光学信号分析在量子力学中的研究进展和量子层析技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在量子力学中,物理上的可观测量使用厄米算符的形式来表达的,它们之间一般是不对易的。故而当我们将经典力学中的函数推广到量子力学范围时,其所对应的量子力学么正算符并不唯一,根据不同的对应规则或者说是算符编序形式,有不同的表达形式。故而人们在将经典函数和量子力学算符对应起来的过程中,总是面临着算符编序的问题。最常见的算符编序形式有正规乘积编序,反正规乘积编序和Weyl编序。其中Weyl编序具有在相似变换下的不变性,在实际运算中比较方便,故而应用最广泛。迄今为止,对于编序后算符的运算问题,人们主要用两种方法来解决,即李代数方法和相干态表象微分操作法。这两种方法对一个较为复杂的排序算符的计算无能为力。有鉴于此,范洪义教授基础了有序算符内的积分技术(]WOP技术)来处理排序算符的计算问题。IWOP技术将原本只适用于经典可对易函数的牛顿-莱布尼茨积分推广到了对量子力学ket-bra型非对易量子算符的运算,从而建立起了联系非对易q数和对易的c数之间的桥梁。
     本文在算符编序理论的基础之上,利用IWOP技术,将经典光学中常用的分析方法引入到了量子力学范围内(其中包括层析摄像技术,Radon变换和小波分析方法)。这不仅丰富了Dirac符号法和变换论,对量子力学中光学变换的研究也有实际的应用价值。
     本文分为六章,具体内容安排如下
     第一章首先用IWOP技术从新审视研究了量子力学的基本表象,包括坐标表象,动量表象,粒子数表象和相干态表象。然后我们又介绍了一些用1WOP技术寻找到的新的量子力学表象,它们都具有实际的物理意义。这些表象包括坐标-动量中介表象,纠缠态表象,中介纠缠态表象,三模纠缠态表象,三模相干纠缠态表象等等。
     第二章介绍了Weyl对应规则和Wigner算符,任意算符的Weyl编序展开式和Weyl编序下的积分技术。进而利用IWOP技术,给出了Wigner算符在各个量子力学基本表象中的表达式。最后推导出了Wigner算符在各个新找到的量子力学表象中的表达形式。
     第三章中,我们首先介绍了一种降低维度的光学分析方法-层析摄像技术和其数学基础Radon变换在各个维度的一般表达式。然后我们将其推广到量子力学范围,给出了Wigner算符的Radon变换的一般表达式,并将其推广到了双模情形。
     第四章中,我们对Wigner算符的Radon变换做了更加详细的研究,对各个光学过程下Wigner算符的Radon变换进行了计算,我们得出一个结果,各光学过程所带来的信号的变化等价于其Wigner算符的Radon变换参数的变化,这就简化了其运算过程并可以将Radon变换应用到量子光学过程中。最后我们对双模情形在中介纠缠态表象下做了相同的研究。
     第五章我们介绍了另外一种提高维度的光学分析方法-小波变换。我们将小波变换推广到量子力学的过程中,利用其容许性条件,推出了一个新的小波系列-高阶墨西哥帽小波系。然后我们利用不同的信号输入,对这个新的小波系列的性质做了详细的分析,并给出了一些应用实例。
     最后我们总结了一下上面的研究工作并给出了这些领域未来可能的研究方向。
In quantum mechanics, the physical observables are all represented by the Hermitian operators. These are generally not commutative between them. Therefore, when the function of classical mechanics promote to the operators of quantum mechanics, the form of corresponding is not only one. For the different operator ordering forms, or for the different corresponding rules, their corresponding operators are different. So when people correspond the function of classical mechanics to the operators of quantum mechanics, they will have a problem that how to order the operators. There are some definite operator ordering forms, such as the normal ordering form, the anti-normal ordering form and the Weyl ordering form. In addition, the Weyl ordering form has a remarkable property, i.e.,it has similar invariance when the Weyl ordered operators transform under similar transformations. To our knowledge, there are two main approaches to handle the operator ordering problems. They are the Lie algebra method and Louisell's differential operation method via the coherent state representation. However, these two methods are not very efficient in the processes which calculate the complex quantum operator ordering problems. In order to solve this problem, Prof.Fan firstly proposed the technique of integration within an ordered product of operators(IWOP). The IWOP technique generalizes the Newton-Leibniz rule to the integrations over the ket-bra operators in quantum mechanics and builds a bridge between classical mechanics and quantum mechanics.
     Based on the operator ordering theory, we introduced the analysis methods of classical optics to th quantum optics by the IWOP technique. The analysis methods involved the Tomography technique, the Radon transform and the Wavelet transform. These efforts are very useful to study the optical transformations in quantum mechanics and enrich the Dirac's symbolic method and the transformation theory.
     The whole thesis is divided into six chapters, arranged in details as follows:
     In Chapter.1, based on the IWOP technique, we resurvey the preliminary quantum representations such as the coordinate representation, the momentum representation, the particle number representation and the coherent representation. And then, we introduced some new quantum representations such as the entangled state representation, the coordinate-momentum intermediate representation, the entangled coherent representation, the three-mode entangled state representation and the three-mode entangled coherent representation. They have clear physical meaning.
     In Chapter.2, we introduced the Weyl ordering form and the Wigner operator, Weyl ordering operator formula, the technique of integration within the Weyl ordering product of operators and the order-invariance of Weyl ordered operators under similar transformations. Using the IWOP technique, we derived the form of the Wigner operator in different basic quantum representations. At last, we derived the form of the Wigner operator in different new quantum representations we introduced in Chapter.1.
     In Chapter.3, at first we introduced a dimension reduced optical analysis method which is the Tomography technique. The basis of its mathematical is the Radon transform. And then we presented the mathematical formulation of Radon transforms in different dimensions. Then we promote them to the quantum field, and derived the Radon transformation of Wigner operators in both single-mode and two-mode by the coordinate-momentum intermediate representation and the entangled intermediate representation.
     In Chapter.4, we did more detailed research on the Radon transformation of Wigner operators and calculated the Radon transformation of Wigner operators with various optical processes. We come to a conclusion that the alteration of Radon transformation of signal's Wigner function through these optical processes can be ascribed to the variation of Radon transformation parameters. This method simplify the calculation processes and can be promote the Radon transformation to the quantum optics. At last, we did the same works in two-mode situation by the entangled intermediate representation.
     In Chapter.5, we introduced a dimension enhanced optical analysis method which is the Wavelet transformation. In the process when we promote the Wavelet transform to the quantum field, we find a general formula of qualified continuum mother wavelets---High-order Mexican Hat wavelets by the Admissible condition. And then, we make comparisons among different wavelet transforms computed with our new mother wavelets and the classical Mexican Hat wavelet by several special optic pulses and find the character of the High-order Mexican Hat wavelets.
     In the last chapter, we summarized the research works of the above and some possible future research directions in these fields are given.
引文
[1]Dirac PAM. The Principles of Quantum Mechanics. Oxford:Clarendon Press,1930
    [2]Dirac PAM. Recollections of an exciting area:History of 20th Century Physics [M]. New York:Academic Press,1977.
    [3]Hong-Yi Fan. Represtention and Transformation Theory in Quantum Mechanics-Progress of Dirac's symbolic method (in Chinese) [M]. Shanghai:Shanghai Scientific and Technical Publishers,1997.
    [4]Hong-Yi Fan. Entangled State Representations in Quantum Mechanics and Their Applications (in Chinese) [M]. Shanghai:Shanghai Jiao Tong University Press,2001.
    [5]Hong-Yi Fan. Quantum Mechanics in Quantum Optics-Development of the Mathematical Physics (in Chinese) [M]. Shanghai:Shanghai Jiao Tong University Press,2005.
    [6]Hong-Yi Fan, Xu-Bing Tang. Progress of mathematics and physics foundation in quantum mechanics (in Chinese) [M]. Hefei:University of Science and Technology of China Press, 2008.
    [7]Hong-Yi Fan, Li-Yun Hu. Optical Transformation:from quantum optics to classical optics (in Chinese) [M]. Shanghai:Shanghai Jiao Tong University Press,2010.
    [8]Hong-Yi Fan, Hai-Liang Lu, Yue Fan. Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations [J]. Ann. Phys.,2006, 321(2):480-494.
    [9]Hong-Yi Fan. Newton-Leibniz integration for ket-bra operators (2)-application in deriving density operator and generalized partition function formula [J]. Ann. Phys.,2007,322(4): 866-885.
    [10]Hong-Yi Fan. Newton-Leibniz integration for ket-bra operators (3)-application in fermionic quantum statistics [J]. Ann. Phys.,2007,322(4):886-902.
    [11]Hong-Yi Fan. Newton-Leibniz integration for ket-bra operators in quantum mechanics (4)-Integrations within Weyl ordered product of operators and their applications [J]. Ann. Phys.,2008,323(2):500-526.
    [12]Hong-Yi Fan. Newton-Leibniz integration for ket-bra operators in quantum mechanics (5)-Deriving normally ordered bivariate-normal-distribution form of density operators and developing their phase space formalism [J]. Ann. Phys.,2008,323(6):1502-1528.
    [13]Hong-Yi Fan. Entangled states, Squeezed states gained via the route of developing Dirac's symbolic method and their applications [J]. Int. J. Mod. Phys. B,2004,18(10):1387-1455.
    [14]Hong-Yi Fan, Hai-Liang Lu. Classical optical transforms studied in the context of quantum optics via the route of developing Dirac's symbolic method [J]. Int. J. Mod. Phys. B,2005, 19(5):799-856.
    [15]Hong-Yi Fan. Operator ordering in quantum optics theory and the development of Dirac's symbolic method [J]. J. Opt. B Quantum Semiclass. Opt.,2003,5:R147-R163.
    [16]曾谨言, 量子力学(卷一),北京-科学出版社,2001
    [17]Fock V, Zeits fur Phys.49 (1928) 339
    [18]Klauder JR, Skagerstam BS. Coherent States:Application in Physics and Mathematical Physics [M]. Singapore-World Scientific Publishing Co.1985
    [19]Perelemov A M, Generalized Coherent States and Their Applications, Berlin-Springer-Verlag,1986
    [20]Klauder JR, Sudarshan ECG Fundamentals of Quantum Optics [M]:New York:Benjamin, 1968.
    [21]WM Zhang, DH Feng, Gilmore R. Coherent States:Theory and some applications [J]. Rev. Mod. Phys.,1990,62(4):867-927
    [22]Onofri E, A note on coherent state representations of Lie groups [J]. J.Math.Phys.,1975, 16(5):1087-1089.
    [23]Perelomov AM. Coherent states for arbitrary Lie groups [J]. Comm.Math.Phys.,1972,26: 222-236
    [24]Jurco B, Stocicek P. Coherent for quantum compact groups [J]. Comm.Math.Phys.,1996, 182:221-251
    [25]Klauber RJ, The Quantum Theory of Optical Coherence [J]. Phys. Rev.,1963,130: 2529-2539
    [26]Klauber RJ, Coherent and Incoherent states of the Radiation Field [J]. Phys. Rev.,1963, 131:2766-2788
    [27]Walls DF and Millburn GJ, Quantum Optics,北京-世界图书出版公司,1998
    [28]Marlan O, Scully M and Suhail Z, Quantum Optics,北京-世界图书出版公司,2000
    [29]Walls DF, Nature 306 (1983) 141
    [30]Loudon R and Knight PL, J. Mod. Opt.34 (1987) 709
    [31]Glauber JR, Phys. Rev.130 (1963) 2529
    [32]Glauber JR, Phys. Rev.131 (1963) 2766
    [33]彭金生,李高翔,近代量子光学导论,北京-科学出版社,1996
    [34]Lewis H and Ryder, Quantum Field Theory,北京-世界图书出版公司,2004
    [35]Wick G, Phys. Rev.80 (1950) 268
    [36]Fan HY, J. Opt. B:Quantum Semiclass. Opt.5 (2003) R147
    [37]Fan HY, Zaidi H R and Klauder J R, Phys. Rev. D 35 (1987) 1831
    [38]Fan HY and Zaidi H R, Phys. Rev. A 37 (1988) 2985
    [39]Fan HY and Vanderlinde J, Phys. Rev. A 39 (1989) 1552
    [40]Fan HY and Vanderlinde J, Phys. Rev. A 39 (1989) 2987
    [41]Fan HY and Vanderlinde J, Phys. Rev. A 40 (1989) 4785
    [42]Fan HY and Ruan T N, Commun. Theor. Phys.2 (1983) 1289
    [43]Fan HY, Phys. Rev. A 41 (1990) 1526
    [44]Fan HY and Vanderlinde J, Jour. Phys. A 23 (1990) L1113
    [45]Fan HY and Xu Z H, Phys. Rev. A 50 (1994) 2921
    [46]Fan HY, Phys. Rev. A 47 (1994) 4521
    [47]Fan HY and Klauder J R, Phys. Rev. A 49 (1994) 704
    [48]Fan HY and Ye X, Phys. Rev. A 51 (1995) 3343
    [49]Fan HY and Fan Y, Phys. Rev. A 54 (1996) 958
    [50]Fan HY and Min X, Quantum Semiclass. Opt.9 (1997) 53
    [51]Fan HY, Commun. Theor. Phys.31 (1999) 285
    [52]Fan HY, Fan Y and Chan F T, Phys. Lett. A 247 (1998) 267
    [53]Fan HY, Int. J. Mod. Phys. B 18 (2004) 1387
    [54]Einstein A, Podolsky B and Rosen N, Phys. Rev.47 (1935) 777
    [55]Fan HY and Ye X, Phys. Rev. A 51 (1995) 3343
    [56]Vogel K and Risken H, Phys. Rev. A 40 (1989) 2847
    [57]Banaszek K and Wodkiewicz K, Phys. Rev. Lett.76 (1996) 4344
    [58]Welsch DG and Vogel W, J. Mod. Opt.41 (1994) 1607
    [59]Chiao RY, Kwait PG and Steinberg AM, Squeezed States and Uncertainty Relations, NASA Conference Publication 3135,1992
    [60]Hong-Yi Fan. Entangled State Representations in Quantum Mechanics and Their Applications (in Chinese) [M]. Shanghai:Shanghai Jiao Tong University Press,2001.
    [61]Preskill J, Quantum Information and Computation, Lecture Notes for Physics 229,1998
    [62]Fan H Y and Chen B Z, Phys. Rev. A 53 (1996) 2948
    [63]Pang QJ. Application of Coordinate-Momentum Intermediate Representation in Solving Eigenstate Problem of a Coupled Oscillator System [J]. Commun. Theor. Phys., 2005,44(3):440-444.
    [64]HY Fan, Q Guo. Quantum phase space theory based on intermediate coordinate momentum representation [J]. Mod. Phys. Lett. B,2007,21(27):1831-1836.
    [65]HY Fan, Q Guo. Generalized Fredholm operator equation and its solution based on intermediate coordinate-momentum representation [J]. Phys. Scr.,2007,76:533-538.
    [66]HY Fan, XB Tang. Operator Fredholm Integration Equation in Intermediate Coordinate-Momentum Representation and Its Analogue to Thermo Conduction Equation [J]. Commun. Theor. Phys.,2008,49(5):1169-1172
    [67]HY Fan, HL Cheng. Two-Parameter Radon Transformation of the Wigner Operator and Its Inverse [J]. Chin. Phys. Lett.,2001,18(7):850-853.
    [68]HY Fan, JS Wang. New Approach for Calculating Tomograms of Quantum States by Virtue of the IWOP Technique [J]. Commun. Theor. Phys.,2007,47(3):431-436.
    [69]Pang QJ, Chin. Phys. Lett.22 (2005) 1315
    [70]Helgason S, The Randon Transform, Boston, Massachusetts:Birkhauser,1980
    [71]Wunsche A J. Mod. Opt.44 (1997) 2293
    [72]Fan HY and Fan Y, Mod. Phys. Lett. A 13 (1998) 433
    [73]Hong-Yi Fan, Shu-Guang Liu. New Approach for Finding Multipartite Entangle State Representations via the IWOP Technique [J]. International Journal of Modern Physics A,2007, 22(24):4481-4494.
    [74]Hong-Yi Fan, Shu-Guang Liu. A concise way to phase space formalism of multi-partite entangle system [J]. Nuovo Cimento B,2007,122(8):841.
    [75]Hong-Yi Fan, WenQin Wang. Coherent-Entangle State in Three-Mode and Its Applications [J]. Commun. Theor. Phys.,2006,46:975.
    [76]Hong-Yi Fan, Li-Yun Hu. Multipartite Coherent Entangled State of Continuous Variables: Structure and Generations [J].
    [77]Weyl H. Quantenmechanik and Gruppentheorie [J]. Z. Phys.1927,46:1-46
    [78]Weyl H. The Theory of Groups and Quantum Mechanics [M]. New York:Dover,1931
    [79]Wigner EP. On the quantum correction for thermodynamic equilibrium [J]. Phys. Rev., 1932,40:749-759.
    [80]Schleich WP. Quantum Optics in Phase Space [M]. Berlin:Wiley-Vch,2001
    [81]O'Connel RF, Wigner EP. Quantum-Mechanical Distribution Functions:Conditions for Uniqueness [J]. Phys. Lett. A,1981,83:145-148.
    [82]Hillery M, Connel R, Scully M, Wigner EP. Distribution functions in physics: fundamentals [J]. Phys. Rep.,1982,106:121-167
    [83]Hong-Yi Fan. J. Phys. A25 (1992) 3443
    [84]Hong-Yi Fan, Yue Fan. Inter. J. Mod. Phys. A17 (2002) 701
    [85]Hong-Yi Fan. Commun. Theor. Phys.,41(2004):205
    [86]Hong-Yi Fan. Mod. Phys. Lett. A15 (2000) 2297
    [87]Hong-Yi Fan, Zaidi HR. Application of IWOP technique to the generalized Weyl correspondence [J]. Phys. Lett. A,1987,124(6):303-307
    [88]Hong-Yi Fan, TT Wang. Generalized Wigner Operator and Bivariate Normal Distribution in p-q Phase Space [J]. Commun. Theor. Phys.,2008,50(6):1299-1302.
    [89]Hong-Yi Fan. Weyl ordering quantum mechanical operators by virtue of the IWWOP technique [J]. J. Phys. A Math. Gen.,1992:25:3443-3447
    [90]Hong-Yi Fan. General Wigner Transforms studied by virtue of Weyl ordering of the Wigner operator [J]. Commun. Theor. Phys.,2003,40(4):409-414.
    [91]Ka XL. Advanced Quantum Mechanics [M] (in chinese). Beijing:High Educational Press,1999.
    [92]Hong-Yi Fan, HC Yuan, NQ Jiang. Operator's ordering:from Weyl ordering to normal ordering [J]. Sni China Ser G:Phys Mech Astron,2011, in press
    [93]Hong-Yi Fan, JS Wang. On The Weyl Ordering Invariance Under General n-Mode Similar Transformations [J]. Mod. Phys. Lett. A,2005,20(20):1525-1532
    [94]Hong-Yi Fan, Hai-Ling Cheng. Commun. Theor. Phys.,2001,36:651
    [95]Hong-Yi Fan, HJ Wu. Mod. Phys. Lett.,1997, B11:544
    [96]Hong-Yi Fan, Ye Fan. Mod. Phys. Lett.,1998, A13:433
    [97]Hong-Yi Fan. Phys. Rev. A65 (2002) 064102
    [98]Hong-Yi Fan, Ye Fan. Phys. Rev.,1996, A54(1):958
    [99]Hong-Yi Fan, ZS Yang. Mod. Phys. Lett.,1998, A13:2679
    [100]J Radon, Ber Verh, Saechs, Akad. Wiss. Leipzig. Math. Phys. K1(69) (1917) S.262
    [101]Helgason S. The Radon Transform (Boston Massachsetts:Brikhauser) 1980; Wiinsche A. Jour. Mod. Opt.,1997,44 No.11/12:2293
    [102]Vogel K, Risken H. Phys. Rev.1989, A40:2847; Raymer M. G. Contemporary Physics, 1997,38(5):343
    [103]Hong-Yi Fan, Gui-Chuan Yu. Mod. Phys. Lett. A15 (2000) 499
    [104]Smithey DT, Beck T, Ray MG, et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography:Application to squeezed states and the vacuum [J]. Physical Review Letters,1993,70:1244-1247.
    [105]Hong-Yi Fan. Mod. Phys. Lett. A15 (2001) 2297
    [106]Hong-Yi Fan, Ji-Suo Wang. Mod. Phys. Lett. A20 (2005) 1525
    [107]Fei-Jun Sun, Jutamulia S. Modern Optical Information Processing [M]. Beijing:Peking University Press,1999.
    [108]H. Kogelnik. Appl. Opt.4(1965) 1562
    [109]J.W. Goodman. Introduction to Fourier Optics, McGraw-Hill, New York,1972.
    [110]Hong-Yi Fan, Hai-Liang Lu. Opt. Commun.258(2006)51.
    [111]Hong-Yi Fan, Hai-Liang Lu. Phys. Lett. A334(2005) 132.
    [112](See e.g.) G. M. D'Ariano, M. G. Rassetti, J. Katriel, A. I. Solomon, in:P. Tombesi.
    [113]E. R. Pike(Ed.), Squeezed and Nonclassical Light, Plenum, New York,1989.
    [114]V. Buzek. J. Mod. Opt.37 (1990) 303
    [115]R. Loudon, P. L. Knight. J. Mod. Opt.34 (1987) 709.
    [116]V. V. Dodonov. J. Opt. B:Quantum Semiclassical Opt.4(2002).
    [117]Daubechies, Ten lectures on wavelets, CBM-NSF conference series in applied mathematics. Philadelphia:SIAM ED,1992
    [118]S.Mallat, A theory for multi-resolution signal decomposition:the wavelet representation. IEEE Pattern Anal. And Matching Intell.1989.Vol.41,No.7
    [119]J.Shapiro, Embedded image coding using zero trees of wavelets coefficients. IEEE Tran, Signal processing, Vol.41,NO.2,1993
    [120]Chui,C.K, Approximation theory and function Analysis. Boston:Academic Press,1991
    [121]Chui,C.K, Wavelets:A tutorial in theory and applications. Boston:Academic Press,1992
    [122]Combes,P,Tchamitchian. Wavelets:Time-Frequency methods and phase space. New York: Springer-Verlag,1991
    [123]W H Louisell, Quantum Statistical Properties of Radiation (New York,1973:Wiley)
    [124]Fan HY, Zaidi H R and Klauder J R, Phys. Rev. D 35 (1987) 1831
    [125]Fan HY and Zaidi H R, Phys. Rev. A 37 (1988) 2985
    [126]Fan HY and Ruan T N, Commun. Theor. Phys.2 (1983) 1289
    [127]Fan HY, Phys. Rev. A 41 (1990) 1526
    [128]Hong-Yi Fan, Hai-Liang Lu. Symplectic wavelet transformation [J]. Optics Letters,2006 31:3432.
    [129]Hong-Yi Fan, Shu-Guang Liu. Entangled symplectic wavelet transformation [J]. Optics Letters,2007 32:1507.
    [130]Hong-Yi Fan, Li-Yun Hu. Wavelet transform in the context of quantum mechanics and new orthogonal property of mother wavelets in parameter space. J. Mod. Opt.55 (2008) 1835-1844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700