松北宾县绥化地区中生界构造—层序解释及其地球动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以层序地层学、构造地质学、沉积学及盆地分析等学科新理论为指导,综合应用地震、钻测井、岩芯和野外露头资料,建立了松北宾县-绥化地区中生界层序地层框架,并详细研究了超层序、层序及体系域等关键界面的特征。对不同类型的层序界面加以分析概括,发现该区存在八种类型的层序界面,每种层序界面形成的沉积环境不尽相同。在此基础上,结合研究区不同构造演化时期的古地貌特征,以详实的地震相分析和单井沉积相标志分析为手段,钻井、地震紧密结合,阐明了研究区中生界沉积相类型及体系域格架下的沉积相平面展布特征,分析了沉积相在不同构造演化时期的时空演化规律及其相应的地球动力学背景;得出了研究区断陷期构造活动控制沉积、坳陷期物源控制沉积的结论。利用地震反演及关键层位的属性提取分析成果,在层序、古地貌、沉积相研究的基础上,探讨了各体系域砂体发育分布规律,建立起对储集体和烃源岩分布具有重要预测功能的层序地层学模式;同时通过对松辽盆地油气成藏条件类比分析,预测了研究区的有利储集相带。坳陷期,海伦油气勘查区的西部、绥化油气勘查区的东北部和铁力油气勘查区的中部是稠油和油砂的有利勘探区带;断坳转换期,海伦油气勘查区的西部、绥化油气勘查区的西南部、哈尔滨东部油气勘查区的西北部和宾县断陷是天然气的较有利勘探区带,断陷期,绥化油气勘查区的中部、铁力油气勘查区的中部和宾县断陷是天然气的较有利勘探区带。
With the guidance of the new theory of sequence stratigraphy, tectonic geology, sedimentology and basin analysis and using the data of seismic, drilling-well logging, drilling core and field exposure, founded the Mesozoic sequence strata framework in Binxian-Suihua area of the Songliao Basin. Then studied the characteristic of the key sequence boundary about super-sequence, sequence and system tract. There were 8 styles sequence boundary through the analysis of the different style sequence boundary. The forming sedimentary environment of each sequence boundary was different. Based on seismic facies analysis and single-well facies markers and combined with the palaeogeomorphology character in different periods of structural evolution, described the Mesozoic sedimentary styles and the plane distribution character under the system tract framework. It was concluded that structual movement controlled the sedimentary in the fault subsidence period and sedimental resource controlled the sedimentary in the downwarp period through analyzing the sedimentary facies evolution character in different structural evolution periods and their geodynamics background. Using the result of the seismic inversion and the key positions’property, discussed the development and distribution of the sandstone in different system tract. On the basis of analyzing the sequence, parageomorphology and sedimentary facies, built the sequence stratigraphy models of predicting the reservoir and hydrocarbon rock distribution. Through the forming conditions of oil and gas reservoir analogy analysis in Songliao Basin, predicted the profitable reservoir. During the downwarp period the profitable exploration area of heavy crude and oil sand lied in the west of Hailun gas and oil prospect, the ease-north of Suihua gas and oil prospect and the middle of Tieli gas and oil prospect. During the transform period of the fault subsidence and the downwarp the profitable exploration area of gas lied in the west of Hailun gas and oil prospect, the west-south of Suihua gas and oil prospect, the west-north of Haerbin gas and oil prospect and Binxian fault depression. During the fault subsidence the profitable exploration area of gas lied in Binxian fault subsidence, the middle of Suihua and Tieli gas and oil prospect.
引文
[1].Amthor J.E. and Okkerman J.. Influence of early diagenesis on reservoir quality of rotliegende sandstone, Northern Netherland. AAPG Bulletin, 1998.2246-2265
    [2].Andrew D. Miall. Architecture and sequence stratigraphy of pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis. AAPG Bulletin, 2002.1821-1864
    [3].Andrew D. Miall. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development:A reality check. AAPG Bulletin, 2006. 989-1002
    [4].Bliefnick D. M. and Kaldi J. G.. Pore geometry: control on reservoir properties, walker creek field, columbia and lafayette counties, Arkansas. AAPG Bulletin, 1996.1027-1044
    [5].Brian P. Coffey and Fred Read J.. High-resolution sequence stratigraphy in Tertiary carbonate-rich sections by thin-sectioned well cuttings. AAPG Bulletin, 2002.1407-1415
    [6].Charles T. Feazel, Alan P. Byrnes, James W. Honefenger, Robert J. Leibrecht, Robert G. Carbonate reservoir characterization and simulation: From facies to flow units: Report from the March 2004 Hedberg Research Symposium. AAPG Bulletin, 2004.1467-1470
    [7].Cross T. A.. Quantitative dynamic stratigraphy. New Jersey, Prentice Hall, 1990.622
    [8].Cross T. A. and Lessenger M. A.. Seismic Stratigraphy. Annual Review of Earth and Planetary Sciences, 1988.319-354
    [9].David W. Houseknect. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. AAPG Bulletin, 1987.633-642
    [10].David W. Houseknecht and Kenneth J. Bird. Sequence stratigraphy of the Kingak Shale (Jurassic–Lower Cretaceous), National Petroleum Reserve in Alaska. AAPG Bulletin, 2004.279-302
    [11].Dixon S.N., Summers.D.M. and Surdam.R.C.. Diagenesis and preservation of porosity in norphlet formation (Upper Jurassic), Southern Albama. AAPG Bulletin, 1988.707-728
    [12].Douglas J. Cant. Diagenetic traps in sandstones. AAPG Bulletin, 1986.155-160
    [13].Eadington P.J., Hamilton P.J. and Bai G.P. Fluid history analysis-a new concept for prospect evaluation. Australian Petroleum Exploration Association Journal, 1991.282-294
    [14].Edman J.D. and Surdam R.C.. Organic-inorganic interactions as a mechanism for porosity enhancement in the Upper Cretaceous Ericson Sandstone, Green River Basin, Wyoming, in D.L.Gautier(ed.) Roles of organic matter in sediment digenesis. SEPM Special Publication,1986.58-109
    [15].Emery D. and Robinson A.. Inorganic geochemistry:applications to petroleum heology blackwell. Scientific Publica- tions. 1993
    [16].Gluyas J.G., Emery D., Grant S.M. and Oxtoby N.H.. The link between petroleum emplacement and sandstone cementation. In: Parker J.R.(ed.) Petroleum Geology of Northwest Europe. Geological Society,London, 1993.1395-1402
    [17].Graham R. Davies and Langhorne B. Smith Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 2006.1641-1690
    [18].Hamilton P.j., Kelley S. and Fallick A.E.. K-Ar dating of illite in hydrocarbon reservoirs. Clay Minerals, 1989.215-231
    [19].Henne Lammers _ Shell International Exploration Peter M. Burgess, Henne Lammers, Cees van Oosterhout, and Didier Granjeon. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 2006.1883-1901
    [20].Hongliu Zeng and Tucker F. Hentz..High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. AAPG Bulletin, 2004.153-174
    [21].Huang W.L. et al.. The effect of organic on feldspar dissolution and the development of second porosity. Chem.Geol. 1998.271-292
    [22].Janet K. Pitman. Regional diagenetic patterns in the St. Peter sandstone:Implications for brine migration in the Illinois Basin. U.S. Gelogical Survey Bulletin 2094–A,1997
    [23].Johns.W.D.and Mckallips.T.E.. Burial diagenesis and specific catalytic activity of illite-smectite clays from Vienna Basin, Austria. AAPG Bulletin, 1989.472-482
    [24].Keith B. Sullivan and Earle F.McBride. Diagenesis of sandstones at shale contacts and diagenetic heterogeneity, frio Formation, Texas. AAPG Bulletin, 1991.121-138
    [25].Kusumastuti A. Van Rensbergen P.and Warren J.K.. Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait, East Java, Indonesia. AAPG Bulletin, 2002.1716-1758
    [26].Las Vagas, Nedkvitne T., Karlsen D.A., Bjφrlykke K. and Larter S.R.. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula Field, North Sea. Marine and PetroleumGeology, 1993.255-270
    [27].Lillian Hess Tanguay and Gerald M. Friedman. Petrophysical characteristics and facies of carbonate reservoirs: The Red River Formation (Ordovician), Williston basin. AAPG Bulletin, 2001.491-523
    [28].Luis Ardevol, Juan Klimowtiz, Jesus Malagon and Peter J.C.Nategaal. Depositional sequence response to fordland deformation I, the Upper Cretaceous of the southern pyrenees, Spain. AAPG Bulletin, 2000.1542-1579
    [29].Lynch F.E. Mineral water interaction, fluid flow and frio sandstone diagenesis: evidence from the rocks. AAPG Bulletin, 1996.486-504
    [30].Mathai .S.K.and Roberts.S.G.. The Influence of permeability on single-phase fluid flow near fault-sand intersection: Results from steady-state high-resolution models of pressure –driven fluid flow. AAPG Bulletin, 1996.1763-1779
    [31].Menno J. De Ruig and Stephen M. Hubbard. Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse foreland basin, Puchkirchen Formation, Austria. AAPG Bulletin, 2006.735-752
    [32].Michael Poppelreiter and Thomas Aigner. Unconventional pattern of reservoir facies distribution in epeiric successions: Lessons from an outcrop analog (Lower Keuper, Germany). AAPG Bulletin, 2003.39-70
    [33].Olav Walderhaug. Kinetics modeling of quartz cementation and porosity loss in deeply buried sandstones reservoirs. AAPG Bulletin, 1996.731-745
    [34].Paul L Heller, Chris Paola, In-Gul Hwang, Barbara john and Ronald Steel. Geomorphology and sequence stratigraphy due to slow and rapid base-level changes in an experimental subsiding basin. AAPG Bullietin, 2001.1876-1912
    [35].Rdam R.C., Crossley L.J., Hagen E.S. and Heasler P.. Organic-inorganic internation and sandstone diagenesis. AAPG Bulletin, 1989.1-23
    [36].Ronald K.Stoessell and Edward D.Pittman. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions. AAPG Bulletin, 1990.1795-1805
    [37].Saggaf .M. M. and Nebrija Ed L. .A fuzzy logic approach for the estimation of facies from wire-line logs. AAPG Bulletin, 2003.1223-1240
    [38].Shanmugam G., M. Poffenberger, and J. Toro álava. Tide-Dominated Estuarine Facies in the Hollin and Napo (“T” and “U”) Formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador. AAPGBulletin, 2000.652-682
    [39].Shanmugam G. Significance of Secondary Porosity in Interpreting Sandstone Composition. AAPG Bulletin, 1996.378-384
    [40].Shelley D. C. and. Lawton T. F. Sequence stratigraphy of tidally influenced deposits in a salt-withdrawal minibasin: Upper sandstone member of the Potrerillos Formation (Paleocene), La Popa basin, Mexico. AAPG Bulletin, 2005.1157-1179
    [41].Stephen C. Ruppel and Roger J. Barnaby. Contrasting styles of reservoir development in proximal and distal chert facies: Devonian Thirtyone Formation, Texas. AAPG Bulletin, 2001.7-33
    [42].Surdam.R.C. Crossey.L. J. Hangen.E.S. and Heasler.H.P.. Organic—inorganic interaction and sandstone diagenisis AAPG Bulletin, 1989.1-23
    [43].Suzanne D. Weedman, Susan L. Brantley, Ryoji Shiraki and Simon R. Poulson. diagenesis, compaction, and fluid chemistry modeling of sandstone near a pressure seal: lower tuscaloosa formation, Gulf Coast. AAPG Bulletin, 1996.1045–1064
    [44].Theodore T. Mowers and David A. Budd. Quantification of porosity and permeability reduction due to calcite cementation using computer-assisted petrographic image analysis techniques. AAPG Bulletin, 1996.309-322
    [45].Timothy A. Cross. Stratigraphic controls on reservoir attributes in continental strata, Earth Science Frontiers, 2000.322-350
    [46].Vail P R, Mitchum R P Jr, Thompson SⅢ. Seismic stratigrphy and global change of sea level, part four: global cycles of relative changes of sea level. AAPG Mem, 1977.83-98
    [47].Van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic sequence stratigraphy in well logs, core and outcrops: Concepts for high-resolution correlation of time and faces. AAPG Methods in Exploration Series. 1990.56
    [48].Wang H, Shi X. A scheme of the hierarchy for sequence stratigraphy. Journal of China University of Geoscience, 1996.1-12
    [49].Wilkinson.M. Darby D. Haszeldine.R.S. and Couples.G.D.. Secondary porosity generation during deep burial associatied with overpressure Leak—off: Furmar formation, United Kingdom central graben. AAPG Bulletin, 1997.803-813
    [50].William A. Tedesco, R. P. Major, and Lawrence R. Baria. An eolian facies within the Upper Jurassic Smackover Formation, Tchula Lake .eld, Mississippi. AAPG Bulletin, 2002.485-503
    [51].柏涛,徐志伟. 层序地层学在隐蔽圈闭预测中的应用.吉林大学学报(地球科学版),2004,34(1):73-78
    [52].蔡学林,魏显贵,刘援朝,等. 中国陆内造山带造山过程地球动力学分析.矿物岩石,1998,18(增刊):1-7
    [53].蔡希源,林春华,王洪艳,等. 松辽盆地北部断陷盆地构造特征与幕式演化.石油学报,1999, 20(4):14-19
    [54].蔡希源,任延广,高岭. 陆相湖盆可容空间变化与油气的关系.新疆石油地质,2003,24(5):379-381
    [55].陈崇河主编.《碎屑岩储层地质学》.北京:石油工业出版社,2002
    [56].陈冬霞,庞雄奇,姜振学. 中国东部陆相盆地隐蔽油气藏成藏机理与模式.石油勘探与开发,2006, 33(2):178-183
    [57].陈发景,汪新文. 中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式.现代地质,1997,11(4): 409-424
    [58]. 邓 宏 文 . 美 国 层 序 地 层 研 究 中 的 新 学 派 - 高 分 辨 率 层 序 地 层 学 . 石 油 与 天 然 气 地质,1995,16(2):89-97
    [59]. 邓宏文 , 王红亮 . 沉积物体 积分配原理—高分 辨率层序 地层学的理论基础 . 地学前缘,2000,7(4):305-313
    [60].邓宏文主编.《高分辨率层序地层学原理及应用》.北京:地质出版社,2001
    [61].杜旭东,薛林福,邬光辉. 中国东部大陆内部中生代盆地分布特征与地球动力学背景探讨.长春科技大学学报,1999,29(2):138-143
    [62].樊太亮,李庆谋. 沉积基准面变化分析技术及其应用.石油与天然气地质,1997,18(2):108-114
    [63].冯增昭主编.《沉积岩石学》.北京:石油工业出版社,1993
    [64].郭孟习,孙炜,聂立军,等. 东北东部地球物理及地质块体特征—对大地构造环境演化的追溯.吉林地质,2002, 21(1):38-49
    [65].郭巍,刘招君,董惠民,等. 松辽盆地层序地层特征及油气聚集规律.吉林大学学报(地球科学版),2004, 34(2):216-221
    [66].龚再升. 油气成藏动力学及油气运移模型.中国海上油气(地质),1999,20(2):235-239
    [67].胡受权,郭文平. 论陆相层序地层理论体系及其研究思路.断块油气田,2001,8(5):1-7
    [68].胡望水. 松辽裂谷型盆地构造特征与含油气系统.江汉石油学院学报,1997,19(1):13-18
    [69].胡望水,吕炳全,张文军. 松辽盆地构造演化及成盆动力学探讨.地质科学, 2005,40(1):16-31
    [70].胡玉双,田芳,曹立岩. 松辽盆地东部断陷群层序地层学研究.石油勘探与开发,1999, 26(5):70-74
    [71].胡宗全,朱筱敏. 具有地形坡折带的拗陷湖盆层序地层模拟.沉积学报,2002,20(2):217-221
    [72].金双根,朱文耀. 太平洋板块运动和形变及其边缘现今相对运动.大地测量与地球动力学, 2002,2(2):57-60
    [73]. 李娟 , 舒良树 . 松辽盆地中、新生代构造特征及其演化 . 南京大学学报 ( 自然科学 ), 2002,38(4):525-531
    [74].李丕龙. 断裂盆地油气聚集模式及其动力学特征.石油大学学报,2000,24(4):26-28
    [75].李思田. 沉积盆地的动力学分析.地学前缘,1995,2(3):1-8
    [76].李思田主编.《中国东部及邻区中、新生代盆地演化及地球动力学背景》.北京:中国地质大学出版社,1997
    [77].李永军,付国民,刘志武,等. 花岗岩地球动力学研究展望.华南地质与矿产,2001,(4):7-10
    [78].林畅松. 构造坡折带—断陷盆地层序分析和油气预测的重要概念.地球科学,2000,25(3):260-266
    [79].林畅松,刘景彦,张英志,等. 构造活动盆地的层序地层与构造地层分析—以中国中、新生代构造活动湖盆分析为例.地学前缘, 2005,12(4):365-374
    [80].林畅松,张燕梅. 盆地的形成和充填过程模拟.地学前缘,1999, 6(增刊):139-146
    [81].林强,葛文春,孙德有. 东北亚中生代火山岩的地球动力学意义.地球物理学报,1999,42(增刊):75-84
    [82].刘学锋,孟令奎. 松辽盆地北部深层构造的平衡剖面研究.西安石油大学学报(自然科学版),2004, 19(5):11-15
    [83].刘和甫. 盆地演化与地球动力学旋回. 地学前缘,1997,4(4):233-240
    [84]. 罗 立 民 , 王 英 民 . 运 用 层 序 地 层 学 模 式 预 测 河 流 相 砂 岩 储 层 . 石 油 地 球 物 理 学报,1997,32(1):130-136
    [85].庞雄奇,姜振学,李建青. 油气成藏过程中的地质门限及其控制油气作用.石油大学学报(自然科学版), 2000,24(4):53-57
    [86].庞雄奇,陈冬霞,李丕龙. 砂岩透镜体成藏门限及控油气作用机理.石油学报,2003,24(3),38-45
    [87].任建业,胡祥云,张俊霞. 中国大陆中部晚中生代构造活化及其演化过程.大地构造与成矿学, 1998,22(2):89-96
    [88].孙加鹏,张兴洲,杨宝俊. 中国东部中新生代盆地成因及其地球动力学.世界地质,1997,16(3):1-6
    [89].孙雄,马宗晋. 初论“构造流体动力学”.地学前缘,1996,3(3):138-144
    [90].王东坡,薛林福,刘立,等. 沉积盆地的地球动力学.石油与天然气地质,1998,19(3):181-185
    [91].王鸿祯. 全球构造运动的简要回顾.地学前缘,1995,2(2):37-42
    [92]. 王鸿祯 , 史晓颖 . 沉积层序及海平面旋回的分类级别—旋回周期的成因讨论 . 现代地质,1998,12(1):1-16
    [93].王良忱,张金亮主编.《沉积环境和沉积相》.北京:石油工业出版社,1995
    [94]. 吴福元 , 孙德有 , 葛文春 , 等 . 吉林省太古宙 TTG 岩类固结的温度压力条件 . 吉林地质,1995,14(2):57-63
    [95].吴福元,叶茂,张世红. 中国满洲里-绥芬河地学断面域的地球动力学模型.地球科学, 1995,20(5):535-539
    [96].吴胜和主编.《油气储层地质学》.北京:石油工业出版社,1998
    [97].解习农,李思田,冯友良. 陆相断陷盆地层序形成动力学及层序地层模式.地学前缘,2000,7(3):119-132
    [98].辛仁臣,蔡希源,王英民. 松辽拗陷深水湖盆层序界面特征及低位域沉积模式.沉积学报, 2004, 22(3):3877-392
    [98].叶德燎. 松辽盆地东南隆起区下白垩统层序地层格架及油气成藏规律.地质科学,2005, 40(2):227-236
    [99].殷长建,彭玉鲸,靳克. 中国东北东部中生代火山活动与泛太平洋板块.中国区域地质,2000, 19(3):303-311
    [100].[英]H.G.里丁主编.《沉积环境和相》.北京:科学出版社,1991
    [101].杨懋新. 松辽盆地断陷期火山岩的形成及成藏条件.大庆石油地质与开发, 2002,21(5):15-17
    [102].杨志华,苏生瑞,李勇. 中国大地构造的动力学新理论.矿物岩石, 2001,21(3):160-164
    [103].曾允孚,夏文杰主编.《沉积岩石学》.北京:地质出版社,1986
    [104].张厚福主编.《石油地质学》.北京:石油工业出版社,1999
    [105].张金川,金之钧,庞雄奇. 深盆气成藏条件及其内部特征.石油实验地质, 2000,22(3):210-214
    [106].张晓东,王颖,李桂荣. 北方侏罗、白垩系盆地形成、演化及地球动力学背景.大庆石油地质与开发,2005,24(5):6-9
    [107].赵澄林,朱筱敏主编.《沉积岩石学》(第三版).北京:石油工业出版社,2000
    [108].郑剑东. 当前构造地质研究的某些进展及启示. 地质科技情报,1996,15(4):15-19
    [109].朱建伟,刘招君,董清水,等. 松辽盆地层序地层格架及油气聚集规律.石油地球物理勘探,2001, 36(3):339-344
    [110].朱筱敏主编.《层序地层学》.山东,东营:石油大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700