘肃东部地区居民窑洞中的氡浓度调查.辐射防护.1995,(06):461-463
    [10]王南萍.中国天然石材放射性水平及影响因素.辐射防护通讯.2001,21(3):22-24
    [11]刘福东,潘自强,刘森林,等.全国煤矿中煤、矸石天然放射性核素含量调查分析.辐射防护.2007,27(3):171-180
    [12]孙凯男,郭秋菊,程建平.我国部分地区土壤氡析出率的理论模型.中华放射医学与防护杂志. 2004,24(6):581-584
    [13]屈争真,郭秋菊.关于室内220Rn及其子体浓度的讨论.辐射防护.2006,26(6): 332-340
    [14]ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66, 1994.1-3
    [15]尚兵,贺青华,王作元,朱昌寿.中国室内氡行动水平的研究.中华放射医学与防护杂志.2003,(06):462-465
    [16]张强,邓跃全,董发勤,徐光亮,杨瑞,何登良.工业废渣基建材的氡放射性污染及防护的研究现状与展望.材料导报.2007,(10):79-83
    [17]任天山.室内氡的来源、水平和控制.辐射防护.2001,21(5):291-299.
    [18]Fry R M. Radon and Its Hazards. Proceedings of the NEA Specialist Meeting . Canad. 4~8 Oct,1976. 13
    [19]张智慧.空气中氡及其子体的测量方法.北京:原子能出版社, 1994
    [20]Clements W E, et al. Uranium Mill Tailling Piles as Source of Atmospheric Radon-222. CONF 780422 ( Vol. 2) , 1980. 1559
    [21]UNSCEAR.Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report. 2000.132.
    [22]Lin Lianqing . Indoor Radon Measurements in the Beijing Area. The Sciences of the Total Environment.1991, 107: 255-264.
    [23] Liu Yu-tang, Chen Zhen. A retrospective lung cancer mortality study of people exposed to insoluble arsenic and radon.Lung Cancer. 1996,14:S137-S148.
    [24] H. -Erich Wichmann, Joachim Heinrich, Michael Gerken, Michaela Kreuzer, Jürgen Wellmann, Gert Keller, Lothar Kreienbrock .Domestic radon and lung cancer-current status including new evidence from Germany .International Congress Series. 2002, 1225:247-252.
    [25] Jamie Pearce, Paul Boyle. Examining the relationship between lung cancer and radon in small areas across Scotland.Health & Place. 2005, 11(3):275-282.
    [26] O. Axelson.Room for a role for radon in lung cancer causation? Medical Hypotheses.1984,13(1):51-61.
    [27] Anita Enflo. Where are the radon-induced lung cancer cases?: Is it time for a re-evaluation of the radon problem? International Congress Series. 2002, 1236:23-25.
    [28] L. Tomáek, E. Kunz, T. Müller, J. H lka, A. Heribanová, J. Matzner, V. Pla ek,I. Burian, J. Hole ek.Radon exposure and lung cancer risk - Czech cohort study on residential radon.The Science of The Total Environment. 2001, 272:43-51.
    [29] A. J. Khan.A study of indoor radon levels in Indian dwellings, influencing factors and lung cancer risks.Radiation Measurements. 2000, 32(2):87-92.
    [30] K. M. Abumurad. Chances of lung cancer due to radon exposure in Al-Mazar Al-Shamali, Jordan. Radiation Measurements. 2001, 34: 537-540.
    [31] H.E. Wichmann, A. Schaffrath Rosario, I.M. Heid, M. Kreuzer, J. Heinrich, L. Kreienbrock. Lung cancer risk due to radon in dwellings—evaluation of the epidemiological knowledge. International Congress Series. 2005, 1276:54-57.
    [32] Jürgen Conrady, Karl Martin, Jürgen Lembcke, Horst Martin.The true size of the lung cancer risk from indoor radon: hidden behind a smoke screen .International Congress Series. 2002,1225:253-258.
    [33] Georges Monchaux, Jean-Paul Morlier. Influence of dose-rate on lung cancer induction in rats exposed to radon and its progeny. International Congress Series. 2002,1225:213-221.
    [34] Jing Chen. Lung cancer risk due to radon exposure for 10 or 20 years. International Congress Series. 2005, 1276: 442-443.
    [35] D. J. Steck, R. W. Field .The use of track registration detectors to reconstruct contemporary and historical airborne radon (222RN) and radon progeny concentrations for radon-lung cancer epidemiologic study. Radiation Measurements. 1999, 31:401-406.
    [36]童建.氡致肺癌:生物学效应与防护.辐射防护通讯.2009,29(5):7-11.
    [37]王南萍,肖磊,梅文科,侯胜利.土壤氡析出率活性炭累积吸附法.地球科学(中国地质大学学报).2007, (04):523-527
    [38]刘小松,丘寿康.一种较准确而快速测量氡析出率的方法.辐射防护.2007,27(3): 156-162
    [39]Wilkening M H, Watkins D E. Air exchange and Radon 222 concentration in the Carlsbad cavens. Health Phys, 1976, 31(2) : 139.
    [40] Malmqvist L, IsakssonM.张书成译.氡通过基岩和土壤迁移.国外铀金地质,1990, (3) : 59 - 63.
    [41]乐仁昌,贾文懿,吴允平.理想条件下氡及其子体运移新理论及其运移方程.物理学报, 2003, 52(10), 2457 -2461.
    [42]乐仁昌,林刚勇.理想条件下氦氡团簇离子垂直移动速度的理论计算.物理学报, 2005,54(9): 4113-4116
    [43]谭延亮,肖德涛,赵桂芝.理想条件下氡及其子体垂直运移实验数据分析.物理学报, 2008,57(9): 5452-5457
    [44]洪锦泉,乐仁昌,何志杰,等.对理想条件下Rn及其子体垂直运移实验数据的再分析.物理学报2009,58(8):5350-5354
    [45]谭延亮,肖德涛,赵桂芝,等.“氦氡团簇”粒径实验研究.核电子学与探测技术.2009,29(6): 1498-1500
    [46]谭延亮,屈景年,肖德涛,等.地震前氡衰变引起大气温度与湿度异常问题讨论.地震学报.2010,32(1): 88-93
    [47]苟全录,张智慧.静电收集式氡析出率仪的计算公式讨论.原子能科学技术. 1998,(05):420-426
    [48] A.K. Mahur,Rajesh Kumar, D. Sengupta, Rajendra Prasad.Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from Durgapur thermal power plant, West Bengal, India. Journal of Environmental Radioactivity.2008,99,:1289–1293.
    [49]Harmanjit Singh, Joga Singh, Surinder Singh, B.S. Bajwa.Radon exhalation rate and uranium estimation study of some soil and rock samples from Tusham ring complex.India using SSNTD technique.Radiation Measurements.2008,43: S459– S462.
    [50]Munazza Faheem, Matiullah.Radon exhalation and its dependence on moisture content from samples of soil and building materials.Radiation Measurements. 2008,43:1458-1462.
    [51]P. Ujic, I. Celikovic, A. Kandic, Z. ?unic.Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber.Radiation Measurements. 2008, 43:1396-1401.
    [63]张文涛,李爱武,张志龙,苟全录.REM-Ⅱ型氡析出率仪的研制.核电子学与探测技术. 2002(2):149-151
    [64] Fazal-ur-Rehman ,Al-J arallah ,M. I. ,Musazay ,M. S. ,et al.. Application of the can technique and radon gasanalyzer for radon exhalation measurements. Applied Radiation and Isotopes.2003,59 (5-6):353– 358
    [65]肖德涛,谭延亮,周青芝.开环式测量氡析出率的方法及测量装置.中国专利: 201010129774.6,2010.03.19.
    [66]孟冶成,丘寿康,熊信明,等.室内氡检测的现场比对.辐射防护通讯. 2004,24(4):34-37.
    [67]李先杰,丘寿康,刘纯魁.氡析出率测量仪的检定装置.辐射防护.2008,28(4) :197-201
    [68]N. Eisenreich, A. Pfeil. Non-linear least-squares fit of non-isothermal thermoanalytical curves.reinvestigation of the kinetics of the autocatalytic decomposition of nitrated cellulose.Thermochimica Acta.1983,61:13-21.
    [69]Ranjit S. Jeyaseelan, A.Jeffrey Giacomin.Best fit for differential constitutive model parameters to non-linear oscillation data.Journal of Non-Newtonian Fluid Mechanics, 1993, 47:267-280.
    [70]Robert J. Weston, Mary E. Weston, Robert O. Bollinger.Non-linear curve-fitting programs for Phadezym IgE PRIST? using a Hewlett-Packard HP-97 and a Texas Instruments TI-59 with a PC-100A printer.Computers in Biology and Medicine. 1984, 14 :499-506.
    [71] L. J. A. Gerringa, P. M. J. Herman, T. C. W. Poortvliet. Comparison of the linear Van den Berg/Ru i transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Marine Chemistry.1995, 48:131-142.
    [72]Robin J. Leatherbarrow.Using linear and non-linear regression to fit biochemical data.Trends in Biochemical Sciences.1990, 15:455-458.
    [73]Angus M. Brown.A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet.Computer Methods and Programs in Biomedicine, 2001,65:191-200.Transactions on Nuclear Science. 2001,48:391- 394.
    [85]Masahiro Hosoda, Shinji Tokonami, Atsuyuki Sorimachi, Miroslaw Janik, Tetsuo Ishikawa, Yoshinori Yatabe, Junya Yamada, Shigeo Uchida.Experimental system to evaluate the effective diffusion coefficient of radon.Review of Scientific Instruments. 2009,80:013501- 013505,.
    [86]Shinji Tokonami, Hiroyuki Takahashi, Yosuke Kobayashi, Weihai Zhuo, Erik Hulber.Up-to-date radon-thoron discriminative detector for a large scale survey. Review of Scientific Instruments. 2005,76:113505- 113509.
    [87] S.Yamamoto, Y.Yoshida, T. Iida.Development of an underground radon detector using an optical fiber.IEEE Transactions on Nuclear Science. 2003, 50:987-990.
    [88]Weihai Zhuo, Shinji Tokonami, Hidenori Yonehara, Yuji Yamada.A simple passive monitor for integrating measurements of indoor thoron concentrations.Review of Scientific Instruments.2002,73:2877-2881.
    [89]Shinji Tokonami, Mingli Yang, Hidenori Yonehara, Yuji Yamada.Simple, discriminative measurement technique for radon and thoron concentrations with a single scintillation cell. Review of Scientific Instruments. 2002,73:69-72.
    [90]W.J.Ward,R.L.Fleischer, and A.Mogro-Campero.Barrier technique for separate measurement of radon isotopes.Review of Scientific Instruments.1977,48:1440-1441.
    [91]K.Mitev,Y.Madzhunkov,G.Gerganov, I.Dimitrova, S.Georgiev, D.Pressyanov. Automatic Counting of Electrochemically Etched Tracks in Compact Discs. Application to Retrospective Measurements of Rn-222.IEEE Transactions on Nuclear Science.2010,57:300- 308.
    [92]S.D.Schery, D.H.Gaeddert, M. H.Wilkening.Two-filter monitor for atmospheric 222Rn.Review of Scientific Instruments.1980,51:338– 343.
    [93] P.M. Kolar?, D.M. Filipovi?, B.P. Marinkovi?.Daily variations of indoor air-ion and radon concentrations.Applied Radiation and Isotopes. 2009,67:2062-2067.
    [94]S.De Francesco,F.Pascale Tommasone,E.Cuoco,G. Verrengia, D.Tedesco.Radon hazard in shallow groundwaters:Amplification and long term variability induced by rainfall.Science of The Total Environment. 2010,408:779-789.
    [95]K.W.Mui,L.T.Wong,P.S.Hui.An approach to assessing the probability of unsatisfactory radon in air-conditioned offices of Hong Kong.Journal of Environmental Radioactivity.2008,99:248-259.
    [96]V. Roca, P. De Felice, A. M. Esposito, M. Pugliese, C. Sabbarese and J. Vaupotich.The influence of environmental parameters in electrostatic cell radon monitor response.Applied Radiation and Isotopes. 2004, 61(2),pp. :243-247.
    [97]J.A.迪安.兰氏化学手册[M].科学出版社.13版1991:381-381
    [98] Hugh R. Carlon. Equilibrium ion content of water vapor in air. Journal of Applied Physics.1981,52(4): 2638 - 2641
    [99]http://en.wikipedia.org/wiki/Vapor_pressure_of_water
    [100]钟韶.大学物理(上)高等教育出版社.2005第1版:169-190
    [101] Pugliese M, Baiano G, Boiano A, D'Onofrio A, Roca V V, Sabbarese C, Vollaro P.A. compact multiparameter acquisition system for radon concentration studies. Applied Radiation and Isotopes.2000,53(1):365-70.
    [74]R.Choudary Hanumara, Nadine A. Hoenig.An empirical comparison of a fit of linear and non-linear models for seasonal growth in fish. Fisheries Research. 1987,5:359-381.
    [75]R J. Leatherbarrow. Using Linear and Non-Linear Regression to Fit Biochemical Data. Trends in Biochemical Sciences. 1990,15:455–458.
    [76]Tatiana rámková, Torgrim Log.Using non-linearχ2 fit in flash method. International Journal of Heat and Mass Transfer. 1995,38:2885-2891.
    [77] K.Vasanth Kumar, K. Porkodi, F. Rocha.Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon.Journal of Hazardous Materials. 2008, 150:158-165.
    [78]K.Vasanth Kumar, K. Porkodi, F. Rocha. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions. Journal of Hazardous Materials. 2008, 151:794-804.
    [79]Angus M.Brown.A.non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel. Computer Methods and Programs in Biomedicine. 2006, 82:51-57.
    [80]Les Kirkup, Mary Mulholland.Comparison of linear and non-linear equations for univariate calibration. Journal of Chromatography A. 2004, 1029: 1-11.
    [81]王郁文,曾锡瑞.非线性问题线性化计算的改进.计算机与应用化学.2005,(4): 3-5.
    [82] A.C.George.An overview of instrumentation for measuring environmental radon and radon progeny.IEEE Transactions on Nuclear Science.1990,37:892- 901.
    [83]Shiraishi,F.,Takami,Y.,Hashimoto,T.,Sieminski,M..A new approach to measure Rn exhalation rate out of building walls.IEEE Transactions on Nuclear Science.1990,37: 878- 882.
    [84]S.Yamamoto,K.Tarutani,K.Yamasoto,D.Iskandar,T.Iida.Development of a continuous radon concentration monitoring system in underground soil.IEEE
    [52]Takeshi Iimoto, Yoshinori Akasaka, Yuya Koike, Toshiso Kosako.Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector. Journal of Environmental Radioactivity. 2008, 99(4):587-595
    [53] V.Steiner,K.Kovler,A.Perevalov,H.Kelm.Estimation of the radon dose in buildings by measuring the exhalation rate from building materials.International Congress Series. 2005,1276(2): 397-398
    [54]Cameron E. Lawrence, Riaz A. Akber, Andreas Bollh?fer, Paul Martin. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics.Journal of Environmental Radioactivity, 2009, 100(1): 1-8
    [55]A. Van Deynse, C. Cosma, A. Poffijn.A passive radon dosimeter based on the combination of a track etch detector and activated charcoal.Radiation Measurements. 1999,31:325-330.
    [56]Darwish Al-Azmi.Application of well-type NaI(Tl) detector for indoor radon measurements.International Congress Series.2005,1276:350-351.
    [57]肖铮,宗凌,汪源.陆地氡析出率的测量方法研究与应用.冰川冻土.2005,27(1): 147-149
    [58] A.F. Saad. Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer“Alpha GUARD”. Radiation Measurements, 2008, 43(8):463-466.
    [59]Shafi-ur-Rehman, Matiullah, Shakeel-ur-Rehman, Said Rahman. Studying 222Rn exhalation rate from soil and sand samples using CR-39 detector. Radiation Measurements.2006,41(6):708-713.
    [60]Said Rahman, Matiullah, B.M. Ghauri.Comparison of seasonal and yearly average indoor radon levels using CR-39 detectors.Radiation Measurements, 2010,45(2):247-252.
    [61]陈凌,谢建伦,黄隆.氡面析出率的测量及相关因素的考虑.辐射防护通讯. 1998,(6):28-36
    [62]郭秋菊,程建平.珠海市环境空气中~(222)Rn、~(220)Rn子体水平及土壤析出率测量.辐射防护. 2004,(2):110-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700