白菜(Brassica campestris L.)耐抽薹性及其它农艺性状QTL定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白菜(Brassica campestris L.)起源于中国,在我国蔬菜栽培中分布广、种植面积大。在我国北方白菜栽培中,春季的先期抽薹是生产上的主要限制因素。选育优良的晚抽薹品种,是其稳定、安全生产的重要保障。由于控制白菜的晚抽薹性状为数量性状,常规育种进展缓慢,只有通过QTL分析才能将多基因性状分解为若干遗传组分,找到与目标性状QTL位点紧密连锁的分子标记进行辅助选择,才能加快育种进程。
     本实验以结球白菜BY(Brassica campestris L. ssp. Pekinensis)和芜菁MM(Brassica rapa L. ssp. rapifera Metzg)杂交后代F1进行小孢子培养获得的81个DH株系为试材,采用AFLP、SRAP、RAPD、SSR及同工酶等5种标记技术,构建了一张较为饱和的、永久性的遗传图谱,在此基础上,进行耐抽薹性状及其相关农艺性状的QTL定位研究。
     利用白菜与芜菁杂交后代所获得的81个DH系组成的DH群体,发现AFLP、SRAP、SSR、RAPD和同工酶等5种标记均出现较高比例的偏分离,通过分子标记的分离分析发现,来源于两个亲本的标记座位在群体中的分离比例接近1:1;每个位点上,两个亲本基因频率的平均值比较接近,并没有发现有严重偏向某一亲本的现象,说明该群体总体上未出现严重的偏分离,可以用于遗传图谱的构建及数量性状QTL定位研究。
     以白菜与芜菁杂交后代所获得的81个DH系为作图群体,采用AFLP、SRAP、SSR、RAPD和同工酶等5种标记类型,利用JoinMap3.0软件构建了永久性高密度的白菜遗传连锁图谱。该图谱包含10个连锁群,由326个遗传标记组成,其中包括130个AFLP标记、123个SRAP标记、16个SSR标记、43个RAPD标记、12个同工酶标记。图谱总长度为882 cM,标记间平均图距为2.71 cM。每个连锁群上的标记数在6~118个之间,每个连锁群的长度在33~222 cM的范围内,平均图距在1.88~8.33 cM之间。该图谱是国内第一张结球白菜×芜菁亚种间永久性遗传连锁图谱,为耐抽薹等重要性状的基因定位、比较基因组学等研究打下了良好基础。
     利用MapQTL5软件,采用MQM作图法,对控制白菜耐抽薹性的数量性状基因位点进行了定位和遗传效应研究。以抽薹指数、抽薹日数、开花日数进行耐抽薹性表型鉴定,通过两个不同年份试验,共检测到控制耐抽薹性的QTL 18个,其中,控制抽薹指数的QTL 11个,控制抽薹日数QTL 3个、开花日数的QTL 4个,分布于4个连锁群上。获得控制白菜耐抽薹性较稳定的QTL共6个。其中,获得1个稳定的主效QTL,获得以抽薹指数、抽薹日数、开花日数3个指标定位共同稳定表达的QTL 1个,两个指标定
Chinese cabbage (Brassica campestris L.)is one of the most important vegetables in East Asian countries, such as China, Japan and Korea. Early bolting of Chinese cabbage during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs.
     In order to analyze the genetic basis of bolting traits, a genetic map of Brassica campestris was constructed based on AFLP, SRAP, SSR, RAPD, and isozyme markers. Marker analysis was performed on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: BY (an extra-early bolting Chinese cabbage line) and MM (an extra-late bolting European turnip line).
     In this DH population, distorted segregation is a universal phenomenal. The frequency of distorted segregation markers were high. Out of 432 markers, the number of markers came from male parent and female parent agrees with the Mendel ratio 1:1 approximately. To single marker, the frequency of band from two parents was closely, and not deflected to either parent. It could be concluded that no obvious distorted segregation in the population.
     A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were employed to construct a genetic linkage map with 10 linkage groups,which covered a total of 882 cM with an average distance of 2.71 cM between loci. Number of markers in every linkage groups varied from 6 to 118, average interval distance from 1.88 cM to 8.33 cM and the total map distance from 33 to 222 cM. A total of 25.2% deviated markers distributed in the map. The genetic map is fundamental for gene localization, comparative genomics, and QTL mapping of bolting and agronomical traits.
     The bolting resistance of each DH line were evaluated by bolting index, bolting time and flowering time under controlled conditions. QTL analysis was conducted using MQM mapping with MapQTL5 software. In 2005 and 2006,twenty-one QTL controlling bolting resistance were identified,11 for bolting index, 3 for bolting time, 4 for flowering time. These QTL, accounting for 10.7% to 35% of the phenotypic variation with positive additive effects, were distributed into five linkage groups. BI-5 had the highest contribution to bolting resistance, and it may be a major QTL. These results provide useful information for molecular
引文
[1] M. E. Sorrells 著. 周桂莲译. 作物改良中优良等位基因的直接鉴定和选择[J]. 麦类作物, 1998, 18(1): 13~17.
    [2] Knapp SJ. Using molecular markers to estimate quantitative trait locus parameters: power and genetic variances for unreplicated and replicated progeny[J]. Genetics, 1990, 126(11): 769~777.
    [3] 王 彪, 邱丽娟. 大豆 SSR 技术研究进展[J]. 植物学通报, 2002, 19(1): 44~48.
    [4] Chen FQ, M R Foolad, J. Hyman1, et al. Mapping of QTLs for Iycopene and other fruit traits in a Lycopersicon esculentum × L. Pimpinellifolium cross and comparison of QTLs across tomato species[J]. Molecular Breeding, 1999, 5: 283~299.
    [5] Fulton TM. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comprisions with QTLs found in other wild species[J]. Theor .Appl .Genet, 1997, 95: 881~894.
    [6] 范 敏, 许 勇, 张海英, 等. 西瓜果实性状 QTL 定位及其遗传效应分析[J]. 遗传学报, 2000, 27(10): 902~910.
    [7] Hesham AS, Agrama M, E Moussa. Mapping QTLs in breeding for drought tolerance in maize(Zea mays L.)[J]. Euphytica, 1996, 91:89~97
    [8] 方宣钧, 吴为人, 唐纪良编著. 作物 DNA 标记辅助育种[M]. 北京:科学出版社, 2001.
    [9] 刘树兵, 王洪刚, 孔令让, 等. 高等植物的遗传作图[J]. 山东农业大学学报, 1999, 30(1): 73~78
    [10] Staub JK, Serquen FC, Gupta M. Genetic markers map construction and their application in plant breeding[J]. Hortscience, 1996, 31(5): 729~740.
    [11]吴为人, 李维明, 卢浩然. 建立一个重组自交系群体所需的自交代数[J]. 福建农业大学学报, 1997, 26(2): 129~132.
    [12]李维明, 唐定中, 吴为人, 等. 用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼粳交群体的分子图谱的比较[J]. 中国水稻科学, 2000, 14(2): 71~78.
    [13] Shi Liming. Genetic diversity and its preservation[J]. Chinese Biodiversity, 1993,(1):23~31.
    [14] 王 镭, 郑茂波. 遗传标记的研究进展[J]. 生物技术, 2002, 12(2): 41~42.
    [15] 刘树兵, 王洪刚, 孔令让, 等. 高等植物的遗传作图[J]. 山东农业大学学报(自然科学版), 1999, 30(1):73~78.
    [16] 谢 皓. 小麦基因定位研究进展[J]. 北京农学院学报, 2000, 15(4):74~79.
    [17] Hunter R L, Markert C L, Science, 1957,125:1294-1295.
    [18] Harris H, Hopkinson D A, Handbook of enzyme electrophoresis in human genstics. Oxford: North Holland Publishing, 1976(loose leaf with Supplements in 1988 and 1978)
    [19] Gottileb L D, Gel electrophoresis: new approach to the study of evolution, BioScience, 1971, 21:939-944.
    [20] Gottileb L D, Electrophoretic evidence and plant population, Prog Phytochem. 1981,7:1-46.
    [21] Soltis D E, Haufler C H, Gastony G J, Detecting enzyme variation in the fern genus Bommeria: an analysis of methodolog, Syst Bot, 1980,5: 30-38.
    [22] Cummins H, Wyatt R, Genetic variability in natural populations of the moss Atrichum angustatum, Bryologist, 1981,84: 30-38.
    [23] Prakash S, Lewontin R C, Hubby J L, A moleculer approach to the study of genetic heterozygosity in natural populations/IV. Patterns of genic variation in cetrol, marginal and isolated populations of Drosophila pesudoobscura, Gentic, 1969, 61: 841-858.
    [24] 王中仁,植物等位酶分析[M],北京科学出版社,1996 年.
    [25] Tanksley S D. Mapping polygenes, Annu, Rev, Genet,1993(27):205-233.
    [26] Kahler A L, Wehrhahr C F, Associations between quantitative trains and enzyme loci in the F2 population of a maize hybrid, Theor Appl Genet, 1986,72:15-26.
    [27] Misevie D, Gerie I, Tadie B, Allozyme marker loci associated with favorable alleles for grain yield in maize. Theor Appl Genet, 1990,80:518-522.
    [28] Shoemaker R C, Olson T C, Molecular linkage map of soybean(Glycine max L. Merr.) In O’Brien S J. Genetic maps: Locus map of complex genomes, Cold Spring Harbor Laboratory Press , 1993: 131-138.
    [29] Botstei D, White RL, Skolnick M, et al. Construction of a genetic map in man using restiction fragment polymorphisms[J]. Am J Hum Genet, 1980, 32:314~331.
    [30] Nakamcra YM, Leppert P, P O’Connell, et al. Variable number tandem repeat(VNTR) markers for human gene mapping[J]. Science, 1987, 235:1616~1622.
    [31] Williams J, Kubelik A, Livak K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl .Acids .Res, 1990, 18:6531~6535.
    [32] Wang YH, Thomas CE, Dean RA. A genetic map of melon(Cucumis melo L.) based on amplified fragment length polymorphism(AFLP)markers[J]. Theor .Appl .Genet, 1997, 95:791~798.
    [33] Caetanao AG. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers[J]. Biotechnology, 1991, 9:553~557.
    [34] Zietkewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sepuence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20:176~183.
    [35] Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphisms of simple sequence repeat DNA in soybean[J]. Genetics, 1992, 132:1131~1139.
    [36] Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to a downy mildew resistance genes in lettuce using near-isogenic lines[J]. Genome, 1991, 34:1021~1027.
    [37] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of human genome[J]. Science, 1989, 254:1434~1435.
    [38] Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolation pathogen resistance genes from potato with a potential for wide application in plants[J]. Nature Genet, 1996, 14:421~429.
    [39] Vos P, Hogers R, Blecker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucl .Acids .Res, 1995, 23: 4407~4414.
    [40] Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. The Plant Journal, 1993, 4(2): 403~410.
    [41] Sarkar GS, Kapelner S, Sommer SS. Formamide can dramatically improve the specificity of PCR[J]. Nucleic Acids Res, 1990, 18: 7465.
    [42] Saghai M. A., M. Q. Zhang, D. B. Neale, et al. Associations Between Nuclear Loci and Chloroplast DNA Genotypes in Wild Barley[J]. Genetics, 1992, 131: 225~231.
    [43] Ghaveyazie B. Classification of rice germ plasm Ⅰ:Analysis using AFLP and PCR-based RFLP[J].Theor .Appl .Genet, 1995, 91:218~227.
    [44] Williams J, Kubelik A, Livak K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl .Acids .Res, 1990, 18:6531~6535.
    [45] Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome[J]. Science, 1998, 280:1077~1082.
    [46] Li G and Quiros C F. Sequence-related amplified polymorphism (SRAP), a new maker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet, 2001, 103: 455-461.
    [47] Hu J, Vick B A. Target Region Amplification Polymorphism: A novel marker techniqne for plant genotyping. Plant Molecular Biology Reporter, 2003, 21: 289- 294.
    [48] Voorrips RE, Jomgerius MC,Kanne HJ. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers[J]. Theor .Appl .Genet, 1997, 94(1): 75~82.
    [49] 徐云碧. 分子标记在数量基因定位中的应用[J]. 遗传, 1992, 14(2): 45~48.
    [50] Levi A, Thomas CE, Zhang X, et al. A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers[J]. J .Amer .Soc .Hort .Sci, 2001, 126(6):730~737.
    [51] Chaparro JX, Werner DJ, O'Malley D, et al. T argeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach[J]. Theor .Appl .Genet, 1994, 87:805~815.
    [52] 张鲁刚, 王鸣, 陈杭, 等. 中国白菜 RAPD 分子连锁图谱的构建[J].植物学报, 2000, 42(5): 485~489.
    [53] 张忠廷, 李松涛; 王斌. RAPD 在水稻温敏核不育研究中的应用.[J]. 遗传学报,199421 (5), 373~378.
    [54] 许 勇, 欧阳新星, 张海英, 等.西瓜野生种质耐冷性基因连锁的 RAPD 标记[J]. 园艺学报, 1998, 25(4): 397~398.
    [55] 许 勇, 欧阳新星, 张海英, 等.与西瓜野生种质抗枯萎病基因连锁的 RAPD 标记[J]. 植物学报, 1999, 41(9): 952~955.
    [56] Williamson VM, Ho JY, Wu FF, et al. A PCR-based marker tightly linked to the nematode resistance gene,Mi,in tomato[J]. Theor .Appl .Genet, 1994, 87: 757~763.
    [57] Bohn M, M Khairallah D. QTL mapping in tropical maize: Ⅰ. Genomic region affecting leaf feeding resistance to sugarcane borer and other traits[J]. Crop Sci, 1996, 36(4): 1352~1361.
    [58] Weber J, May PE. A bundant class of human DNA polymorphism which can be typed using the polymerase chain reaction[J]. Am .J .Genet, 1989, 44: 388~396.
    [59] Dietrich WF, Miller J. A comprehensive genetic map of the mouse genome[J]. Nature, 1996, 380:149~152.
    [60] 向道权, 曹海河, 曹永国, 等. 玉米 SSR 遗传图谱的构建及产量性状基因定位[J]. 遗传学报, 2001, 28(8):778~784.
    [61] Lin JJ. Identification of molecular markers in soybean: comparing RFLP, RAPD and AFLP DNA polymerase[J]. Plant Mol Biol Rep, 1996, 14: 156~169.
    [62] Jouke PK, Herman JVE, Ronald GVB. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy(Solanaceae)[J]. Pl .Syst .Evol, 1998, 210:87~103.
    [63] Vos P, Hogers R, Blecker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucl .Acids .Res, 1995, 23:4407~4414.
    [64] 潘俊松, 王刚 李效尊,等。黄瓜 SRAP 遗传连锁图的构建及始花节位的基因定位[J].自然科学进展,2005,15(2): 167~172.
    [65] Li G., Gao M, Yang B, et al.. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theor. Appl. Genet, 2003, 107: 168-180.
    [66] Ferriol M,Pico B, Nueo F, et al. Genetic diversity of a germplasm collection of Cucubita pepo using SRAP and AFLP markers. Theor Appl Genet, 2003, 107:271-282.
    [67] Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers(ACGM)in Brassica napus from Arabidopsis thaliana sequences of known biological function[J]. Genome, 1999, 42(3): 387~402.
    [68] Suares MC, Bernal A, Gutierrez J, et al. Developing expressed sequence tag(sEsts) from polymorphic transcript-derived fragment(sTdfs)in cassav(aManihot esculenta Crantz)[J]. Genome, 2000, 48: 62~67.
    [69] Wang X, Fang Z, Huang S, et al. An extended random primer amplified region(ERPAR) marker linked to a dominant male sterility gene in cabbage(Brassica oleracea var. capitata)[J]. Euphytica, 2000, 112:267~273.
    [70] Stuber CW, Sisco PH. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybred[C]. Proc 46th Annual Corn and Sorghum Industry Research Conf, 1991, 41:70~83.
    [71] Lander ES, Green P, Abrahamson J. MAPMARKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J]. Genomics, 1987, 1:174~181.
    [72] Paterson S, Lincoln S E., Tanksley S D. Resolution of quantitative traits into mendelian factors using a complete linkage map of restriction fragment length polymorphisms [J]. Nature, 1988, 335: 721~726.
    [73] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121: 185~199.
    [74] Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136: 1457~1468.
    [75] Haley C S, Knott S A A. simple regression method for mapping quantitative trait locis in line crosses using flanking markers [J]. Heredity, 1992, 69:315~324.
    [76] Martines O A, Curnow R N. Estimating the locations and the sizes of the effects of QTL using flanking markers [J]. Theor. Appl. Genet, 1992, 85: 480~488.
    [77] Jiang C and Zeng Z B. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines[J]. Genetics, 1997, 101:47-58.
    [78] Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity[J]. Genetics, 1993, 134:1277-1288.
    [79] Jansen R C. Controlling the type I and type II errors in mapping quantitative trait loci[J]. Genetics, 1994, 138: 871-881.
    [80] 戚昌瀚,刘桃菊,唐建军,李晖。作物模拟与 QTL 定位的互补作用及其应用[J],中国农业科学2004,37(9): 1390-1395.
    [81] 何小红,徐辰武,蒯建敏,李韬,孙长森,构建数量性状基因图谱的几种统计方法[J],遗传 23( 5):482- 486,2001.
    [82] 高用明,朱军.植物 QTL 定位方法的研究进展.遗传[J],2000, 22 (3) :175-179.
    [83] 冯宗云,苟琳,何萍,等. DNA 分子标记与作物数量性状改良[J]. 西南农业学报,1998, 11(育种和栽培专辑):67-72.
    [84] Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits. In:Chen L S, Ruan S q and Zhu J (eds) Advanced Topics in Biomathematics: Proceedings of International Conference on athematical Biology. Singapore: World Scientific Publishing Co., 1998,321-330.
    [85] 梅德圣,李云昌,王汉中.作物产量性状 QTL 定位的研究现状及应用前景.中国农学通报,2003, 19(5): 83-83).
    [86] 沈金雄.甘蓝型油菜杂种优势及其遗传分析[D]..武汉:华中农业大学博十学位论文,2003
    [87] Hittalmani S, Foolad MR, Mew T, et al. Development of a PCR-based marker to identify rice blast resistant gene Pi-Z(t) in a segregating population[J]. Theor .Appl .Gentet, 1995, 91:9-14.
    [88] Lindhout P. Perspectives of molecular marker assisted breeding for earliness in tomato[J]. Euphytica, 1994, 79: 279~286.
    [89] Gu WK, Weeden NF, Yu J, et al. Large-scale ,cost-effective screening of PCR products in marker-assisted selection applications[J].Theor .Appl .Genet, 1995, 91:465~470.
    [90] Martin GB, Brommonschenkel SH. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J].Science, 1993, 262:1432~1436.
    [91] 邢永忠, 徐才国. 作物数量性状基因研究进展[J]. 遗传, 2001, 23(5):498~502.
    [92] Vogel JM. Application of genetic dignostics to plant genome analysis and plant breeding[J]. Hortscience, 1996, 31(7).
    [93] Mansur LM. Genetic mapping of agronomic traits using recombinant inbred lines of soybean[J]. Crop Science, 1996, 36: 1327~1336.
    [94] 卢 钢. 白菜分子遗传图谱构建及其重要农艺性状的基因定位研究[D]. 浙江大学博士学位论文, 2001
    [95] 刘春林, 官春云, 李 木旬, 等. 油菜分子标记图谱构建及抗菌核病性状的 QTL 定位[J]. 遗传学报, 2000, 27(10):918~924.
    [96] 国广泰史, 钱 前, 佐藤宏之, 等. 水稻纹枯病抗性 QTL 分析[J]. 遗传学报, 2002, 29(1): 50~55.
    [97] Foolad MR, Jones RA. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum)using trait-based marker analysis[J]. Theor .Appl .Genet, 1993, 87:184~192.
    [98] 王彩洁, 徐 冉, 王金龙, 等. 分子标记在玉米遗传育种中的应用[J]. 玉米科学, 2001, 9(3): 18~20.
    [99] Tanksley S D, McCouch S R. Seed bank and molecular maps: unlocking genetic potential from the wild[J]. Science, 1997, 277:1063-1066.
    [100] Kearsey M J, Farquhar A G L. QTL analysis in plants; where are we now [J]. Heredity, 1998, 80: 137~142.
    [101] 刑永忠,徐才国,华金平等,水稻株高和抽穗期基因定位和分离,植物学报[J],2001,43(7):721-726…………
    [102] Robertson D S A. A possible technique for isolating genetic DNA for quantitative trait in plants[J].Theor Bio,1985,117:1-10.
    [103] Beavis WD. The power and deceipt of QTL experiments: Lessons from comparative QTL studies. P. 250~266. In DB Wilkinson (ed). Proc. Annu. Corn Sorghum Res. Conf., 49th, Chicago, IL. 7~8 Dec. 1994. Am. Seed Trade Assoc., Washington, DC.
    [104] Yano M, Harushima Y, Nagarma Y et al. Indentification of quantitaitive trait loci controlling heading date in rice using a high-density linkage map[J]. Theor Appl Genet, 1997,95:1025-1032.
    [105] Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross[J]. Theor .Appl .Genet, 1996, 92:230~244.
    [106] 吴为人, 李维明,卢浩然,等. 数量性状基因座的动态定位策略[J],生物数学学报,1997,12(5):490-495.
    [107] Eshed Y, Zamir D, An introgression line population of lycepersion penellii in the cultivated tomato enables the identification and fine mapping of yield-associated, Genetics,1995,141:1147-1162.
    [108] Tanksley S D, Mapping polygenes, Annu. Rev. Genet. 1993,(27):205-233.
    [109] Hawk J A. Tight linkage of two seeding mutants in early-flowering turnip rape (Brassica campestis) [J]. Can J.Genet Cytol, 1982b, 24:475~478.
    [110] Stringam G R. Genetics of two bloomless mutants in Brassica campestis L [J]. Can J. Genet Cytol, 1976, 18: 221~230.
    [111] Dorrell D G, Downey R K. The inheritance of erucic acid content in rape seed (Brassica capmpestis) [J]. Can .J. Plant Sci, 1964, 44: 499~504.
    [112] Ferreira M E, et al. RFLP mapping of Brassica napus using doubled-haploid lines [J]. Theor Appl Genet. 1994, 89: 615~621.
    [113] Kole C, et al. Genetic linkage map of a Brassica campestris recombinant inbred population [J]. J. Hered, 1997, 88(6): 553~557.
    [114] Sharma R., Aggarwal R.A.K., Kumar R., Mohapatra T., andSharma R.P. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea.), Genome, 2002,45: 467-472.
    [115] Slocum M K, et al. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea [J]. Theor Appl Genet, 1990, 80: 57~64.
    [116] Pradhan A.K., Gupta V., Mukhopadhyay A.et al. A high-density linkage map in Brassica juncea using AFLP and RFLPmarkers [J]. T eor. App1. Genet. 2003,106: 607-614.
    [117] 张立阳, 张凤兰, 王美, 等. 大白菜永久高密度分子遗传图谱的构建[J]. 园艺学报,2005,32(2): 249-255.
    [118] Landry B S, Hubert N, Crete R, et al. A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae(Woronin)[J]. Genome, 1992, 35: 380~384.
    [119] Voorips R E, Jongerius M C, Kanne H J. Mapping of two genes for resistance to Clubroot (Plasmodiophora brassicea) in a population of doubed haploid line of Brassica oleracea by means of RFLP and AFLP makers, Theor Appl Genet, 1997, 94:75-82.
    [120] Kennard W C, Slocum M K, Figdore, et al, Genetic analysis of morpholocigical variation in Brassica oleracea using molecular markers, Theor Appl Genet, 1994, 87:721-732.
    [121] M E, Satagoban J, Yandell B S, et al, Mapping loci controlling rern alization requ Ferreira irement and flowering time in Brassica napus, Theor Appl Genet, 1995, 90: 727-732.
    [122] Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC. Mapping loci controlling Vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995, 90:727-732.
    [123] Nozaki T, Anji T, Takahashi et al. Analysis of isozyme loci and their likages in Brassica campestris L., Breed Sci, 1995, 45: 57-64.
    [124] Song K M, Slocum M K, Osborn T. C, Molecular marker analysis of genes controlling morphological variation in Brassica capmpestis(syn. rapa)[J]. Theoretical and Applied Genetics, 1995, 90: 1-10.
    [125] 张鲁刚,中国白菜分子标记遗传图谱的构建及 QTL 定位分析[D],陕西,西北农业大学 1999
    [126] 卢刚,曹家树,陈杭等, 白菜几个重要园艺性状的 QTLs 分析[J]. 中国农业科学,2002,35(8):969-974.
    [127] 于栓仓. 大白菜分子遗传图谱的构建及重要农艺性状的 QTL 定位[D]. 北京,中国农业科学研究院, 2003.
    [128] 程斐,李式军,奥岩松,等. 大白菜抽薹性状的遗传规律研究[J]. 南京农业人学学报,1999, 22(1): 26- 28.
    [129] Mero C E, Honma S. Inheritance of bolt resistance in an interspecific cross of Brassica species. I. Brassica napus L.× B. campestris L.ssp. pekinensis, [J]. Heredity, 1984a, 75: 407-410.
    [130] Nozaki T, Kumazaki A, Koba T, et al. Linkage analysis among loci for PAPDs,isozymc and some agronomic traits in Brassica rapa L[J]. Euphytica,1997, 95(1): 115-123.
    [131] Hidetoshi Ajisaka, Yasuhisa Kunginuki, et al. Identification and mapping of a quantitative trait locus controlling extremec late bolting in Chinese cabbage(Brassica campestris L.ssp.pekinensis syn rapa.L.)using bulked segregant analysis[J]. Euphylica, 2001, 1 18: 75- 81.
    [132] 赵香梅, 孙守如, 张晓伟, 等. 大白菜春化与抽薹特性的研究进展[J].中国蔬菜,2005 (1):33-35.
    [133] 程 斐,张蜀宁,孙朝晖,等. 春大白菜品种选育的形态与生理指标[J].园艺学报,1999, 26(2): 20-22.
    [134] 余阳俊,陈广,刘 琪. 大白菜晚抽鉴性及其与开花叶片数的关系[J]. 北京农业科学,1996, 14(3): 32-34.
    [135] 余阳俊,赵岫云,徐家炳,等.大白菜室内苗期耐抽苔鉴定方法研究[J].中国蔬菜,2002,(1):29-30.
    [136] 奥岩松,李式军. 大白菜发育过程中可溶性蛋白质的变化[J]. 中国疏菜,1997( 2):19- 21.
    [137] 朱丽萍,春结球白菜品种比较试验.中国蔬菜[J],1997, (4): 45.
    [138] Ajisaka H, Kuginuki Y, Enomoto S, Hirai M. Mapping of loci affecting the cultural efficiency of microspore culture of Brassic campestris L. (syn. rapa L.) using DNA polymorphism[J]. Breeding Science, 1999, 49: 187-192.
    [139] Yui S J, Yoshikawa H. Bolting characters of slow bolting Brassica campestris varieties under non-vernalized condition. Cruciferae-Newsleter. 1988. N.13:128-129.
    [140] 蒋名川.大白菜栽培[M],北京:农业出版社,1985, 44-45.
    [141] 聂和民等译. 蔬菜生物生理学基础[M] ..北京:农业出版社,日本农田渔村文化协会编,1985,
    [142] 陈 机等著.大白菜形态学[M]. 北京:科学出版社,1984.
    [143] 苏学军,杨衔美,李化银,等. 夏播白菜先期抽苔原因及预防[J]. 北方园艺,1999,(5): 5-6.
    [144] 周长久,王鸣等. 现代蔬菜育种学[M]. 科学技术文献出版社,1996 , 90-91.
    [145] Teutonico. Mapping loci controlling the vernalization requirement in Brassica ropa[J]. Theor Appl.Genet , 1995,91:1279-1283.
    [146] 徐云碧. QTL 作图效率的影响因素—群体大小[J], 浙江大学学报(农业与生命科学版),1994,20(6): 573-578,1994.
    [147] Nishioka M, Tamura K, Hayashi M et al.. Mapping of QTLs for bolting time in Brassica campestris (syn. rapa) under different environmental conditions. Breeding Science, 2005, 55: 127-133.
    [148] Teutonico 1995. Mapping loci controlling the vernalization requirement in Brassica campestris. Theor Appl. Genet inpress.,1995,91:1279-1283.
    [149] Teutonico RA, Osborn TC. Mapping of RFLP and qualitative trait loci in Brassica campestris andcomparison to the linkage maps of B. napus, B.oleracea and Arabidopsis thaliana [J]. Theor Appl Genet, 1994, 89: 885-894.
    [150] 尹小燕,王庆华,杨继良,等.玉米大斑病抗性基因 Ht2 的精细定位[J].科学通报,2002, 247(23): 1811-1814.
    [151] Tanksley S D, Nelson J C. Advanced-backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J].Theor Appl Genet, 1996, 92: 191-203.
    [152] De Vicente M C, Tanksley S D. QTL analysis of transgressive segregation in an intrespecific tomato cross[J]. Genetics, 1993, 134: 585-596.
    [153] Dunford R P, Kurata N, Laurie D A, et al. Conservation of fine-scale DNA marker order in the genomes of rice and Triticeae[J]. Necleic Acids Res, 1995, 23: 2724-2728.
    [154] Tanksley S D. Mapping polygenes[J]. Annu. Rev. Genet. 1993, (27): 205-233.
    [155] Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitaive trait loci Hd-1,Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors[J]. Theor Appl Genet,1998, 97: 37-44.
    [156] Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept ofgraphical genotypes[J]. Theor Appl Genet, 1989, 77: 95-101.
    [157] Song K M, Suzuki J Y, Solcum M K, et al. A linkage map of Brassica campestris based on restriction fragment length polymorphism loci [J]. Theor Appl Gene, 1991, 82: 296-304.
    [158] Ajisaka H, Kuginuki Y, Hida K, et al. A Linkage map of DNA markers in Brassica rapa [J]. Breed Sci. 1995, 45(Suppl.): 195.
    [159] Tanhuanpaa P K, Vilkki J P, Vilkki H J. A linkage map of spring turnip rape based on RFLP and RAPD markers[J]. Agricμltural and Food Science in Finland, 1996, 5: 209-217.
    [160] Matsumoto E, Yasui C, Ohi M, et al. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbag(eBrassica rapa L.ssp.pekinensis)[J]. Euphytica, 1998, 104(2): 79-86.
    [161] 于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析[J].中国农业科学,2003,36(2):190-195.
    [162] 张凤兰, 赵岫云. 用小孢子培养创建大白菜双单倍体作图群体[J].华北农学报,2003,18(4):74-77.
    [163] Murry H G, Thomspon W F. Rapid isolation of weight DNA [J].Nucleic Acid Res, 1980, 8:4321-4322.
    [164] Szewc-McFadden Szewc-WcFadden A K, Kresovich S, et al. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species[J]. Theor Appl Genet, 1996, 93: 534~538.
    [165] Suwabe, K., H. Iketani, T. Nunome et al. Isolation and characterization of microsatellites in Brassica rapa L[J]. Theor. Appl. Genet. 2002,104: 1092-1098.
    [166] 熊立仲, 王石平, 刘克德, 等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布[J]. 植物学报, 1998, 40(7): 605~614.
    [167] Li G., Gao M, Yang B et al. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theor. Appl. Genet, 2003, 107: 168-180.
    [168] 周顺伍. 基础生化试验技术[M],北京农业大学出版社,1989 年.
    [169] Stam P. Construction of integrated genetic linkage maps by means of a new computer package:JoinMap[J]. Plant J, 1993, 3: 739-744.
    [170] Stam P, Van Ooijen J W. JOINMAP (tm) version 3.0: Software for the calculation of genetic linkage maps[M]. CPRO-DLO, Wagerningen, 1995, The Netherlands.
    [171] Nozaki T, Kumazaki A, Koba T, et al. Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica rapa L. [J]. Euphitica, 1997, 95(1): 115~123.
    [172] Cheung W Y, Gugel R K., Landry B S. Identification of RAPD markers linked to the white rust resistance gene (Acr)in mustard(Brassica juncea L.)(Czern. and Coss.) [J]. Genome, 1998, 41(4): 626~628.
    [173] 杨金水.基因组学[M]. 高等教育出版社,2002.
    [174] 谭远德,万春玲. 不同作图群体对显隐性分子标记位点的作图效率[J]. 生命科学研究,2004, (3): 202-210.
    [175] Powell W, Morgante M. The comprison of RFLP, AFLP and SSR markers for germplasm analysis[J].Molecular Breeding, 1996, 2: 225~238.
    [176] Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers [J]. Euphytica, 1998, 99(3): 167~173.
    [177] McGregor C E, Lambert C A, Greylin M M, et al. A comparative assessment of DNA fingerprinting techniques(RAPD, ISSR, AFLP and SSR) in tetraploid potato(Solanum tuberosum L.)germplasm [J]. Euphytica, 2000, 113: 135~144.
    [178] 李传友, 郑洪刚, 翁曼丽, 等. 光敏核不育水稻等位突变系的 AFLP 分析[J]. 生物工程学报, 2000, 16(1): 91~95.
    [179] Mas J q Oliver M, Paniagua H q et al. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon[J]. Theor. Appl. Genet, 2000, 101:860-864.
    [180] Hori K, Kobayashi T, Shimizu A, et al. Efficent constrction of high-density linkage map and its application to QTLs analysis in barley. Theor Appl Genet,2003,107: 806-813.
    [181] Jia J H,Li C Y,Deng Q Y,et al. Rapid Constructing a Genetic Linkage Map by AFLP Technique and Mapping a New Gene [J]. Acta Botanica Sinica, 2003, 45(5): 614-620.
    [182] Van Eck HJ et al .The inheritance and chromosomal localization of AFLP markers in a non2 inbred potato offspring[J]. Mol .Breed., 1995, 1:397-4I0.
    [188] Uzunova MI, Ecke W. Abundance, polymorphism and genetic mapping of microsatellites in oilseed cane (Brassica nanus L.)[J]. Plant breeding,1999,118(4): 323-326.
    [189] 贾继增. 分子标记种质资源鉴定和分子标记育种[J]. 中国农业科学,1996,29(4):1-10.
    [190] Chyi Y S, et al, A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa [J], Genome, 1992, 35: 746~757.
    [192] Beaumont V H, Rocheford T R, Widholm J M, Mapping the anther culture response genes in maize (Zea mays L.)[J], Genome, 1995, 38: 968~975.
    [193] Zhang F L, Aoki S, Takahata Y. RAPD markers linked to microspore embryogenic ability in Brassica crops [J], Euphytica, 2003,131:207~213.
    [194] Kianian S F, Quiros C F, Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications [J], Theor Appl Genet, 1992, 84: 544~554.
    [195] Xu S J, Singh R J, Hymowitz T, Establishment of a cytogenetic map of soybean: progress and prospective, Soybean Genet, Newslet,1997,24:121-122.
    [196] Moriguch K. A genetic map based on RAPD, RFLP, isozyme morphological markers and QTL analysis for clubroot resistance in Brassica oleracea. [J], Breeding science, 1999, 49(4): 257~265.
    [197] 田雷, 王辉, 曹鸣庆, 等. AFLP 标记技术在大白菜种子真实性及品种纯度鉴定中的应用 [J]. 中国蔬菜, 2001, 4: 21~30.
    [198] 王美,张凤兰,孟祥栋,等. 中国白菜 AFLP 分子遗传图谱的构建[J].华化农学报,2004, 1(91):28-33
    [199] 张晓芬, 王晓武,娄平,等. 利用大白菜 DH 群体构建 AFLP 遗传连锁图谱[J]. 园艺学报 2005, 32(3):443 一 448.
    [200] 刘春香,韩玉珠,栗长兰等. 大白菜的春化特性及未熟抽薹研究进展[J]. 吉林农业大学学报,2001, 23( 3):61-64.
    [201] Vreugdenhil D, Aarts MGM, Koornneef M, et al.. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana[J]. Plant, Cell and Environment, 2004, 27(7):828-839.
    [202] 谭震波,沈利爽,袁柞廉等. 水稻再生能力和头季稻产量性状的 QTL 定位及其遗传效应分析[J], 作物学报,1997,23(3):289-295.
    [203] 刘立峰,李自超,穆平. 基于作物的分子育种研究进展[J],分子植物育种,2004,2(1):77-83.
    [204] Williams P H. Crucifer Genetics Cooperative: resource book[M]. Crucifer Genetics,Cooperative, 1985,Madison, Wis.
    [205] 张立阳. 大白菜连锁图谱的构建和重要农艺性状的 QTL 定位[D]. 扬州大学,2005.
    [206] 朱军. 数量性状遗传分析的新方法及其在育种中的应用[J]. 浙江大学学报(农业与生命科学版), 2000, 26(1):1-6.
    [207] Mansur L M ,Orf j,Lark K G.Determining the linkage of quantitative trait loci to RFLP maker using extreme phenotype of recombinant inbreds of soybean Glycine[J].Theor Appl Genet,1993,86:914~ 91.
    [208] Iqbal M j,Meksem K,Njiti V N,Microsatellite markers dentify three additional quantitative trait loci for resistance to soybeansudden—death syndrome(SDS) n Essex×Forrest RILs[J],Thoer Appl Genet, 2001, 102: 187-192.
    [209] 王孝宣 增强番茄果实颜色基因的精细定位及相关基因的差异表达[D].中国农业科学院,2004.
    [210] 陈书霞, 王晓武; 方智远,等. 芥蓝×甘蓝的 F2 群体抽薹期性状 QTLs 的 RAPD 标记[J]. 园艺学报, 2003, 30 (4):421-426.
    [211] 余阳俊,张凤兰,等. 大白菜晚抽蔓性快速评价方法[J]. 中国蔬菜,2004(6):16-18.
    [212] 李梅兰,汪俏梅,朱祝军,等. 春化对白菜 DNA 甲基化、GA 含量及蛋白质的影响[J]. 园艺学报, 2002, 29(4):353-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700