银氧化锡触头材料性能改善机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银氧化镉电触头材料具有优良的开关运行特性,因而成为低压电器广泛应用的一类触头材料。但AgCdO材料在制造和使用过程中产生的“镉毒”已日益受到了人们的关注,因此研究新型触头材料受到了广泛的重视。银氧化锡是最有希望代替银氧化镉材料的无毒触头材料。但AgSnO2材料有其致命不足,接触电阻较大、温升较高,严重影响电器使用性能;而且AgSnO2的高硬度使得AgSnO2复合材料成型变得异常困难。因此如何从成分设计、制造方法等方面解决AgSnO2触头材料的上述关键问题一直是触头材料研究中的一个非常重要的领域。
     本文结合河北省自然科学基金资助项目“银氧化锡触头材料性能改善机理的研究”(编号:502048),对添加稀土氧化物的银氧化锡触头材料进行了详细的研究。首先通过试验验证了稀土氧化物的难分解性及氧化铋的润湿性。采用化学共沉淀法制备了添加稀土氧化物的银氧化锡触头材料,测量了该触头材料的物理机械性能,分析了工艺参数对性能的影响,对该材料进行了显微组织分析。利用电接触触点材料综合参数测试仪对该材料进行了电接触性能的测试。最后,将该材料与AgCdO材料分别安装在CJ20-40交流接触器上,进行温升、通断能力及侵蚀量试验。
Because of its excellent switch characteristics, AgCdO, as a contact material, has been widely used in the production of low-voltage electric apparatus. Meanwhile the AgCdO material has disadvantage that cannot be ignored: the Cadmium Poisoning which appears during the manufacture and use of AgCdO. Therefore, the researches of new contact material are extensively regarded. Silver tin oxide is the most promising non-toxic material to substitute silver cadmium oxide. But AgSnO2 material has its fatal shortages: large contact resistance and high temperature rise. These two points seriously affect the electrical performance of low-voltage electric apparatus that adopt AgSnO2. The hige hardness of AgSnO2 makes the composite molding of it extremely difficult. So, it is a very important issue in contact materials research to solve the above key problems from the component design and manufacuture method.
     Based on the Natural Science Foundation of Hebei Province, Study on Performance Improvement Mechanism of the Silver Tin Oxide Contact Material (ID: 502048), the addition of rare earth oxides of silver tin oxide contact material is studied detailly in this paper. First, it is validated that the rare earth oxides is difficult to decompose and the bismuth oxide is wettable. Silver tin oxide contact material is prepared by chemical coprecipitation which is added rare earth oxides. The physical properties of the contact material are measured. The influence of technical parameters on performance is analysised. The microstructure of the material is analysised. And then, the electrical performance is tested by Electrical Contact Material Parameter Tester. Finally, The Ag/SnO2+ La2O3+ Bi2O3 material and AgCdO material are respectively assembled on the CJ20-40 alternating contactors. The temperature rise, make-break capacity and arc erosion have been tested.
引文
[1] 马战红,陈敬超,周晓龙,张剑平. 银基电触头产品的发展状况. 昆明理工大学学报. 2002.No.4:17-23
    [2] 张万胜.电触头材料国外基本情况. 电工合金. 1999. No.1:11-35
    [3] 张久芬.国外复合电触头材料的基本情况和发展动向. 电工合金. 1977. No .4:1-3
    [4] 邵文柱.电接触材料的发展与现状. 电工合金. 1999.No.1:11-15,23
    [5] Shen Y S,et al. A Historic Review of AgMeO Materials Electric Contacts [J].1986: 71-73
    [6] Furtado, H. C. de Silveira, V. L. A., Metallurgical Study Of Ag-Cd And Ag-CdO Alloy Electrical Contacts. IEEE. 1987: 149-155
    [7] MAYER V, MICHAL R. Switching behavior and changes in microstructures of silver metal oxide contact materials. [A] Proceedings of 14th ICECP [C] Japan. 1988: 361-367
    [8] Benhenda, S. Ben Jemaa, N. Bourir, M. Effect of pulse plating parameters on electrical contact behavior of nickel coatings. IEEE Transactions on Components. Packaging and Manufacturing Technology. Part A. Volume: 17. Issue: 2. June 1994: 303-308
    [9] Harl Heinz Schroder. AgMeO Contact Materials. IEEE Trasactions on components. Hybrids and manufacturing technology [J]. MARCH 1987. 10 (1):127-134
    [10] Kubono, Takayoshi. Sticking trouble rate on Cd-added Ag-based contacts. Electronics & Communications in Japan. Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi). v78. n4. Apr 1995: 56-67
    [11] [日]M.Ohta. 新型银-金属氧化物触头材料. 电工合金. 1994. No.1: 46-50
    [12] Jiang-Wen Wan. Adjustment State and Quasi Steady State of Structure and Composition of Ag-MeO Contacts by Breaking Arcs. Conference on Electrical Contacts [C] American. 1998: 202-206
    [13] Pedder, D. J. Brugner F. S. Effect of Density and Oxide Particle Size on the Electrical Conductivity of Silver-Cadmium Oxide Electrical Contact Material. Journal of the American Institute of Planners. 1975: 47-52
    [14] C. H. leung et al. A Comparision of AgW. AgWC & AgMeO. Electrical contacts IEEC Trans. CHMT-7. 1984(1)
    [15] Zheng Ji Gao, Jing Li, Songlin Li, Qunying. New type of Ag-SnO2 electrical contact material. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. v34. n3. March 2005: 483-485
    [16] Zheng Ji, Jian De-Xiang, Li Qun-Ying, Meng Zhen-Jie. Annealing process of Ag/SnO2 electrical contact materials. Jinshu Rechuli/Heat Treatment of Metals. v29. n9. September. 2004: 49-53
    [17] Jeannot D. Pinard J. Physical and chemical properties of metal oxide addition to Ag/SnO2 contact materials and predicitons of electrical performance. [J]. IEEE Trans. On CPMT. 1994. 17(1): 17-23
    [18] Leung Chi, Streicher. Eric. Material transfer in dynamic welding of Ag and Ag/SnO2 contact material. Electrical Contacts. Proceedings of the Annual Holm Conference on Electrical Contacts. 2002: 21-28
    [19] Zheng Ji, Li Songlin, Gao Houxiu, Li Qunying. Study on Ag/SnO2 nanocrystalline powder for electric contact material. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. v32. n10. October. 2003: 829-831
    [20] Kang S., Brecher C. Cracking mechanisms in Ag-SnO2 contact materials and their role in the erosion process. IEEE Transactions on Components, Hybrids and Manufacturing Technology. Volume: 12. Issue: 1. March 1989: 32–38
    [21] Deng Zhongmin, Lu Xianyong, Zheng Fuqian, Xie Ming, Liu Jianliang, Shi An. Microstructure of Ag-SnO2 contact material prepared with internal oxidizing alloy powder. Guijinshu/Precious Metals. v21. n4. Dec 2000: p12-15
    [22] 程礼椿. 汽车继电器用新型 Ag/SnO2 无毒触头材料. 电工合金. 1997. No.2: 6-10
    [23] 程礼椿. 制造工艺与添加物对银金属氧化物触头材料运行性能的影响与作用(1). 低压电器. 1994. No.2: 51-56
    [24] 程礼椿. 添加物对触头材料 Ag/SnO2 运行性能的影响与作用. 电工合金. 1995. No. 2: 7-15
    [25] Jeannot 等. 金属氧化物添加物对 AgSnO2 触头材料的化学特性与电器性能的预测. IEEE Tr. CPMT. V01. 17. No.1. March l994: 17-20
    [26] 堵永国. 低电阻率 Ag/SnO2 电工触头材料及其制备. 中国发明专利. CN1085346
    [27] 张万胜.新工艺制备的 AgSnO2 系材料.电工合金.1997. No.12:41-43,36
    [28] 张万胜.不同工艺制造的 AgSnO2 触头材料性能比较.电工合金.1997. No.4:63-64
    [29] 张万胜.不同工作条件下高密度挤压 AgSnO2 材料的选择最佳化.电工合金.1997. No.3:61-64
    [30] Wingert,P.C. Testing of the thermal-stress-cracking characteristics of silver-refractory contacts. Electrical Contacts. 1995. Proceedings of the Forty-First IEEE Holm Conference on. 2-4 Oct. 1995: 338–345
    [31] Tamai, Terutaka, Ide, Tatsumi, Contact behaviors of new material for micro relays. IEICE Transactions on Electronics. vE87-C. n8. August. 2004: 1235-1240
    [32] 史久熙. 电触头材料的技术发展和节银回顾. 粉末冶金工业. 1999. No. 6:37-40
    [33] 陆尧. 电触头材料生产企业目前面临的问题及探讨. 电工合金. 1999. No.4:12-16
    [34] 翁桅. 我国低压电器用触头材料的现状和发展现状. 低压电器. 1995. 2:49-53
    [35] Song, June-O. (Dept. of Materials Science and Eng., Kwangju Inst. Sci. Technol. (K-JIST)), Leem Dong-Seok, Seong Tae-Yeon, Kwak J.S., Nam, O.H.; Park, Y. Low-resistance and highly-reflective Zn-Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes. Applied Physics Letters. v83. n24. Dec 15. 2003: 4990-4992
    [36] Prakash B.Jashi. Improved P/M Silver-zinc Oxide Electrical Contacts [J]. The International Journal of Powder Metallurgy. 1998. (34). 4:P63-74
    [37] Guan Wei-Ming, Zhang Kun-Hua, Lu Feng, Song Xiu-Qing, Yang Jia-Ming, Zheng Fu-Qian, Wang Cheng-Jian, Lu Hai-Bo. Arc erosion of Ag-LaNiO3-δ electric contact materials in DC condition. Guijinshu/Precious Metals. v24. n3. September. 2003: 12-17
    [38] Yu Haifeng,Lei Jingxuan, Ma Xueming, Zhu Lihui, Lu Yao, Xiang Jing. AgC electrical contact material. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. v33. n1. January. 2004: 96-100
    [39] Heringhaus F., Beuers J., Braumann P., Kempf B., Koffler A., Susnik E., Wolmer R. On the optimization of the microstructure in powder metallurgical Ag-SnO2-In2O3 contact materials. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. v92. n7. July. 2001: 784-787
    [40] Wang Bor-Jenq, Saka Nannaji. Au-Sb and Au-Ag-Sb alloys as low-voltage contact materials. IEEE Transactions on Components. Packaging. and Manufacturing Technology Part A. v17. n2. Jun. 1994: 295-301
    [41] Same E. Allen and Eric Stricher. The Effect of Microstructure On The Electrical Performance of Ag-Wc-C Contact Materials. IEEE. 1998:276-285
    [42] Nevesi I et al. Behavior of the Ni component of AgNi contacts in switching process. In: 13rd ICEC. Lausanne. 1986: 221-226
    [43] Liang B J, Zhang W S et al. Influence of different microstructure of AgNi material on their switching behavior. In: Proc of 1st ICECAAA. Xi’an 1989:197-201
    [44] Amitabh Verma. Processing and Properties of Silver-Tin Oxide-Indium Oxide Electrical Contact Materials [J]. The International Jonurnal of Powder Metallurgy. 1991. (27). 1:51-56.
    [45] Tamai, Terutaka, Sato, Akihiro, Ito Syuro. Effect of Mg doping on increase in the life with low contact resistance of Ag-Pd alloy switching contacts in silicone vapor environments. IEEE Transactions on Components and Packaging Technologies. v23. n2. Jun. 2000:234-239
    [46] 荣命哲. 含微量添加剂的 Ag/SnO2 触头材料电弧侵蚀机理. 西安交通大学学报. 1997. No.31(11):1-7
    [47] P. Vermal O.P.Pandey and A.Verma. Influence of Metal Oxides on the Arc Erosion Behaviour of Silver Metal Oxides Electrical Contact Materials. J. Mater. Sci. Technol. Vo1.20 No.1. 2004
    [48] 堵永国,杨广,张家春,王光华,龙雁. AgMeO 触点材料电弧侵蚀的物理冶金过程分析. 电工合金. 1997.No.4 :1-8
    [49] 孙明. 触头材料的电弧侵蚀特性及其数学模型研究. 西安交大博士论文. 1992
    [50] Provoverov. N.L., Duksina A.G., Kalikhman V.L., Nikolaeva N.N. Erosion properties of electrical contacts of the system silver-cadmium oxide obtained by different methods. Soviet Powder Metallurgy and Metal Ceramics (English translation of Poroshkovaya Metallurgiya). v28. n8. Jan. 1990:658-662
    [51] M. Sun, Q. P. Wang, M. Lindmayer, The Model of Interaction Bewteen Arc and AgCdO Contact Materials. IEEC Trans. PHMT. ssrt A. 1994
    [52] V. Behrens et al. Erosion Mechanism of different Types of Ag/Ni90/10 Materials. 14th IEEC. 1988
    [53] M. Z. Rong, Q. P. Wang. Effects of Additives on the AgSnO2 Contacts Erosion Behavior. In Proc. of 39th Holm Conf. on Electric Contact. Pittspurgh. 1993
    [54] 杨志远. 银氧化物系烧结触头材料及其制造方法. 电工合金. 1999. No.1: 43-47
    [55] Huang Dapeng, Jia Chengchang, Chen Xiaohua, Zhou Cheng, Qu Xuanhui. Preparation of Ag based rare earth oxide contact material. Fenmo Yejin Jishu/Powder Metallurgy Technology. v23. n6. December. 2005: 423-426
    [56] 刘承峰. 银合金内氧化动力学分析. 电工合金. 1997.No.1: 1-5
    [57] G.G.Goetzl. Treatise on Powder Metallurgy V.I. Interscience.1949
    [58] 汤清华. 化学共沉淀法制备 Ba2TiO20 超微细的研究. 功能材料. 1996.No.6: 525-528
    [59] 国家技术监督局. GB13397-92 合金内氧化法金属氧化物电触头技术条件. 中华人民共和国国家标准.1992
    [60] Zhou Jikou, Ma Fukang, Liu Maolin. Oxidation properties of silver alloy powders and microstructure of oxidized powders for making electrical contact composites. Journal of Rare Earths. v16.n2.1998:116-120
    [61] 李镇隆. 高压水雾化制粉技术在电触头制造领域中的应用. 电工合金. 1998. No.3: 45-47
    [62] J.S.Benjimin. in new Material by Mechanical Alloying Techniques. E.Artz and L.Sxhultz Ed.DGM Information Sgesellschaft.Oberursel 3.1989
    [63] Waterhouse G.I.N., Bowmaker G.A., Metson J.B. Interaction of a polycrystalline silver powder with ozone. Surface and Interface Analysis. v33. n5. May 2002:401-409
    [64] 王盘鑫. 粉末冶金学. 北京. 冶金工业出版社. 1996
    [65] 曾麟德. 粉末冶金材料「M]. 北京:冶金工业出版社. 1989
    [66] 孙大涌,王广生,刘迨等. 热处理手册. 北京.机械工业出版社. 2001
    [67] 周继扣,马福康. 触头用银合金粉末的氧化性能和氧化后的组织结构. 中国稀土学报. 1997.No.3: 224-227
    [68] 杨遇春. 世界稀土的生产、消费现状及需求预测. 稀土. 1993.No.14(2):46-52
    [69] Fathi Habashi. The discovery and industrialization of the rare earths. part 1. CIM Bulletin. 1994
    [70] Fathi Habashi. The discovery and industrialization of the rare earths. part 2. CIM Bulletin. 1994
    [71] Gupta C.K., et al. Extractive Metallurgy of Rare Earth. International Materials Reviews. 1992
    [72] 杨遇春. 稀土有色金属材料及其发展前景. 材料工程. 1993.No.6:46-48,45
    [73] Zhou. C. Rare Earth Industry of China. Journal of Alloys and Compounds. 1993.192(1-2): 111-113
    [74] 杨遇春. 我国的稀土工业及与国外的差距. 科技导报. 1996.No.93(3):49-50,41
    [75] Maestro P. et al. Indutrial Applications of Rare Earth: Which way for the End of the Century? Journal of Alloys and Compounds. 1995. No.225:534-538
    [76] Clark. A.L. China’s Rare Earth Potential Industry and Policy. Materials Science Forum. 1991.Vol.70-72
    [77] Jinxia Li, Yongtao Liu Zhenzhong Tai. Structure and Property of AgLaY Alloy. Rare Metals. 20(2001). No.3:15-18
    [78] 杨遇春. 稀土应用开发的新趋势. 有色金属. 1997.No.49(4):93-98
    [79] Kimura Takashi Past. present and future of powder metallurgy. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy. v45. n9. Sep 1998:827-832
    [80] McKotch R.A., Webb R. Proceedings of the 1997 International Conference on Powder Metallurgy and Particulate Materials. Part 1 (of 3) Advances in Powder Metallurgy and Particulate Materials. v1. 1997.
    [81] Akimenko V.B. 60 years of powder metallurgy at the I. P. Bardin Central Research Institute of Ferrous Metallurgy.Metallurgist. v50. n3. March 2006:176-182
    [82] Kuhn Howard A., Dax F. Robert Powder metallurgy product and process development at Concurrent Technologies Corporation.International Journal of Powder Metallurgy (Princeton, New Jersey). v32. n3. Jul 1996: 229-236
    [83] 黄培云. 粉末冶金原理. 北京. 冶金工业出版社. 1988
    [84] 韩凤麟 . 金属手册:第九版第七卷. 粉末冶金. 北京. 机械工业出版社. 1994
    [85] Levina, D.A. The world powder metallurgy is on the revival.Poroshkovaya Metallurgiya. n7. 2000: 122-126
    [86] Cante Juan C., Oliver J., Gonzalez C., Calero J.A., Benitez F. On numerical simulation of powder compaction processes: Powder transfer modelling and characterisation.Powder Metallurgy. v48. n1. 2005: 85-92
    [87] Kulik O.P., Levina D.A., Chernishev L.I. New technologies expand the branches of powder metallurgy application.Poroshkovaya Metallurgiya, n5-6, 2001:123-128
    [88] Lu Jianguo, Wang Jingqinet al. A new contact material Ag/Sn02-La2O3-Bi203. Rare Metals. 2002,21(4):289-293
    [89] 王景芹,陆俭国,温鸣,王宝珠. 银-稀土氧化物触头材料的性能. 2001.No.6:205-207
    [90] 美国金属学会编. 金属手册. 第九版第八卷. 力学性能实验. 北京.机械工业出版社. 1990
    [91] 曾汉民. 高技术新材料要览. 北京. 中国科学技术出版社. 1993
    [92] 上海师大. 物理化学(第 2 版)[M]. 北京:高等教育出版社. 1985
    [93] Wang Jingqin,Lu Jianguo et al. A New Ag Me0 Contact Material.Journal of Rare Earth. 2001. 19(2):145-148
    [94] 刘成有. 润湿现象的解释. 重庆师范学院学报. 2000.No.6:143-147
    [95] 陈康华,包崇玺,刘红卫. 金属/陶瓷润湿性(上). 材料科学与工程. 1997.No.5:6-10
    [96] 陈康华,包崇玺,刘红卫. 金属/陶瓷润湿性(下). 材料科学与工程.1997. No.12:27-34
    [97] 王宝珠,王景芹,吕玉申,温鸣. 添加物 Bi2O3 对触头材料 AgSnO2 的显微组织影响. 电工合金. 2000.No.3: 7-10
    [98] 陈名海,刘宁,许育东. 金属/陶瓷润湿性的研究现状. 硬质合金. 2002.No.12: 199-205
    [99] Froumin N., Baram J., Polak M. Effects of interfacial segregation on wetting of PbBiSrCaCuO ceramic by Ag and Ag-based alloys. Materials Letters. v18. n4. Jan. 1994:176-180
    [100] Meier A.M., Chidambaram P.R., Edwards G.R. Comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline. Journal of Materials Science. v30. n19. Oct 1995:4781-4786
    [101] Loehman Ronald E., Tomsia A.P., Pask J.A., Carim Altaf H. Wetting and reactions between silver and bulk YBa2 Cu3 O7-x. Physica C: Superconductivity. v170. n1-2. Sep 1. 1990:1-14
    [102] 李庆奎,钟晖,戴艳阳,钟海云. Fe- Cr 合金在 Cio 陶瓷上的润湿及其机理. 中国有色金属学报. 2002.No.8:677-681
    [103] 沈 强,张联盟,涂溶. Mo 添加对 Ni3Al-TiC 润湿特性的影响机制研究.无机材料学报. 2002.No.11: 1306-1310
    [104] 李庆奎, 钟海云, 钟晖,李荐,杨建文. Cu-Mo-C 在 Ti0 上的润湿性研究. 材料导报. 2003.No.1: 75-77
    [105] 国家技术监督局. GB/T5586-1998 电触头材料基本性能实验方法. 中华人民共和国国家标准. 1998
    [106] ALLENT. Particle Size Measurement 5th ed[M].Chapman&Hall. 1997.
    [107] 王乃宁,蔡小舒,郑刚. 颗粒粒径的光学测量技术及应用[M]. 北京. 原子能出版社. 2000
    [108] Elizalde O., Leal G.P., Leiza J.R. Particle size distribution measurements of polymeric dispersions: A comparative study. Particle and Particle Systems Characterization. v17. n5-6. December. 2000:236-243
    [109] Farrell P.V. Particle sizing and velocity measurements using particle image velocimetry. Flucome 91. 1991:423-434
    [110] 黄宁,周湘玲,张永刚. 粒度测试及激光衍射粒度测试法在涂料工业中的应用. 涂料工业. 2006.No. 09:43-46
    [111] Kuhn Hans-Rudolf, Koch Joachim, Hergenroder Roland, Niemax Kay, Kalberer Markus, Gunther Detlef. Evaluation of different techniques for particle size distribution measurements on laser-generated aerosols. Journal of Analytical Atomic Spectrometry. v20. n9. September 2005:894-900
    [112] Patchigolla Kumar, Wilkinson Derek, Li Mingzhong. Measuring size distribution of organic crystals of different shapes using different technologies.Particle and Particle Systems Characterization. v23. n2. August 2006:138-144
    [113] 张冠生. 电器理论基础[M]. 北京:机械工业出版社. 1997
    [114] 任俊杰,万江文,荣命哲,王其平. AgMeO 材料触头的电弧侵蚀形貌特征. 电工技术杂志. 1997.No.9: 9-12
    [115] 张为军,堵永国,胡君遂. AgREO 触点材料耐电弧侵蚀性能研究. 电工合金. 2000.No.3: 11-14。
    [116] Hasegawa Makoto, Kamada Yusuke. An experimental study on re-interpretation of minimum Arc current of electrical contact materials. IEICE Transactions on Electronics. vE88. n8. August. 2005: 1616-1619
    [117] Morin Laurent Jemaa, Nouredine Ben, Jeannot, Didier, Pinard Jacques, Nedelec Luc. Contacts materials performances under break arc in automotive applications. IEEE Transactions on Components and Packaging Technologies. v23. n2. Jun. 2000:367-375
    [118] Kaliszuk K. Frydman K., Wojcik-Grzybek D., Bucholc W., Walczuk E., Borkowski P., Zasada D. ARc erosion tests and study of surface of Ag-WC contacts after ARc switching operations. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts.2004:75-82
    [119] M. Sun, Q. P. Wang, Erosion of Silverbase Material Contacts by Breaking Arcs. IEEC Trans. CHMT. Vol. 14. 1991
    [120] Francisco H.A., Wallace J.L. Effects of cracks on contacts operating under high contact force. IEEE Transactions on Components. Packaging. and Manufacturing Technology. Part A. Volume: 18. Issue: 2. June 1995:348-352
    [121] Behrens V. Michal R et al. Erosion mechanism of different types of Ag/Ni 90/10 materials. In: 14th ICEC. Paris. 1988:417-422
    [122] Jemaa N., Ben Morin L., Jeannot D., Hauner F. Erosion and contact resistance performance of materials for sliding contacts under arcing. Electrical Contacts. Proceedings of the Annual Holm Conference on Electrical Contacts. 2000:73-78
    [123] Ambier J, Bourda C, Jeannof D et al. Modification in the microstructure of materials with air-breaking switching at high current. IEEE Trans on CHMT. 1991. 14(1): 153-161
    [124] Leung Chi. Streicher Eric, Fitzgerald. Dennis.Welding behavior of Ag/SnO2 contact material with microstructure and additive modifications. Proceedings of the 50th IEEE Holm Conference on ElectricalContacts and the 22nd International Conference on Electrical Contacts. 2004: 64-69
    [125] Wu Ji, Pecht Michael G. Contact resistance and fretting corrosion of lead-free alloy coated electrical contacts. Proceedings of 2004 International IEEE Conference on the Asian Green Electronics (AGEC). 2004: 127-135
    [126] J. P. Chabreie. L.Boyer. Contribution to the Study of Metal Dtoplet Ejection in Arcing Electrical Contact. 13rd IEEC. Lausanne. 1986
    [127] 国家质量技术监督局. GB8871-2001.交流接触器节电器. 中华人民共和国国家标准. 2001
    [128] 陆俭国,李志刚. 电器试验技术与试验方法. 北京. 机械工业出版社. 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700