非对易空间物理系统若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非对易空间中的量子力学理论与通常量子力学有许多的不同之处,因此处理非对易空间的量子力学问题也需要一些新的方法和技巧.本文主要从两方面来探讨非对易空间的量子力学问题:第一部分是讨论如何将变形量子化方法推广到非对易空间.我们分别考察了只有空间部分非对易以及空间和动量都非对易的相空间中的变形量子化的表达形式,对于一般的哈密顿系统和非哈密顿系统,我们都得到了相应的*-本征方程和Wigner函数的表达式,并且讨论了不同方法的等价性和区别.然后我们将变形量子化方法应用到非对易空间的具体物理模型上,首先我们考虑了非对易平面上的耦合谐振子,通过计算得到了相应的能谱和Wigner函数,并且得到了关于一类特殊哈密顿量的变形量子化的公式.然后我们还考察了非对易空间的阻尼系统和Bateman系统这些典型的非哈密顿系统,也求解得到了系统的能谱和广义的Wigner函数.第二部分我们主要介绍了非对易空间中的几种量子表象的构建以及表象的性质和应用.首先我们基于广义非对易相空间的坐标的对易关系构造了一类变形产生湮灭算符,这类算符之间满足变形玻色代数关系,基于这些算符和变形玻色代数,我们构造了非对易的相干态和压缩态,通过计算发现这些态是归一的但不是正交的,而且是超完备的,因此可以构成相干态表象和压缩态表象.我们进一步还得到了这两组态之间的变换关系.然后我们分析了单模和双模正交算符在这些表象上的海森堡不确定关系,通过分析我们发现海森堡不确定关系可以给出空间非对易参数和普朗克常数之间的一个限制关系.另外我们还构造了非对易相空间的纠缠态表象,并且计算了非对易空间坐标算符在纠缠态表象上的矩阵元,我们计算了纠缠态的Wigner算符的表达式.最后我们通过二维非对易平面上的耦合谐振子演示了我们所构建的纠缠态表象的应用.
The theory of quantum mechanics in noncommutative space has some differences with that of normal quantum mechanics, so there are some new methods and technolo-gies to deal with the quantum mechanics problems in noncommutative space. In this thesis we discuss the quantum mechanics problems in noncommutative space in two ways. First we discuss how to extend the deformation quantization methods of the normal space to that of the noncommutative space. Respectively, we investigate the case of only the spatial coordinates is noncommutative and also that of both spatial and momentum coordinates are noncommutative. We derive the expressions of the corre-sponding *-genvalue equations and Wigner functions of both the Hamiltonian systems and non-Hamiltonian systems, and discuss the equivalence and differences between dif-ferent methods. Then we apply the deformation quantization method to some physical models in noncommutative space. First we investigate the coupled harmonic oscillators on noncommutative plane, and calculate the corresponding energy spectra and Wigner function, and derive a formula for a class of Hamiltonian with special form in defor-mation quantization. We also investigate some typical non-Hamiltonian systems such as the damped systems and Bateman system in noncommutative space, and obtain the energy spectra and generalized Wigner function of these systems. In the second part of the thesis we discuss the construction of some quantum representations in noncom-mutative space and the properties and applications of these representations. Firstly, based on the commutation relations of the coordinates of generalized noncommutative phase space we construct a type of deformed creation and annihilation operators, and these operators satisfy the deformed boson algebraic relations. Based on these operators and the deformed boson algebra, we construct the noncommutative coherent states and squeezed states, and after some calculations we find that these states are normalized but not orthogonal to each other, and besides, they are over-complete, so we can construct the coherent representation and squeezed representation. Furthermore we derive the transformation relations between these representations. We investigate the Heisenberg uncertainty relations of the one-and two-mode quadrature operators, and we find that the Heisenberg uncertainty relation can give a restricted relation between the parame-ters of the noncommutativity of the space and the Planck constant. We also construct the entangled state representations for the noncommutative phase space, and calculate the matrix elements of the coordinate operators of noncommutative space on entangled state representations. We also obtain the expression of the Wigner operator on entan-gled state. Finally we show some applications of the entangled state representation by the coupled harmonic oscillators on 2D noncommutative plane.
引文
[1]Snyder H S. Quantized space-time. Physical Review,1947,71(1):38-41.
    [2]Yang C N. On quantized space-time. Physical Review,1947,72(9):874.
    [3]Connes A. Non-commutative differential geometry. Publications Mathematiques de L'IHES, 1985,62(1):41-144.
    [4]Connes A, Rieffel M. Yang-Mills for non-commutative two-tori. Contemporary Mathemat-ics,1987,62(237):66.
    [5]Connes A. Essay on physics and noncommutative geometry, The Interface of Mathematics and Particle Physics,1988.
    [6]Connes A, Lott J. Particle models and noncommutative geometry. Nuclear Physics B-Proceedings Supplements,1991,18(2):29-47.
    [7]Chamseddine A, Felder G, Frohlich J. Gravity in non-commutative geometry. Communica-tions in Mathematical Physics,1993,155(1):205-217.
    [8]Chamseddine A. Connection between space-time supersymmetry and non-commutative ge-ometry. Physics Letters B,1994,332(3-4):349-357.
    [9]Chamseddine A, Frohlich J, Grandjean O. The gravitational sector in the Connes-Lott for-mulation of the standard model. Journal of Mathematical Physics,1995,36:6255.
    [10]Connes A. Noncommutative geometry and reality. Journal of Mathematical Physics,1995, 36(11):6194-6231.
    [11]Chamseddine A, Connes A. Universal formula for noncommutative geometry actions:Unifi-cation of gravity and the standard model. Physical Review Letters,1996,77(24):4868-4871.
    [12]Connes A, Douglas M, Schwarz A. Noncommutative geometry and matrix theory. Journal. of High Energy Physics,1998,1998:003.
    [13]Connes A. Gravity coupled with matter and the foundation of non-commutative geometry. Communications in Mathematical Physics,1996,182(1):155-176.
    [14]Martin C P, Gracia-Bondia J M, Varilly J C. The standard model as a noncommutative geometry:the low-energy regime. Physics Reports-Review Section of Physics Letters,1998, 294(6):363-406.
    [15]Connes A. Noncommutative geometry and the standard model with neutrino mixing. Journal of High Energy Physics,2006,2006:081.
    [16]Chamseddine A, Connes A, Marcolli M. Gravity and the standard model with neutrino mixing. Advances in Theoretical and Mathematical Physics,2007,11(6):991.
    [17]Witten E. Noncommutative geometry and string field theory. Nuclear Physics B,1986, 268:253.
    [18]Seiberg N, Witten E. String theory and noncommutative geometry. Journal of High Energy Physics,1999,09:032.
    [19]Ambj(?)rn J. Strings, quantum gravity and non-commutative geometry on the lattice. Nuclear Physics B (Proceedings Supplements),2002,106:62-70.
    [20]Ashtekar A, Lewandowski J. Background independent quantum gravity:a status report. Classical and Quantum Gravity,2004,21:R53-R152.
    [21]Freidel L, Livine E R.3D quantum gravity and effective noncommutative quantum field theory. Physical Review Letters,2006,96(22):221301.
    [22]Aastrup J, Grimstrup J. Intersecting Connes noncommutative geometry with quantum grav-ity. International Journal of Modern Physics A,2007,22:1589-1603.
    [23]Ashtekar A. Loop quantum gravity:Four recent advances and a dozen frequently asked questions. arXiv:0705.2222,2007.
    [24]Freidel L, Ryan J. Spin foam models:the dynamics of quantum geometry. Classical and Quantum Gravity,2008,25:114004.
    [25]Aastrup J, Grimstrup J, Nest R. On spectral triples in quantum gravity:I. Classical and Quantum Gravity,2009,26:065011.
    [26]Castellani L. Non-commutative geometry and physics:a review of selected recent results. Classical and Quantum Gravity,2000,17(17):3377-3401.
    [27]Chaichian M, Demichev A, Presnajder P. Quantum field theory on noncommutative space-time and its implication on spin-statistics theorem. Spin-Statistics Connection and Commu-tation Relations,2000,545:219-224.
    [28]Gomis J, Mehen T. Space-time noncommutative field theories and unitarity. Nuclear Physics B,.2000,591(1-2):265-276.
    [29]Carroll S M, Harvey J A, Kostelecky V A, et al. Noncommutative field theory and Lorentz violation. Physical Review Letters,2001,87(14):141601.
    [30]Douglas M R, Nekrasov N A. Noncommutative field theory. Reviews of Modern Physics, 2001,73(4):977-1029.
    [31]Gamboa J, Loewe M, Rojas J C. Noncommutative quantum mechanics. Physical Review D,2001,64(6):067901.
    [32]Hellerman S, Van Raamsdonk M. Quantum Hall physics equals noncommutative field the-ory? Journal of High Energy Physics,2001,10:039.
    [33]Nair V P, Polychronakos A P. Quantum mechanics on the noncommutative plane and sphere. Physics Letters B,2001,505(1-4):267-274.
    [34]Moffat J W. Noncommutative and non-anticommutative quantum field theory. Physics Letters B,2001,506(1-2):193-199.
    [35]Hatzinikitas A, Smyrnakis I. The noncommutative harmonic oscillator in more than one dimension. Journal of Mathematical Physics,2002,43(1):113-125.
    [36]Gracia-Bondia J M. Noncommutative geometry and fundamental interactions:the first ten years. Annalen der Physik,2002, 11(7):479-495.
    [37]Calmet X, Jurco B, Schupp P, et al. The standard model on non-commutative space-time. European Physical Journal C,2002,23(2):363-376.
    [38]Bolonek K, Kosinski P. On uncertainty relations in noncommutative quantum mechanics. Physics Letters B,2002,547(1-2):51-54.
    [39]Bichl A A, Grimstrup J M, Grosse H, et al. Non-commutative Lorentz symmetry and the origin of the Seiberg-Witten map. European Physical Journal C,2002,24(1):165-176.
    [40]Bahns D, Doplicher S, Fredenhagen K, et al. On the unitarity problem in space/time non-commutative theories. Physics Letters B,2002,533(1-2):178-181.
    [41]Smailagic A, Spallucci E. Noncommutative 3D harmonic oscillator. Journal of Physics A-Mathematical and General,2002,35(26):L363-L368.
    [42]Szabo R J. Quantum field theory on noncommutative spaces. Physics Reports-Review Section of Physics Letters,2003,378(4):207-299.
    [43]Seiberg N. Noncommutative superspace, N= 1/2 supersymmetry, field theory and string theory. Journal of High Energy Physics,2003,06:010.
    [44]Ghosh S. Bosonization in the noncommutative plane. Physics Letters B,2003,563(1-2):112-116.
    [45]Calmet X, Wohlgenannt M. Effective field theories on noncommutative space-time. Physical Review D,2003,68(2):025016.
    [46]Avramidi I G. A noncommutative deformation of general relativity. Physics Letters B,2003, 576(1-2):195-198.
    [47]Rivelles V O. Supersymmetry and gravity in noncommutative field theories. Nuclear Physics B-Proceedings Supplements,2004,127:63-70.
    [48]Girotti H O. Noncommutative quantum mechanics. American Journal of Physics,2004, 72(5):608-612.
    [49]Djemai A E F. Noncommutative classical mechanics. International Journal of Theoretical Physics,2004,43(2):299-314.
    [50]Chaichian M, Kulish P P, Nishijima K, et al. On a Lorentz-invariant interpretation of non-commutative space-time and its implications on noncommutative QFT. Physics Letters B, 2004,604(1-2):98-102.
    [51]Banerjee R, Chakraborty B, Kumar K. Noncommutative gauge theories and Lorentz sym-metry. Physical Review D,2004,70(12):125004.
    [52]Gonera C, Kosinski P, Maslanka P, et al. Space-time symmetry of noncommutative field theory. Physics Letters B,2005,622(1-2):192-197.
    [53]Calmet X, Kobakhidze A. Noncommutative general relativity. Physical Review D,2005, 72(4):045010.
    [54]Balachandran A P, Pinzul A. On time-space noncommutativity for transition processes and noncommutative symmetries. Modern Physics Letters A,2005,20(27):2023-2034.
    [55]Aschieri P, Blohmann C, Dimitrijevi M, et al. A gravity theory on noncommultative spaces. Classical and Quantum Gravity,2005,22(17):3511-3532.
    [56]Greenberg O W. Failure of microcausality in quantum field theory on noncommutative spacetime. Physical Review D,2006,73(4):045014.
    [57]Chu C S, Furuta K, Inami T. Locality, causality and noncommutative geometry. International Journal of Modern Physics A,2006,21(1):67-82.
    [58]Bu J G, Kim H C, Lee Y, et al. Noncommutative field theory from twisted Fock space. Physical Review D,2006,73(12):125001.
    [59]Aldrovandi L G, Schaposnik F A. Quantum mechanics in non(anti)commutative superspace. Journal of High Energy Physics,2006,08:081.
    [60]Fiore G, Wess J. Full twisted Poincare symmetry and quantum field theory on Moyal-Weyl spaces. Physical Review D,2007,75(10):105022.
    [61]Goursac A, Wallet J C, Wulkenhaar R. Noncommutative induced gauge theory. European Physical Journal C,2007,51(4):977-987.
    [62]Akofor E, Balachandran A P, Jo S G, et al. Quantum fields on the Groenewold-Moyal plane: C, P, T and CPT. Journal of High Energy Physics,2007,08:045.
    [63]Fucci G, Avramidi I G. Noncommutative Einstein equations. Classical and Quantum Gravity, 2008,25(2):025005.
    [64]Chaichian M, Salminen T, Tureanu A, et al. Noncommutative quantum field theory:a con-frontation of symmetries. Journal of High Energy Physics,2008,06:078.
    [65]Bastos C, Bertolami O, Dias N C, et al. Weyl-Wigner formulation of noncommutative quan-tum mechanics. Journal of Mathematical Physics,2008,49(7):072101.
    [66]Akofor E, Balachandran A P, Joseph A. Quantum fields on the Groenewold-Moyal plane. International Journal of Modern Physics A,2008,23(11):1637-1677.
    [67]Waldmann S. Noncommutative field theories from a deformation point of view. Quantum Field Theory:Competitive Models,2009,117-135.
    [68]Gangopadhyay S, Scholtz F G. Path-integral action of a particle in the noncommutative plane. Physical Review Letters,2009,102(24):241602.[69]Bemfica F S, Girotti H O. Noncommutative quantum mechanics as a gauge theory. Physical Review D,2009,79(12):125024.[70]Balachandran A P, Govindarajan T R, Vaidya S. Spontaneous symmetry breaking in twisted noncommutative quantum theories. Physical Review D,2009,79(10):105020.[71]Amorim R. Tensor coordinates in noncommutative mechanics. Journal of Mathematical Physics,2009,50(5):052103.[72]Banerjee R, Chakraborty B, Ghosh S, et al. Topics in noncommutative geometry inspired physics. Foundations of Physics,2009,39(12):1297-1345.[73]Minwalla S, Van Raamsdonk M, Seiberg N. Noncommutative perturbative dynamics. Jour-nal of High Energy Physics,2000,02:020.[74]Dimitrijevic M, Jonke L, Moller L, et al. Deformed field theory on κ-spacetime. European Physical Journal C,2003,31(1):129-138.[75]Daszkiewicz M, Imilkowska K, Kowalski-Glikman J, et al. Scalar field theory on κ-Minkowski space-time and doubly special relativity. International Journal of Modern Physics A,2005,20(20-21):4925-4940.[76]Grosse H, Wohlgenannt M. On κ-deformation and UV/IR mixing. Nuclear Physics B,2006, 748(3):473-484.[77]Freidel L, Kowalski-Glikman J, Nowak S. From noncommutative K-Minkowski to Minkowski space-time. Physics Letters B,2007,648(1):70-75.[78]Daszkiewicz M, Lukierski J, Woronowicz M. Towards quantum noncommutative κ-deformed field theory. Physical Review D,2008,77(10):105007.[79]Bertolami O, Rosa J G, Aragao C M L, et al. Noncommutative gravitational quantum well. Physical Review D,2005,72(2):025010.[80]Rosenbaum M, Vergara J D. The
    -value equation and Wigner distributions in noncommu-tative Heisenberg algebras. General Relativity and Gravitation,2006,38(4):607-624.[81]Carmona J M, Cortes J L, Gamboa J, et al. Quantum theory of noncommutative fields. Journal of High Energy Physics,2003,03:058.[82]Weyl H. Quantenmechanik und Gruppentheorie. Zeitschrift fur Physik,1927,46(1):1-46.[83]Wigner E. On the quantum correction for thermodynamic equilibrium. Physical Review, 1932,40(5):749-759.[84]Groenewold H. On the principles of elementary quantum mechanics. Physica,1946, 12(7):405-460.[85]Moyal J. Quantum mechanics as a statistical theory. Proceedings of the Cambridge Philo-sophical Society,1949,45:99-124.
    [86]Filinov V S. Wigner approach in quantum statistical mechanics and quantum generalization molecular dynamics method. Monte Carlo and Molecular Dynamics of Condensed Matter Systems,1996,49:927-957.
    [87]Coffey W T, Kalmykov Y P, Titov S V, et al. Wigner function approach to the quantum Brownian motion of a particle in a potential. Physical Chemistry Chemical Physics,2007, 9(26):3361-3382.
    [88]Forbes G W, Man'ko V I, Ozaktas H M, et al. Wigner distributions and phase space in optics. Journal of the Optical Society of America A-Optics Image Science and Vision,2000, 17(12):2273-2274.
    [89]Filippas S, Makrakis G N. Semiclassical Wigner function and geometrical optics. Multiscale Modeling and Simulation,2003, 1(4):674-710.
    [90]Sheridan J T, Rhodes W T, Hennelly B M. Wigner optics. Opto-Ireland 2005:Photonic Engineering,2005,5827:627-638.
    [91]Isidro J M. Wigner functions, Fresnel optics, and symplectic connections on phase space. International Journal of Geometric Methods in Modern Physics,2008,5(5):663-676.
    [92]Matz G, Hlawatsch F. Wigner distributions (nearly) everywhere:time-frequency analysis of signals, systems, random processes, signal spaces, and frames. Signal Processing,2003, 83(7):1355-1378.
    [93]Sunilkumar V, Bambah B A, Jagannathan R, et al. Coherent states of nonlinear algebras: applications to quantum optics. Journal of Optics B-Quantum and Semiclassical Optics, 2000,2(2):126-132.
    [94]Sanz L, Moussa M H Y, Furuya K. Generation of generalized coherent states with two coupled Bose-Einstein condensates. Annals of Physics,2006,321 (5):1206-1220.
    [95]Andersen U L, Josse V, Leuchs G. Unconditional quantum cloning of coherent states with linear optics. Physical Review Letters,2005,94(24):240503.
    [96]Csorgo T. Coherent states of the creation operator from fully developed Bose-Einstein con-densates. Acta Physica Hungarica New Series-Heavy Ion Physics,1999,9(2-3):161-168.
    [97]Kulagin V V, Cherepenin V A. Generation of squeezed states of light in the systems of free electrons. Laser Physics,1997,7(1):131-134.
    [98]He B, Bergou J A. Coherent-states engineering with linear optics:Possible and impossible tasks. Physical Review A,2008,77(5):053818.
    [99]Murao M, Vedral V. Remote information concentration using a bound entangled state. Phys-ical Review Letters,2001,86(2):352-355.
    [100]Hayashi M, Markham D, Murao M, et al. Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Physical Review Letters, 2006,96(4):040501.
    [101]Brassard G, Methot A A, Tapp A. Minimum entangled state dimension required for pseudo-telepathy. Quantum Information and Computation,2005,5(4-5):275-284.
    [102]Kitagawa A, Yamamoto K, Nagata K, et al. Quantum state engineering with entangled squeezed states and photon number detector. Quantum Optics and Applications in Com-puting and Communications Ⅱ,2005,5631:87-94.
    [103]Hirota O, Sasaki M. Entangled state based on nonorthogonal state. Quantum Communica-tion, Computing, and Measurement 3,2001,359-366.
    [104]Dirac P. The principles of quantum mechanics. Clarendon Press, Oxford,1930.
    [105]Neumann J. Die Eindeutigkeit der Schrodingerschen Operatoren. Mathematische Annalen, 1931,104(1):570-578.
    [106]Feynman R. Space-time approach to non-relativistic quantum mechanics. Reviews of Mod-ern Physics,1948,20(2):367-387.
    [107]Fairlie D. The formulation of quantum mechanics in terms of phase space functions. Pro-ceedings of the Cambridge Philosophical Society,1964,60(03):581-586.
    [108]Bayen F, Flato M, Fronsdal C, et al. Deformation theory and quantization. I. Deformations of symplectic structures. Annals of Physics,1978,111(1):61-110.
    [109]Bayen F, Flato M, Fronsdal C, et al. Deformation theory and quantization. II. Physical ap-plications. Annals of Physics,1978,111(1):111-151.
    [110]Curtright T, Fairlie D, Zachos C. Features of time-independent Wigner functions. Physical Review D,1998,58:025002.
    [111]Hirshfeld A C, Henselder P. Deformation quantization in the teaching of quantum mechanics. American Journal of Physics,2002,70(5):537-547.
    [112]Gerstenhaber M. On the deformation of rings and algebras. Annals of Mathematics,1964, 79:59-103.
    [113]Zachos C, Fairlie D, Curtright T. Quantum mechanics in phase space:an overview with selected papers. World Scientific Publishing Co. Pte. Ltd., Singapore,2005.
    [114]Curtright T, Uematsu T, Zachos C. Generating all Wigner functions. Journal of Mathematical Physics,2001,42(6):2396-2415.
    [115]Bartlett M S, Moyal J E. The exact transition probabilities of quantum-mechanical oscil-lators calculated by the phase-space method. Mathematical Proceedings of the Cambridge Philosophical Society,1949,45(04):545-553.
    [116]Dayi O F, Jellal A. Hall effect in noncommutative coordinates. Journal of Mathematical Physics,2002,43(10):4592-4601.
    [117]Gamboa J, Mendez F, Loewe M, et al. The Landau problem and noncommutative quantum mechanics. Modern Physics Letters A,2001,16(32):2075-2078.
    [118]Harms B, Micu O. Noncommutative quantum Hall effect and Aharonov-Bohm effect. Jour-nal of Physics A-Mathematical and Theoretical,2007,40(33):10337-10347.
    [119]Dayi O F, Elbistan M. Spin Hall effect in noncommutative coordinates. Physics Letters A, 2009,373(15):1314-1320.
    [120]Dulat S, Li K. Quantum Hall effect in noncommutative quantum mechanics. European Physical Journal C,2009,60(1):163-168.
    [121]Jing S C, Zuo F, Heng T H. Deformation quantization of noncommutative quantum mechan-ics. Journal of High Energy Physics,2004, (10):049.
    [122]Schweber S, Bethe H. An introduction to relativistic quantum field theory. Row, Peterson, New York,1961.
    [123]Umezawa H, Matsumoto H, Tachiki M. Thermo field dynamics and condensed states. North-Holland Publishing Company, Amsterdam, Netherlands,1982.
    [124]Fetter A, Walecka J. Quantum theory of many particle systems. Dover,2003.
    [125]Han D, Kim Y S, Noz M E. O(3,3)-like symmetries of coupled harmonic-oscillators. Journal of Mathematical Physics,1995,36(8):3940-3954.
    [126]Han D, Kim Y S,Noz M E. Illustrative example of Feynman's rest of the universe. American Journal of Physics,1999,67(1):61-66.
    [127]Kim Y S, Noz M E. Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators. Journal of Optics B-Quantum and Semiclassical Optics,2005, 7(12):S458-S467.
    [128]Jellal A, Schreiber M, El Kinani E H. Two coupled harmonic oscillators on noncommutative plane. International Journal of Modern Physics A,2005,20(7):1515-1529.
    [129]Bateman H. On dissipative systems and related variational principles. Physical Review, 1931,38(4):815-819.
    [130]Sargent III M, Scully M, Lamb Jr W. Laser Physics. Addison-Wesley, Reading, Mas-sachusetts,1974.
    [131]Dekker H. Classical and quantum mechanics of the damped harmonic oscillator. Physics Reports,1981,80(1):1-110.
    [132]Scully M, Zubairy M. Quantum optics. Cambridge University Press,1997.
    [133]Walls D, Milburn G. Quantum optics. Springer, Berlin,2008.
    [134]Kossakowski A. On Markovian limit in quantum open systems. Open Systems and Infor-mation Dynamics,2002,9(1):1-18.
    [135]Chruscinski D. Resonant states and classical damping. Open Systems and Information Dynamics,2002,9(3):207-221.
    [136]Blasone M, Jizba P. Quantum mechanics of the damped harmonic oscillator. Canadian Journal of Physics,2002,80(6):645-660.
    [137]Chruscinski D. Quantum mechanics of damped systems. Journal of Mathematical Physics, 2003,44(9):3718-3733.
    [138]Latimer D C. Quantizing the damped harmonic oscillator. Journal of Physics A-Mathematical and General,2005,38(9):2021-2027.
    [139]Chruscinski D, Jurkowski J. Quantum damped oscillator I:Dissipation and resonances. Annals of Physics,2006,321(4):854-874.
    [140]Dito G, Turrubiates F J. The damped harmonic oscillator in deformation quantization. Physics Letters A,2006,352(4-5):309-316.
    [141]Chruscinski D. Koopman's approach to dissipation. Reports on Mathematical Physics,2006, 57(3):319-332.
    [142]Bastos C, Bertolami O, Dias N C, et al. Deformation quantization of noncommutative quan-tum mechanics and dissipation. Journal of Physics:Conference Series,2007,67:012058.
    [143]Pontryagin L. The mathematical theory of optimal processes. Interscience, New York,1962.
    [144]Chruscinski D. Wigner function for damped systems. arXiv:math-ph/0209008,2002.
    [145]Gerry C. On the path integral quantization of the damped harmonic oscillator. Journal of Mathematical Physics,1984,25:1820-1822.
    [146]Celeghini E, Rasetti M, Vitiello G. Quantum dissipation. Annals of Physics,1992, 215:156-170.
    [147]Srivastava Y, Vitiello G, Widom A. Quantum dissipation and quantum noise. Annals of Physics,1995,238(1):200-207.
    [148]Blasone M, Jizba P. Bateman's dual system revisited:quantization, geometric phase and relation with the ground-state energy of the linear harmonic oscillator. Annals of Physics, 2004,312(2):354-397.
    [149]Zhang J Z. Testing spatial noncommutativity via Rydberg atoms. Physical Review Letters, 2004,93(4):043002.
    [150]Caves C M, Schumaker B L. New formalism for two-photon quantum optics. Ⅰ. Quadrature phases and squeezed states. Physical Review A,1985,31(5):3068-3092.
    [151]Schumaker B L, Caves C M. New formalism for two-photon quantum optics. Ⅱ. Mathemat-ical foundation and compact notation. Physical Review A,1985,31 (5):3093-3111.
    [152]Zhang J Z. Deformed two-photon squeezed states in noncommutative space. Physics Letters B,2004,597(3-4):362-367.
    [153]Wei H, Li J H, Fang R R, et al. Deformed two-mode quadrature operators in noncommutative space. Physics Letters B,2006,633(4-5):636-640.
    [154]Wu Y. Linear dependence of deformed two-photon quadrature operators on spatial noncom-mutative parameter. Physics Letters B,2006,634(1):74-77.
    [155]Bertolami O, Rosa J. Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics. Modern Physics Letters A,2006, 21(10):795-802.
    [156]Bogoliubov N. Lectures on quantum statistics, Vol.1. Gordon and Breach, New York,1961.
    [157]Zhedanov A. Bogoliubov q-transformation and Clebsch-Gordan-Coefficients for a q-oscillator. Physics Letters A,1992,165(1):53-57.
    [158]Jonke L, Meljanac S. Representations of non-commutative quantum mechanics and symme-tries. European Physical Journal C,2003,29(3):433-439.
    [159]Einstein A, Podolsky B, Rosen N, et al. Can quantum-mechanical description of physical reality be considered complete? Physical Review,1935,47(10):777-780.
    [160]Fan H Y, Klauder J. Eigenvectors of two particles'relative position and total momentum. Physical Review A,1994,49(2):704-707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700