大豆MYB转录因子基因的克隆及其表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过转录因子在转录水平上调控目的基因的表达,是植物对其生长发育及生理代谢调控的一种重要方式。MYB转录因子基因是最大的植物转录因子基因家族之一,参与植物次生代谢调控、激素和环境因子的应答,并对细胞分化、细胞周期以及植物叶片等器官的形态建成具有重要的调节作用。大豆是重要的油料作物,同时也是蛋白和异黄酮的重要来源,而大多数MYB转录因子对植物类黄酮的代谢均有调控作用。因此,本文以大豆为研究材料,从中分离克隆新的MYB转录因子基因,以期为MYB转录因子在类黄酮的生物合成调控及其胁迫应答等方面的研究提供一定的理论基础。主要研究结果如下:
     1.根据植物中MYB基因DNA结合域保守区设计简并引物,以大豆品种中豆27、吉林3号、淮豆1号及张家口黑豆的叶片为材料,RT-PCR扩增出14个MYB基因同源片段;据此设计基因特异引物,通过RACE-PCR分离克隆出4个MYB转录因子基因,GmMYBZ1(DQ902862)、GmMYBZ2(DQ902861)、GmMYBJ6(DQ902863)和GmMYBJ7(DQ902864);氨基酸序列比对表明,这4个基因分别具有两个MYB结构域,为典型的R2R3MYB转录因子基因。
     2.半定量RT-PCR对这4个基因的组织特异性表达情况进行了检测,结果只在叶片中检测到了GmMYBJ6的表达,在茎和叶中分别检测到了GmMYBZ1和GmMYBJ7的表达,而GmMYBZ2在植物的根、茎、叶及未成熟种子中均有表达。对胁迫应答的检测结果显示,在紫外辐射、高盐及干旱(PEG)条件下,随着处理时间的增长,GmMYBJ6的表达量增加,而GmMYBZ2和GmMYBJ7的表达量降低。
     3.以基因组DNA为模板对GmMYBZ1、GmMYBZ2、GmMYBJ6和GmMYBJ7进行了PCR扩增,扩增产物经序列分析表明,GmMYBZ1不含内含子,GmMYBZ2含有1个内含子,而GmMYBJ6和GmMYBJ7分别含有2个内含子。
     4.构建四个酵母效应质粒pBridge-GmMYBZ1、pBridge-GmMYBZ2、pBriage-GmMYBJ6和pBridge-GmMYBJ7,转入酵母菌株AH109中,并分别在缺少色氨酸的SD培养基和缺少色氨酸、组氨酸的SD双缺陷培养基上筛选阳性转化子。酵母表达表明,GmMYBZ2、GmMYBJ6和GmMYBJ7均具有明显的转录激活功能,β-半乳糖苷酶活性分别为10.35U、28.48U和24.31U,Whatman滤纸显色反应均能呈现出明显的蓝色;而GmMYBZ1酵母转化株的β-半乳糖苷酶活性仅为3.59U,Whatman滤纸显色反应未能呈现出明显的蓝色。
     5.构建绿色荧光蛋白融合表达载体,基因枪法转化洋葱表皮细胞进行瞬时表达,结果表明,GmMYBZ2、GmMYBJ6和GmMYBJ7蛋白均定位于细胞核中,与亚细胞定位预测一致。
     6.构建植物表达载体pCAMBIA2301-GmMYBZ2、pCAMBIA2301-GmMYBJ6和pCAMBIA2301-GmMYBJ7,利用农杆菌介导法转化烟草NC89;通过Kan抗性、Gus染色及RT-PCR筛选鉴定阳性苗;RT-PCR检测结果显示,GmMYBJ6可提高类黄酮代谢途径中的苯丙氨酸氨基裂解酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酰辅酶A连接酶(4CL)、查尔酮合成酶(CHS)、黄酮醇合成酶(FLS)等关键酶的表达,结果在GmMYBJ6表达的烟草中,总黄酮含量增加;而由于GmMYBZ2和GmMYBJ7抑制了多数类黄酮代谢途径中基因的表达,从而导致转化烟草中总黄酮含量减少。耐胁迫检测结果表明,GmMYBJ6在烟草中的表达,增强了转基因烟草对UV-B、高盐及干旱等非生物胁迫的耐受性。
Transcription factors play an important role in regulation of plant growth andphysiological metabolism by regulation of gene expression at the transcription level.MYB transcription factor gene is one of the largest families in plants, which involved inregulation of secondary metabolism, responding to hormones and environmental factors,also regulation of cell differentiation, cell cycles and the formation of leaves and otherorgans. Soybean is not only an important oil crop and a source of proteins, but also themost important source of isoflavonoids. Many MYB transcription factors were reported tohave ability to regulate the metabolism of flavonoids. In this paper, some novel genesencoding MYB transcription factors were isolated and characterized from soybean cultivars.The main results of this study are as follows:
     1. A pair of degenerate primers was designed according to the conserved regions whichencoding the MYB DNA binding domains in plant MYB genes. Fourteen fragments wereamplified from leaves of soybean cultivars ZhongDou-27, JiLin-3, HuaiDou-1 andZhangJiaKou Black Soybean using RT-PCR. Four novel genes encoding MYBtranscription factors, GmMYBZ1, GmMYBZ2, GmMYBJ6 and GmMYBJ7 were isolated byRACE-PCR. Comparison of deduced amino acid sequences showed that they are typicalR2R3MYB transcription factors because of including two MYB domains respectively.
     2. The expression pattern of the four members in different organs was studied usingsemi-quantitative RT-PCR. The results showed that GmMYBZ2 was expressed in roots,stems, leaves and immature seeds of soybean, the expression of GmMYBZ1 and GmMYBJ7was detected in the stems and leaves, whereas the expression of GmMYBJ6 was detectedonly in the leaves. Expression of GmMYBJ6 could be increased under UV-B radiation,drought and high-salt treatment, while the expression of GmMYBJ6 and GmMYBJ6 wouldbe decreased under the same treatments.
     3. The full-length DNA sequences of GmMYBZ1、GmMYBZ2、GmMYBJ6 andGmMYBJ7 were also amplified using genomic DNA as templates. The results indicatedthat GmMYBZ2 contains one intron, GmMYBJ6 and GmMYBJ7 contain two intronsrespectively, whereas the gene GmMYBZ1 lacks intron.
     4. The recombinant vectors pBridge-GmMYBZ1, pBridge-GmMYBZ2, pBridge-GmMYBJ6 and pBridge-GmMYBJ7 were constructed and transformed into the yeast stainsAH109, then the positive yeast transformants were selected using the SD/-Trp selectivemedium and the SD/-Trp/-His selective medium. The transcriptional activation ofGmMYBZ1, GmMYBZ2, GmMYBJ6 and GmMYBJ7 proteins was confirmed by theyeast system, and itsβ-galactosidase activity was detected as 3.59U, 10.39U, 28.48U and24.31U, respectively. The results of the colony-lift filters assay indicated that the yeasttransformants of GmMYBZ2, GmMYBJ6 and GmMYBJ7 showed a clear blue, whereas theyeast transformants of GmMYBZ1 didn't.
     5. The green fluorescent protein expression vectors p163-GFP-GmMYBZ2、p163-GFP-GmMYBJ6 and p163-GFP-GmMYBJ7 were constructed and transformed into the epidermalcells of onion via particle bombardrnental method. The results of instantaneous expressionshowed that GmMYBZ2、GmMYBJ6 and GmMYBJ7 proteins all were localized in cellnucleus, which was consistent with the prediction of the subcellular localization.
     6. GrnMYBZ2、GmMYBJ6 and GmMYBJ7 were transformed into tobacco NC89 withAgrobacterium LBA4404 containing the plant expression vectors pCAMBIA2301-GmMYBZ2, pCAMBIA2301-GmMYBJ6 and pCAMBIA2301-GmMYBJ7, respectively.The positive tobacco transformants were selected using MS medium containing kanamycin,Gus activity assay and RT-PCR. Semi-quantitative RT-PCR analysis indicated thatGmMYBJ6 could improve the expression of some flavonoid biosynthetic genes, such asPAL (Phenylalanine ammonia lyase), C4H (cinnamate-4-hydroxylase), 4CL (4-coumaroyl-CoA ligase), CHS (Chalcone Synthase), CHI (chalcone isomerase), F3H (flavanone3-hydroxylase), and FLS (flavonol synthase), resulting the increase of the total flavonoidlevels. Whereas, over exprssion of GmMYBZ2 and GmMYBJ7 could decrease the totalflavonoid level in the transgenic tobacco plants due to the repression of the genes inflavonoid biosynthesis. Results of anti-stress experiments showed that the expression ofGmMYBJ6 could improve resistance to UV-B radiation and drought of transgenic tobaccoobviously.
引文
[1] Latchman DS. Transcription factor: an overview, Int. J. Biochem, Cell Biol, 1997,29(12): 1305-1312
    
    [2] Schwechheimer C, Bevan M. The regulation of transcription factor activity in plant.Trend in Plant Science, 1998, 3(10): 278-283.
    
    [3] Riechman JL, Heard J, Martin G, et al. Arabidopsis Transcription Factors: Genome Wide Comparative Analysis Eukaryotes, Science, 2000,290: 2105-2110
    
    [4] Sainz, M.B., Goff, S.A. and Chandler V.L. Extensive mutagenesis of a transcriptional activation domain identifies single hydophobic and acidic amino acids important for activation in vivo, Mol. Cell Biol, 1997, 17:115-122
    
    [5] Johnson PF, Sterneck E, Williams SC: Activation domains of transcriptional regulatory proteins. J Nutr Biochem, 1993,4:386-398
    
    [6] Attardi LD, Tjian R: Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif. Genes Dev, 1993, 7:1341-1353.
    
    [7] Estruch JJ, Crossland L, Golf SA: Plant activating sequences: positively charged peptides are functional as transcriptional activation domains. Nucleic Acids Res, 1994, 22:3983-3989
    
    [8] Dehesh K, Smith LG, TERpperman JM, et al. Twin autonomous bipartite nuclear loclization signals direct nucleal import of GT-2, Plant J, 1995, 8: 25-36
    
    [9] Varagona MJ, Schmidt RJ, Raikhel NV. Nuclear location signal(s) required for nuclear targeting of the maize regulatory Protein Opaque-2. Plant Cell, 1992,4: 1213-1227
    
    [10] Sakuma Y, Liu O, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domsin of Aeabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002,290: 998-1009
    
    [11] Nakano T, Suzuki K, Fujimura T. and Shinshi T. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006,140: 411-432
    
    [12] Ohme-Takagi, M, and Shinshi H, Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element, Plant Cell, 1995, 7: 173-182
    
    [13] Chakravarthy S, Tuori RP, D'Ascenzo MD, et al. The tomato transcription factor Pti4 regulates defense-related genes expression via GCC box and non-GCC box cis elements, Plant Cell, 2003, 15:3033-3050
    [14] Landschulz WH, Johnson PF., Mcknight SL., The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins, Science, 1988, 240:1759-1762
    [15] Foirall L, Rhodes D, Klug A. Mapping of the sites of protection on a 5S RNA gene by the Xenopus transcription factorⅢA, a model for the interaction. J Mol Biol, 1986, 192: 577-586
    [16] Rhodes D, Klug A. An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA. Cell, 1986, 46(1): 123-132
    [17] Tjaden G, Coruzzi GM. A novel AT-rich DNA bingding protein that combines an HMG-like DNA binding domain with a putative transcription domain. Plant Cell, 1994, 6:107-118
    [18] Schwarz-Sommer Z, Nacken W, Saedler H, et al. Genetic control of flower development by homeotic trenes in Antirrhinum majus. Science, 1990, 250:931-940
    [19] Boller T. Chemoperception of microbial signal in plant cell, Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:189-214
    [20] Kalde M, Barth M, Somssich IE, et al. Members of the Arabidopsis WRKY group Ⅲ trascription factors are part of different plant defense signaling pathways, Mol Plant Microbe Interact, 2003, 16:295-305
    [21] Wu KL, Guo ZJ, Wang HH, et al. The WRKY Family of Transcriptin Factors in Rice and Arabidopsis and Their Origins, 2005, DNA Res, 12:9-26
    [22] Eulgem Y, Rushton PJ, Schmelzer E, et al. Early nuclear events in plant defence signaling: rapid gene activation by WRKY transcription factors, EMBO J, 1999,18: 4689-4699
    [23] Chen C. and Chen Z, Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding priteins from tibacco, Plant Mol Biol, 2000, 42:387-396
    [24] Kim CY, Lee S-H, Park HC, et al. Identification of rice blast fungal elicitor responsive genes by differential display analysis. Mol Plant Microbe Interact, 2000, 13:470-474
    [25] Chen C. and Chen Z, Potentistion of develoomentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidpsis transcription factor, Plant Physiol, 2002, 129: 706-716.
    [26] Robatzek S. and Somssich IE, A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated eith both senescence-and defence-related processes, Plant J, 2001, 28:123-133
    [27] Yoda H, Ogawa M, Yamaguchi Y, et al. Identication of early-responsive genes ssociated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants, Mol Genet Genom, 2002, 267: 154-161
    [28] Takemoto D, Yoshioka H, Doke N, et al. Disease stress-inducible genes of tobacco: expression profile of elicitorre sponsive genes isolated by subtractive hydridization, Physiol Plant, 2003, 118:545-553
    [29] Vandenabeele S, Van der Kelen K, Dat J, et al. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco, Proc. Natl. Acad. Sci. U.S.A., 2003, 100: 16113-16118
    [30] Guo ZJ, Kan YC, Chen XJ, et al. Characterization a rice WRKY gene whose expression is induced upon pathogen attack and mechanical wounding, Acta Bot Sin, 2004, 46:955-964
    [31] Hara K, Yagi M, Kusano T, et al. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcripton factor upon wounding, Mol Gen Genet, 2000, 263:30-37
    [32] Cheong YH., Chang HS., Gupta R., et al. Transcriptional profiling revesls novel interactions between wonding, pathogen, abiotic stress, hormone responses in Arabidopsis, Plant Physiol, 2002, 129:661-677
    [33] Huang T. and Duman JG, Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Sloanum ducamara, Plant Mol Biol, 2002, 48: 339-350
    [34] Sanchez-Balleata MT, Lluch Y, Gosalbes MJ, et al. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citris fruit, Planta, 2003, 218: 65-70
    [35] Mare C., Mazzucotelli E., Crosatti C., et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley, Plant Mol Biol, 2004, 255:399-416
    [36] Seki M., Narusaka M., Ishida J., et al. Monitorring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-lethgth DNA microarray, Plant J, 2002, 31: 279-292
    [37] Rizhsky L, Liang H and Mittler R, The combined effect of drought stress and heat shock on gene expression in tobacco, Plant Physiol, 2003, 130:1143-1151
    [38] Rizhsky L, Davletova S, Liang H, et al. The zinc finger pritein Zat12 is required for cytosolic ascorbate peroxidase I expression during oxidative strss in Arabidopsis, J Biol Chem, 2004, 279:11736-11743
    [39] 仇玉萍,荆邵娟,付坚等,13个水稻WRKY基因的克隆及其表达谱分析,科学通报,2004,49:1860-1869
    [40] Meissner RC, Jin H, Cominelli E, et al. Function search in a large transcription factor gene amily in Arabidopsis: Assessing the potential of reverse genetics to identify insertional mutations in R2R3MYB genes, Plant Cell, 1999, 11: 1827-1840
    [41] Gubler F, Chandler PM, White RG, et al. Cloning of a rice DNA encoding a transcription factor homologous to barley GAMYB, Plant Cell Physiol, 1997, 38(3): 362-365.
    [42] Xue B, Charest-PJ, Devantier Y, et al. Characterization of a MYB R2R3 Gene from black spruce (Picea mariana) that shares functional conservation with maize C1. Mol. Genet. Genomics, 2003, 270(10): 78-86.
    [43] Rabinowicz PD, Braum EL, Wolfe AD, et al. Maize R2R3MYB Genes: Sequence Analysis Reveals Amplification in the Higher Plants. Genetics, 1999, 153: 427-444.
    [44] Cedroni ML, Cronn RC, Adams KL, et al. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol, 2003, 51(3): 313-325
    [45] Wu X M, Lim S H, Yang W C. Characterization expression and phylogenetic study of R2R3-MYB genes in orchid. Plant Mol. Biol, 2003, 51(6): 959-972
    [46] Shin B, Choi G, Yil H, Yang S, Cho I, Kim J, Lee S, Paek N C, Kim J H, Song P S and Cho G. AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1, The Plant Journal, 2002, 30(1): 23-32
    [47] Kim SY, Chung HJ, Thoms TL. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid cloning system. Plant Journal, 1997, 11:1237-1251
    [48] Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds auxin response elements. Science, 1997, 276:1865-1868
    [49] Liu Q, Kasuga M, Sakuma Y, et al. Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal transcription Pathways in Drought-and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
    [50] 齐楣,黄美娟,陈凡.酵母单杂交系统分离胡萝卜生长素应答元件结合因子,中国科学(C辑),2002,32(2):105-112
    [52] Xie O, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIRI to promote lateral root development. Genes Dev, 2000, 14(23): 3024-3036
    [53] Lee MM, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent protein in Arabidopsis. Development, 2001,128:1539-1546
    [54] Messner RC, Jin H, Cominelli E, et al. Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertinal Mutations in R2R3MYB Genes. Plant Cell, 1999, 11:1827-1840
    [55] Femandez DE, Heck GR, Perry SE, et al. The embro MADS domain factor AGL15 acts postembryonically inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 2000, 12(2): 183-198
    [56] Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. PNAS. 2000, 97(9): 4985-4990
    [57] Murray F, Kalla R, Jacobsen J, et al. A role for HvGAMYB in anther development. Plant J, 2003, 33(3): 481-491
    [58] Tissier AF, Marillonnet S, Klimyuk V, et al. Multiple independent defective suppressor mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell, 1999, 11(10): 1841-1852
    [59] McCarty D R. Genetic control and integration of maturation and germination Pathways in seed development, Annu. Rev. Plant Physiol Plant Mol Biol, 1995, 46:71-93
    [60] Kao CY, Cocciolone SM, Vasil IK, et al. Localization and interaction of the cis-acting elements for abscisic acid VIVIPAROUSI, and light activation of C1 gen of maize. Plant Cell, 1996, 8: 1171-1179
    [61] Locatelli F, Bracale M, Magaraggia F, et al. The product of the rice MYB7 unspliced RNA with the Meize Leucine Zipper Opaque2 and stimulates its activity in a transient expression assay. The Jounal of Biological Chemistry, 2000, 275(23): 17619-17625
    [62] 刘强,张贵友,陈受宜,植物转录因子的结构与调控作用,科学通报,2000,45(14):1465-1474
    [63] Hoecker U, Vasil IK, McCarty DR. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 1995, 9(20): 2459-2469
    [64] Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH. Viral myb oncogene encodes a sequence specific DNA-binding activity. Nature, 1988, 335:835-837
    [65] Luscher B, Eisenman RN. New light on MYC and MYB. Gene Dev, 1990, 4: 2235-2241
    [66] Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Knai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994, 79: 639-648
    [67] Ogata K, Morikawa S, Ametani Y et al. Comparison of the free and DNA complexed forms of the DNA2binding domain of c-MYB. Nat ure Struct Biol, 1995, 2: 309-320
    [68] Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meiss2ner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 1998, 16:263-276
    [69] Bilaud T, Koering CE, Binet2Brasselet E, Ancelin K, Pollice A, Gasser SM, Gilson E. The telobox, a myb related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res, 1996, 24:1294-1303
    [70] Yu EY, Kim SE, Kim J H, Ko J H, Cho MH, Chung IK. Sequence specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J. Biol Chem, 2000, 275: 24208-24214
    [71] Braun EL, Grotewold E (1999). Newly discovered plant c-MYB like genes rewrite the evolution of the plant myb gene family. Plant Physiol, 121: 21-24
    
    [72] Kranz H, Scholz K, Weisshaar B. c-MYB oncogene like genes encoding three MYB repeats occur in all major plant lineages. Plant J, 2000,21: 231-235
    
    [73] Ito M. Factors controlling cyclin B expression. 2000, Plant Mol Biol, 43: 677-690
    
    [74] Stracke R, Werber M, Weisshaar B, The R2R3-MYB gene family in Arabidopsis thaliana, Curr. Opin. Plant Biol, 2001,4: 447-456.
    
    [75] Martin C, Paz-Ares J., MYB transcription factors in plants, Trends Genet. 13 (1997) 67-73.
    
    [76] Avila, J, Nieto, C, Canas, L, Benito, M. J, Paz-Ares, J, Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. Plant J, 1993, 3:553-562
    
    [77] Byrne M.E, Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A., Martienssen R.A., ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis, Nature, 2000,408: 967-971.
    
    [78] Lipsick J S. One billion years of MYB. Oncogene, 1996, 13: 223-235
    
    [79] Jin H, Martin C. Multifunctionality and diversity within the plant MYB gene family.Plant Mol Biol, 1999,41:577-585
    
    [80] Cizhong Jiang, Jianying Gu, Surinder Chopra, Xun Gu, Thomas Peterson, Ordered origin of the typical two- and three-repeat Myb genes, Gene, 2004, 326: 13-22
    
    [81] Abe H, Yamaguchi-Shinozaki K, Urao T , Iwasaki T., Hosokawa D , Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell, 1997,9: 1859 - 1868
    
    [82] Lee MM, Schiefelbein J, WEREWOLF. A MYB-related protein in Arabidopsis, is a position dependent regulator of epidermal cell patterning. Cell, 1999, 99(5): 473-483
    
    [83] Payne CT, Zhang F, Lloyd AM. G13 encodes a bHLH protein that regulates trichome evelopment in A rabidopsis through interaction with GL1 and TTG. Genetics, 2000, 156:1349-1362
    
    [84] Schmitz G, Tillmann E, Carriero F. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. PNAS, 2002,99(2): 1064-1069
    
    [85] Penfield S, Messner RC, Shoue DA, et al. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell, 2001, 13(12): 2777-2791
    
    [86] Steiner-Lange S, Unte US, Eckstein L, et al. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J, 2003, 34(4): 519—528
    
    [87] Koes, R E, Quattrocchio, F, Mol, J N M, The flavonoid biosynthetic pathway in plants:function and evolution. BioEssays,1994,16:123-132.
    
    [88] Harborne, J B, Williams, C A, Advances in flavonoid research since 1992.Phytochemistry, 2000, 55: 481-504.
    
    [89] Dixon R A, Paiva N L, Stress-induced phenylpropanoid metabolism. Plant Cell, 1995,7:1085-1097.
    
    [90] Yang C S, Landau J M, Huang M T, Newmark H L, Inhibition of arcinogenesis by dietary polyphenolic compounds, Annu. Rev. Nutrition, 2001,21: 381-406
    
    [91] Ross J A, Kasum C M, Dietary flavonoids: bioavailability, metabolic effects, and safety, Annu. Rev. Nutrition, 2002,22:19-34.
    
    [92] Sarkar F H, Li Y, Soy isoflavones and cancer prevention.Cancer Invest, 2003, 21:817-818.
    
    [93] Shirwaikar Annie R G, Prabhu and S Malini, Activity of Wedelia calendulacea Less.in post-menopausal osteoporosis. Phytomedicine, 2006,13: 43-48
    
    [94] Prey O., Brown J., Fleming J., Harrison P R., Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem. Pharmacol, 2003, 66:2075-2088.
    
    [95] Van Dross R., Xue Y., Knudson A., Pelling J C, The chemopreventive bioflavonoid Apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J.Nutrition, 2003,133:3800S-3804S
    
    [96] Napoli C A, Fahy D, Wang H Y, Taylor L P, White anther: a Petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene, Plant Physiol. 1999,120: 615-622.
    
    [97] Holton T A, Cornish E C, Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995,7: 1071-1083.
    
    [98] Gandikota M, de Kochko A, Chen L.Ithal N, Fauquet C, Reddy A R, Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breed, 2001,7: 73-83.
    
    [99] Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B, Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell, 2000,12: 65-79.
    
    [100] Liu C J, Blount J W, Steele C L, Dixon R A, Bottlenecks for metabolic engineering of isoflavone glyconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2002, 99:14578-14583
    
    [101] Singh KB. Transcription regulation in plants: the importance of combinatorial control. Plant Physiol, 1998,118: 1111-1120
    
    [102] Piaaza P, Procissi A, Jenkins GI, et al. Members of the c1/p1 Regulatory Gene Family Mediate the Response of Maize Aleurone and Mesocotyl to Different Light Qualities and Cytokinins. Plant Physiology, 2002,128: 1077-1086
    
    [103] Moyano E, Martinez-Garcia JF, Martin C. Apparent Redundancy in MYB Gene Function provides Gearing for the control of Flavonoid Biosynthsis in Antirrhinum Flowers. The plant cell, 1996, 8: 1519-1532.
    
    [104] Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C, Activation tagging identifies a conserved MYB regulator of phenylpropanoid.biosynthesis. Plant Cell, 2000, 12:2383-2394.
    
    [105] Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L, The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001,13:2099-2114.
    
    [106] Helena Mathews, Stephanie K, Clendennen, Colby G, Caldwell, Xing Liang Liu,Karin Connors, Nikolaus Matheis, Debra K, Schuster D J, Menasco, Wendy Wagoner,Jonathan Lightner and D Ry Wagner, Activation Tagging in Tomato Identifies a Transcriptional Regulator of Anthocyanin Biosynthesis, Modification and Transport. The Plant Cell, 2003,15: 1689-1703.
    
    [107] Lodovico Tamagnone, Angel Merida, Adrian Parr, Steve Mackay, Francisco A, Culianez-Macia, Keith Roberts and Cathie Martin, The AmMYB308 and AmMYB330 Transcription Factors from Antirrhinum Regulate Phenylpropanoid and Lignin Biosynthesis in Transgenic Tobacco, The Plant Cell, 1998, 10:135-154
    [108] Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C, Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150-6161.
    [109] Aharoni A, De Vos C H, Wein M, Sun Z, Greco R, Kroon A, Mol J N, O' Connell A P, The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J, 2001, 28: 319-332.
    [110] Paz-Ares J, Ghosal D, Wienand U et al. The regulatory C1 locus of Zea mays encodes a protein with homology to myb oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558
    [111] 刘强,赵南明,K.Yamaguch-Shinozaki, K. Shinozaki, DREB转录因子在提高植物抗逆性中的作用,科学通报,2000,45(1):11-16
    [112] 黄荣峰,杨宇红,王学臣,植物对低温胁迫响应的分子机理,农业生物技术学报,2001,9(1):92-96
    [113] 王栋,李利红,陈志玲,夏佳先,拟南芥根特异表达转录因子AtMYB305的鉴定及功能研究,科学通报,2001,46(21):1804-1809
    [114] Carre I A, Kim J Y. MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot, 2002, 53(374): 1551-1557
    [115] Goodrich J, Carpenter R and Coen E S, Acommon gene regulates pigmentation pattern in diverse plant species. Cell, 1992, 68: 955-964.
    [116] Detlef Weigel, Ji Hoon Ahn, Miguel A Bla'zquez, Justin O Borevitz, Sioux K Christensen, Christian Fankhauser, Cristina Ferra'ndiz, Igor Kardailsky, Elizabeth J. Malancharuvil, Michael M Neff, Jasmine Thuy Nguyen, Shusei Sato, Zhi-Yong Wang, Yiji Xia, Richard A Dixon, Maria J Harrison, Chris J Lamb, Martin F Yanofsky and Joarme Chory, Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122:1003-1013.
    [117] Bo-Jun Chen, Yong Wang, Yuan-Lei Hu, Qi Wu, Zhong-Ping Lin. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Science, 2005, 168: 493-500.
    [118] 孙君明,丁安林,常汝镇,东惠茹,中国大豆异黄酮含量的初步分析,中国粮油学报,1995,10(4):51-54
    [119] 韩粉霞 丁安林 孙君明.高异黄酮含量大豆新品种中豆27,大豆科学,2002,21(3):231-233
    [120] Loguerico LL, Zhang JQ, Wilkins TA. Diffrential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraloid cotton(Gossypium hirsutum L.). Mol. Gen. Genet, 1999, 261 (4-5): 660-671
    [121] 陈俊,朱英,王宗阳,水稻MYB cDNA的克隆和表达分析,植物生理与分子生物学学报,2002,28(4):267-274
    [122] Sambrook J., Fritsch E.F. & Maniatis T., Hrsg, Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys. Chem., 1989, 26: 235-246.
    [123] Quattrocchio F, Wing J, van der Woude K, Souer E, de Vet tenN, Mol J, Koes R. Molecular analysis of the anthocyanin gene of petunia and its role in the evolution of flower color. Plant Cell, 1999, 11: 1433-1444
    [124] Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW. GAMYB-like genes, flowering and gibberellin signaling in Arabidopsis. Plant Physiol, 2001, 127: 1682-1693.
    [125] Fu H, Kim S Y, Park W D. High level tuber expression and Sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell, 1995, 7:1387-1395
    [126] Fu H, Kim S Y, Park W D. A potato Sus3 sucrose synthase gene contains a conte dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell, 1995, 7: 1395-1403
    [127] Callis J, Fromm M, Walbot V. Intron increases gene expression in cultured maize cells. Genes Dev, 1987, 1: 1183-1200
    [128] Gidekel M, Jimenez B, Herrera-Estrella L. The first intron of the Arabidopsis thaliana gene coding for elongation factor 1 contains an enhancer-like element. Gene, 1996, 170: 201-206
    [129] Salgueiro S, Pignocchi C, Parry MAJ. Intron-mediated gusA expression in tritordeum and wheat resulting from particle bombarment. Plant Mol Biol, 2000, 42:615-622
    
    [130] Hiroshi Abe, Takeshi Urao, Takuya Ito, Motoaki Seki, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki, Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, The Plant Cell, 2003,15: 63-78
    
    [131] Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics, 1998,149: 479-490
    
    [132] Quaedvlieg N., Dockx J., Keultjes G., Kock P., Wilmering J., Weisbeek P.,Smeekens S. Identification of a light-regulated MYB gene from an Arabidopsis transcription factor gene collection. Plant Mol Biol, 1996, 32: 987-993
    
    [133] Marten Denekamp and Sjef C. Smeekens. Integration of Wounding and Osmotic Stress Signals Determines the Expression of the AtMYB102 Transcription Factor Gene.Plant Physiology, 2003, 132: 1415-1423
    
    [134] Li JJ, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science, 1993,262: 1870-1873
    
    [135] Liu JD, Wilson TE, Milbrandt J, Johnston M. Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods, 1993, 5:125-137
    
    [135] Alexander MK, Bourns BD, Zakian VA. One-hybrid systems for detecting protein-DNA interactions. Methods Mol Biol 2001, 177: 241-259
    
    [136] Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA, 1991, 88: 9578-9582
    
    [137] Chevray P, Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA 1992, 89: 5789-5793
    
    [138] Dalton S, Treisman R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell, 1992, 68: 597-612
    [139] Wang M. N. and Reed R. R, Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature, 1993, 6433:121-126
    [140] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of Aequoria, abioluminescent protein from the luminous Hydromedusan, Aequorea. J Cell Comp Physiol, 1962, 59:223-229.
    [141] Prasher D, Eckenrode V, Ward W, etal. Primary structure of the Aequorea Victoria fluorescent protein. Gene, 1992, 111: 229-233
    [142] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Sci, 1994, 263(5148): 802-805
    [143] Tsien RY. The green fluorescent protein. Annu Rev Biochem, 1998, 67:509-544
    [144] Cubitt AB, Heirn R, Adams SR, et al. Understanding improving and using green fluorescent proteins.TrendsBiochem Sci, 1995, 20(11): 448-455
    [145] Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA, 1994, 91(26): 12501-12504
    [146] Yang TT, Cheng L, Kain SR. Optimized codon usage and chromophore mutation sprovide enhance dsensitivity with the green fluorescent protein. NucleicAcidsRes, 1996, 24(22): 4592-4593
    [147] Cheng LZ, Fu J, Tsukamoto A, et al. Use of green fluorescent protein variants tomonotor gene transfer and expression in mammalian cells. NatBiotechnol, 1996,14(5): 606-609
    [148] 赵华,梁婉琪,杨永华等.绿色荧光蛋白及其在植物分子生物学研究中的应用[J].植物生理学通,2003,39(2):171-178
    [149] Gert JC, Veenstra, Alan PW. Gene-selective developmental roles of general transcription factors. Tredns Biochem Sci, 2001, 26: 665-671.
    [150] Yang ZR, Wang XC, Li XM, Yang CD. Advance on the study of transcription factors in higher plants. Hereditas, 2004, 26(3): 403-408
    [151] Broun P. Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol, 2004, 7: 202-209
    [152] Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, M addock S, St Clair G, Bowen B. Engineering secondary metabolism in maize cells ectopic expression of transcription factors. Plant Cell, 1998, 10: 721-740
    [153] Cone, K.C., Cocciolone, S.M., Burr, F.A., and Burr, B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell, 1993a, 5: 1795-1805.
    [154] Cone, K.C., Cocciolone, S.M., Moehlenkamp, C.A., Weber, T., Drummond, B.J., Tagliani, L.A., Bowen, B.A., and Perrot, G.H. Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. Plant Cell, 1993b, 5: 1807-1816. [155] Mol, J., Jenkins, G., Schafer, E., and Weiss, D. (). Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci, 1996, 15: 525-557.
    [156] Grotewold, E., Drummond, B.J., Bowen, B., and Peterson, T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 1994, 76: 543-553.
    [157] Justin O. Borevitz, Yiji Xia, Jack Blount, Richard A. Dixon, and Chris Lamb. Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis, The Plant Cell, 2000,12: 2383-2393
    [158] Nesi, N. et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BANgenes in Arabidopsis siliques. Plant Cell, 2000, 12: 1863-1878
    [159] Jackson D., Culianez-Macia F., Prescott A.G., Roberts K. and Martin C. Expression patterns of myb genes from Antirrhinum flowers. Plant Cell, 1991, 3: 115-125. [160] Noji M., Urao T., Yamaguchi-Shinozaki K. and Shinozaki K. Molecular cloning of two cDNAs encoding novel Myb homologues from Arabidopsis thaliana. Plant Physiol, 1998,117:720-731.
    [161] Schmitz G, Theres K. Genetic control of branching in Arabidopsis and tomato. Curr Opin Plant Biol, 1999,2: 51-55
    [162] Schumacher K., Schmitt T., Rossberg M., Schmitz G., and Theres K., The lateral suppressor (Ls)gene of tomato encodes a new member of the VHIID protein family, Proc.Natl.Acad. Sci, 1999, 96(1): 290-295 [163] Otsuga D, de Guzman B, Prigge M.J, Drews G.N, and Clark S.E, REVOLUTA regulates meristem initiation at lateral positions. Plant J, 2001, 25:223-236
    [164] Ratcliffe O J, Riechmann J L, Zhang J Z, INTERFACICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell, 2000, 12:315-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700