抑郁症动物模型与脑血管因素相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CUMS抑郁症模型大鼠行为学及脑葡萄糖代谢
     [目的]通过运用慢性不可预见性轻度应激(CUMS)方法建立抑郁症大鼠模型,研究CUMS致抑郁症大鼠行为学特征,探讨抑郁症与脑葡萄糖代谢之间的关系。
     [方法]正常对照组(CON)、抑郁症模型组(CUMS) Sprague-Dawley雄性大鼠各10只。采用国际公认的“慢性不可预见性轻度应激”(Chronic Unpredicatable Mild Stress, CUMS)方法建立抑郁症大鼠模型:实验大鼠持续4周接受不同的应激因子,包括群居饲养、通宵照明、鼠笼倾斜、潮湿垫料、禁水后空瓶放置、频闪光照及白噪音。对所有大鼠(共20只),CUMS实验前、应激开始后的每一周末,在同等条件下共进行5次体重测量和糖水实验。糖水实验的指标包括总液体消耗量、糖水消耗量、纯水消耗量,并计算糖水相对消耗量、纯水相对消耗量及糖水偏好程度(糖水偏好程度=糖水消耗量/总液体消耗量×100%)。糖水偏好常用于评价快感缺乏程度。CUMS建模前、后进行敞箱实验(open-field test),以观察大鼠的行为学特征,根据数码摄像机回放记录,评估行为学指标:①5min内运动总格子数目;②5min内运动的周边格子数目;③5min内运动的中间格子数目;④后肢直立次数;⑤第一分钟内运动格子的总数目;⑥修饰次数;⑦大便粒数。对CUMS组大鼠(共10只)在应激前、后以18氟标记的脱氧葡萄糖(18F-FDG)为示踪剂进行18F-FDGmicro PET扫描。统计方法:糖水实验和体重采用重复测量的方差分析;open-field实验采用non-parametric Friedman ANOVA;运用SPM 5软件对18F-FDG PET图像进行基于体素的配对t检验;相关分析采用Spearman秩相关。
     [结果]①体重:慢性应激第3周、第4周时CUMS组大鼠体重增加量较CON组大鼠轻度减少(p<0.05)。②糖水实验:应激期间CUMS组大鼠逐渐减少糖水相对消耗量,以应激时间(第1-4周)为主效应,两组间糖水相对消耗量存在差异[F(1,18)=40.72,p<0.001],应激时间与组别之间存在明显交互作用[F(4,72)=7.49,p<0.001]。基线、CUMS建模期间两组对纯水相对消耗量并无显著性差异。应激4周期间,特别是第3周、第4周,CUMS组大鼠糖水偏好明显缺乏(allp<0.001)。③Open-field实验:与CON组相比,CUMS组大鼠第一分钟内运动格子的总数目增多[χ2(10,1)=6.4,p=0.011]; 5min内运动的中间格子数目、后肢直立次数显著减少[χ2(10,1)=9.0,p=0.003;χ2(10,1)=5.4,p=0.02, respectively],修饰次数及大便粒数明显增多[χ2(10,1)=6.4,p=0.011;χ2(10,1)=5.4,p=0.02, respectively]。④18F-FDG micro PET:慢性应激后大鼠听觉皮层葡萄糖代谢显著增高,下丘、中脑导水管周围灰质、梨状皮层、中隔核代谢明显减低(all p<0.01);差异性脑区均出现在左侧,并且听觉皮层葡萄糖代谢增高值与下丘葡萄糖代谢降低值之间呈显著负相关,相关系数为(R=-0.785,p=0.007)。
     [结论]①运用CUMS方法可以成功建立抑郁症大鼠模型,抑郁症大鼠除了具有抑郁症核心症状,即对糖水偏好明显缺乏外,还具有焦虑、恐惧样行为;②抑郁症与脑功能异常变化有关,以梨状皮层、中脑导水管周围灰质、中隔核、下丘、听觉皮层葡萄糖代谢变化较为显著,且具有明显侧化现象(左侧)。
     第二部分高脂饮食致脑血管因素模型大鼠行为学及脑葡萄糖代谢
     [目的]通过运用高脂饮食方法建立脑血管因素模型,研究该模型大鼠行为学特征及脑葡萄糖代谢情况,探讨高脂饮食致高脂血症与抑郁症之间的关系。
     [方法]正常对照组(CON*)、脑血管因素组(CVF) Sprague-Dawley雄性大鼠各10只。以高脂饲料(饲料配方:蛋黄粉10%、猪油20%、胆固醇2.5%、胆酸钠0.2%、甲巯咪唑0.1%、蔗糖2%、普通饲料65.2%)喂养CVF组大鼠9周。高脂饮食前、实验第9周时,在同等条件下共进行2次糖水实验、体重测量及open-field实验,各实验观察指标同第一部分。实验第9周时对20只大鼠经尾静脉采血5ml,用酶标法测定血清甘油三酯(TG)、血清总胆固醇(TC),用磷钨酸-镁沉淀法测定血清高密度脂蛋白胆固醇(HDLC)、血清低密度脂蛋白胆固醇(LDLC)。另外分别对两组大鼠以18氟标记的脱氧葡萄糖(18F-FDG)为示踪剂进行18F-FDG micro PET扫描。统计方法:糖水实验和体重采用重复测量的方差分析;open-field实验采用non-parametric Friedman ANOVA;两组间血脂指标比较采用student's t-test;运用SPM5对18F-FDG PET图像进行基于体素的组间t检验;相关分析采用Spearman秩相关。
     [结果]①体重与血脂:实验第9周时,与CON*组大鼠相比,CVF组大鼠体重显著增高(t=18.824,p<0.001); TC (t=11.76,p<0.001)、LDL (t=6.96,p<0.001)均显著增高,HDL (t=-3.43,p<0.001)显著降低。②糖水实验:两组大鼠在基线时、9周时糖水相对消耗量无差异[F(1,18)=0.896,p=0.356];与基线纯水相对消耗量相比,CVF组大鼠在9周时纯水相对消耗量明显增多(t=5.747,p<0.001),对糖水的偏好程度明显缺乏(t=-5.565,p<0.002).③Open-field实验:两组大鼠在open-field各项行为学指标上均无显著性差异(all p>0.05)。④18F-FDG microPET:与CON*组大鼠相比,CVF组大鼠丘脑、纹状体脑葡萄糖代谢显著减低(allp<0.01);且对糖水偏好缺乏程度与丘脑、纹状体局部葡萄糖代谢降低呈显著正相关(R=0.782,p<0.01; R=0.806,p<0.01, respectively)。
     [结论]①高脂血症大鼠具有抑郁症核心症状;该症状严重程度与丘脑、纹状体脑葡萄糖代谢异常呈正相关;②高脂血症通过影响“边缘系统-纹状体-丘脑”环路功能参与抑郁症发生,且具有侧化现象(右侧);③高脂血症不仅是脑血管危险因素,也是抑郁症重要危险因素之一
     第三部分高脂饮食致脑血管因素叠加CUMS抑郁症模型大鼠行为学及脑葡萄糖代谢
     [目的]成功建立高脂饮食致脑血管因素叠加CUMS抑郁症动物模型,研究叠加模型大鼠行为学特征及脑葡萄糖代谢情况,探讨高脂血症、CUMS在导致抑郁症中所起的作用。
     [方法]正常对照组(CON)、叠加模型组(DMY) Sprague-Dawley雄性大鼠各10只。高脂饲料(同第二部分)喂养DMY组大鼠9周,继续高脂饮食的同时采用CUMS方法(同第一部分)叠加抑郁症模型4周。对所有大鼠(共20只),实验分组时、高脂饮食第9周时、CUMS开始后的每一周(即实验的第10、11、12、13周)在同等条件下共进行6次糖水实验和体重测量;实验分组时、高脂饮食9周时、CUMS第4周后(即实验的第13周)进行3次open-field实验;在实验第9周时对20只大鼠经尾静脉采血5ml,进行血脂指标测定;各实验观察指标均同第二部分。对DMY组大鼠(共10只)在应激前、后进行以18氟标记的脱氧葡萄糖(18F-FDG)为示踪剂进行18F-FDG micro PET扫描。统计方法:同第一、第二部分。
     [结果]①血脂:与CON组大鼠相比,第9周时DMY组大鼠TC(t=7.548,p<0.001)、LDL(t=6.175,p<0.001)均显著增高,HDL显著降低(t=-5.300,p<0.001)。②体重:9周时,DMF组体重增加量较CON组显著增多(p<0.01); CUMS第4周(即13周)时DMF组体重增加量较CON组轻度减少(p<0.05)。③糖水实验:与CON组大鼠相比,应激期间各个时点DMY组大鼠对糖水相对消耗量均有显著减少[F(1,18)=104.267, F(1,18)=55.986, F(1,18)=46.084,F(1,18)=61.080, respectively;allp<0.001];在9周、11周、13周时DMY组大鼠纯水相对消耗量有所增加[F(1,18)=27.72, F(1,18)=16.13, F(1,18)=12.26, respectively; all p<0.001];第9周及4周应激期间,DMY组大鼠逐渐降低对糖水的偏好程度[F(1,18)=28.891,F(1,18)=51.630, F(1,18)=103.794, F(1,18)=103.645, F(1,18)=119.104, respectively; all p<0.001]。④Open-field实验:与CUMS前相比,DMY组大鼠在CUMS后5min内运动总格子数目、中间格子数目、周边格子数目均减少[χ2(10,1)=3.60,p=0.048;χ2(10,1)=10,p=0.002;χ2(10,1)=3.60,p=0.048, respectively];后肢直立次数减少[χ2(10,1)=9.0,p=0.003];第一分钟内运动格子总数目增多[χ2(10,1)=6.4,p=0.011];修饰次数及大便粒数增多[χ2(10,1)=9.0,p=0.003;χ2(10,1)=9.0,p=0.03, respectively]。⑤18F-FDG micro PET:叠加模型后大鼠下丘脑、岛叶皮层葡萄糖代谢显著增高,而海马、内嗅皮层葡萄糖代谢显著降低(all p<0.01);并且下丘脑葡萄糖代谢增高值与海马葡萄糖代谢减低值之间呈负相关,相关系数为(R=-0.736,p=0.015)。
     [结论]①高脂饮食致高脂血症叠加CUMS动物模型可较好模拟高脂血症与抑郁症共病症状,是建立共病动物模型的方法之一;②高脂血症未加控制基础之上一旦接触慢性应激因子会较早出现严重抑郁症状,并伴明显自主神经功能紊乱症状;③高脂血症与抑郁症叠加对与情绪、神经内分泌功能相关中枢葡萄糖代谢影响显著,其中海马功能降低最为明显;另外内嗅皮层、岛叶葡萄糖代谢改变也参与其中,且具有明显侧化现象(左侧为主);④CUMS与高脂血症所致抑郁症在对行为学、大脑功能的影响中起着协同作用,大脑神经元葡萄糖代谢水平发生改变是二者对机体影响的共同通路之一。
PartⅠBehavioral and brain glucose metabolism study in rat depression model induced by Chronic Unpredicatable Mild Stress
     [Objectives] To investigate behavioral features of depression rats and explore the relationships between depression and brain glucose metabolism by establishing rat depression model induced by Chronic Unpredicatable Mild Stress.
     [Methods] The study was carried out using twenty healthy male Sprague-Dawley (SD) rats:normal control group (CON, n=10), depression model group (CUMS, n=10). To establish rat depression model, it was designed to meet the procedures of Chronic Unpredictable Mild Stress, which were internationally recognized and were carried out continuously for a total of 4 weeks, including water deprivation, empty water bottle, continuous lighting, cage tilt, paired housing, damp bedding, white noise and strobe light. For all of rats, sucrose test and body weight were measured before beginning the CUMS procedures, and then conducted weekly throughout the CUMS periods under similar conditions. All parameters in sucrose test were recorded, including total fluid intake, sucrose intake and water intake, and then sucrose relative intake, water relative intake and sucrose preference=[sucrose solution intake (ml)/ total fluid intake (ml)]×100 were calculated. Sucrose preference tests were employed to operationally define anhedonia. Besides these, all rats were tested one by one in an open field test at baseline and week 4 to investigate behavioral characters. All rats' behaviors were recorded using a video camera and were scored manually from a TV screen. Behavioral parameters were as follows:the number of total activity, peripheral activity, central activity in five minutes; the number of first minute activity, the number of grooming and defecation. Ten rats (CUMS, n=10) were given 18F-FDG micro PET scan at baseline and week 4, respectively. Statistical analysis:sucrose test and body weight were analyzed using a repeated measurement ANOVA. Open-field test was analyzed using a non-parametric Friedman ANOVA. We used voxel-based statistical analyses by SPM5 software and used paired t-tests for the comparison between pre-CUMS and CUMS groups. Spearman rank correlation coefficients were calculated.
     [Results]①Body weight:the body weight gain of the CUMS rats was slightly lower than the CON rats during the last two weeks of the CUMS periods (p<0.05).②Sucrose test:CUMS gradually reduced the relative intake of the sucrose solution. Tests of the main effects for the periods of CUMS (weeks 1-4) showed a difference between the two groups of sucrose relative intake [F(1,18)=40.72, p<0.001]. There was a strong tendency for interaction between group and week [F (4,72)=7.49, p<0.001]. However, no significant differences in water relative intake were found at any point at baseline and during the CUMS periods between two groups. Compared with the CON rats, CUMS rats show no difference at the baseline, but a significantly reduced sucrose preference, especially at week 3 and 4 (all p<0.001).③Open-field test:The CUMS rats exhibited enhanced locomotor activity during the first minute [χ2 (10, 1)=6.4,p=0.011] compared with CON animals. Furthermore, there was a tendency to lower activity in the center squares and reduced rearing for the CUMS rats than the CON rats at week 4[χ2 (10, 1)=9.0,p=0.003;χ2 (10,1)=5.4,p=0.02, respectively]. In comparison to the CON rats, a significant increase in grooming and defecation was observed in CUMS rats[χ2(10, 1)=6.4,p=0.011;χ2(10, 1)=5.4,p=0.02, respectively).④18F-FDG micro PET:using 18F-FDG micro PET, we found that piriform cortex, septal nuclei, inferior colliculus and periaqueductal gray were deactivated while only auditory cortex was activated after 4 weeks of Chronic Unpredictable Mild Stress (all p<0.01). These significant brain region changes were predominantly found in the left hemisphere, and the change of glucose metabolism in auditory cortex has negative correlation with the change value of inferior colliculus (R=-0.785,p=0.007).
     [Conclusions]①CUMS rats can mimic the core symptoms of depression, an anhedonia to sucrose preference, and anxiety-, fear-like behaviours, which support the face validity of CUMS as an animal model for human depression.②The changes of brain activity are associated with depression and left hemisphere is dominated, especially in many brain regions, such as piriform cortex, septal nuclei, inferior colliculus, periaqueductal gray and auditory cortex, whose glucose metabolism changes are most notable.
     Part II Behavioral and brain glucose metabolism study in rat cerebrovascular factor model induced by high lipid feed
     [Objectives] To investigate behavioral features of hyperlipidemia rats and explore the relationships between depression and hyperlipidemia by establishing rat cerebrovascular factor model induced by high lipid feed.
     [Methods] The study was carried out using twenty healthy male Sprague-Dawley (SD) rats:normal control* group (CON*, n=10), cerebrovascular factor model group (CVF, n=10). To establish rat cerebrovascular factor model, it was designed to high lipid feed for a total of 9 weeks (feed formulation:custard powder 10%, lard 20%, cholesterol 2.5%, sodium cholate 0.2%, thiamazole 0.1%, sucrose 2% and common feed 65.2%). For all of rats, sucrose test, body weight and open-field test were measured before beginning high lipid feed, and then conducted at week 9 under similar conditions. All observed parameters in above tests have been given detailed descriptions in the partⅠ. Besides these, all rats were taken blood 5ml via caudal vein at week 9. Triglycerides (TG) and total cholesterol (TC) were measured using the method of enzyme linked immunosorbent assay, and high density lipoprotein cholesferol (HDLC) and low density lipoprotein cholesferol (LDLC) were measured using the method of phosphotungstic acid-magnesium sedimentation. Twenty rats (CON*, n=10; CVF, n=10) were given 18F-FDG micro PET scan at week 9. Statistical analysis:sucrose test and body weight were analyzed using a repeated measurement ANOVA. Open-field test was analyzed using a non-parametric Friedman ANOVA. Comparison of serum lipids was analyzed using student's t-test. We used voxel-based statistical analyses by SPM5 software and used student's t-test for the comparison between CON* and CVF groups. Spearman rank correlation coefficients were calculated.
     [Results]①Body weight and serum lipids:the body weight gain of the CVF rats was significantly higher than the CON* rats (t=18.824,p<0.001); TC (t=11.76, p<0.001) and LDL (t=6.96, p<0.001) were both significantly increased, however, HDL (t=-3.43,p<0.001) was significantly decreased at week 9.②Sucrose test:no significant differences in sucrose relative intake were found at baseline and week 9 between two groups [F(1,18)=0.896,p=0.356]. Compared with water relative intake at baseline, CVF rats increased water relative intake at week 9 (t=5.747,p<0.001) and significantly decreased sucrose preference (t=-5.565,p<0.001).③Open-field test:no significant differences were found at baseline and week 9 between two groups (all p>0.05).④18F-FDG micro PET:using 18F-FDG micro PET, we found that thalamus and striatum were deactivated of CVF rats, compared with CON* rats at week 9 (all p<0.01). On the other hand, the correlation between the changes of sucrose preference and the changes of brain glucose metabolism in thalamus and striatum was positive (R=0.782,p<0.01, R=0.806, p<0.01, respectively).
     [Conclusions]①CVF rats present the core symptom of depression, and severity of this symptom has positive correlation with the changes of brain glucose metabolism in thalamus and striatum.②The changes of brain activity in "limbic system-striatum-thalamus" circuit induced by hyperlipidemia are associated with depression and right hemisphere is dominated.③Hyperlipidemia is one of cerebrovascular risk factors, but it is more important to find that hyperlipidemia is also a risk factor in depression.
     PartⅢBehavioral and brain glucose metabolism study in rat cerebrovascular factor model combined with Chronic Unpredictable Mild Stress model of depression
     [Objectives] To establish successfully an animal model of cerebrovascular factor model induced by high lipid feed combined with Chronic Unpredictable Mild Stress (CUMS) model of depression, to investigate behavioral features and brain glucose metabolism changes of this model rats, and to explore what roles hyperlipidemia and CUMS played in depression.
     [Methods] The study was carried out using twenty healthy male Sprague-Dawley (SD) rats:normal control group (CON,n=10), double model factors group (DMY, n=10). To establish rat DMY model, it was designed to high lipid feed for a total of 9 weeks (see the PartⅡ), and then followed by CUMS for 4 weeks (see the PartⅠ). For all of rats, sucrose test and body weight were measured before beginning high lipid feed, at week 9, and then conducted weekly throughout the CUMS periods (week 10,11,12,13) under similar conditions. All rats were tested one by one in an open field test at baseline, week 9 and week 13. Besides these, all rats were taken blood 5ml via caudal vein at week 9 and then serum lipids were measured. All observed parameters in above tests have been given detailed descriptions in the partⅡ. Ten rats (DMY, n=10) were given 18F-FDG micro PET scan at week 9 and week13, respectively. Statistical analysis:for details, see the partⅠand partⅡ.
     [Results]①Serum lipids:TC (t=7.548,p<0.001) and LDL (t=6.175,p<0.001) were both significantly increased, however, HDL (t=-5.300,p<0.001) was significantly decreased at week 9 compared with the CON rats.②Body weight:the body weight gain of the DMY rats was significantly higher at week 9 (p<0.01) and slightly lower at week 13 (p<0.05) compared with CON rats.③Sucrose test:CUMS gradually reduced the relative intake of the sucrose solution at 4 time points during CUMS periods in DMY rats [F(1,18)=104.267, F(1,18)=55.986, F(1,18)=46.084, F(1, 18)=61.080, respectively; all p<0.001]. DMY rats increased water relative intake at week 9,11 and 13[F(1,18)=27.72,F(1,18)=16.13,F(1,18)=12.26, respectively; all p<0.001]. DMY rats gradually decreased sucrose preference at week 9 and 4 time points during CUMS periods [F(1,18)=28.891, F(1,18)=51.630, F(1,18)=103.794, F(1,18)=103.645, F(1,18)=119.104, respectively; all p<0.001].④Open-field test: compared with pre-CUMS, significant decrease activities in total squares in 5-min, central squares and peripheral squares were observed in DMY rats[χ2 (10, 1)=3.60, p=0.048;χ2 (10, 1)=10,p=0.002;χ2 (10, 1)=3.60,p=0.048, respectively]. Besides these, the number of rearing was reduced[χ2 (10, 1)=9.0, p=0.003], however, the number of grooming and defecation was significantly increased[χ2 (10, 1)=9.0, p=0.003;χ2 (10, 1)=9.0,p=0.03, respectively].⑤18F-FDG micro PET:using 18F-FDG micro PET, we found that hypothalamus and insular cortex were activated while hippocampus and entorhinal cortex were deactivated after 4 weeks of Chronic Unpredictable Mild Stress in DMY rats (all p<0.01). These significant brain region changes were predominantly found in the left hemisphere and the change of glucose metabolism in hypothalamus was negatively correlative with the change of hippocampus(R=-0.736, p=0.015).
     [Conclusions]①It is a method to mimic hyperlipidemia combined depression by establishing cerebrovascular factor model induced by high lipid feed for a total of 9 weeks, followed by depression model induced by Chronic Unpredictable Mild Stress (CUMS) for 4 weeks.②Under uncontrolled hyperlipidemia, severe depressive symptoms will present more early once exposure to a series of chronic stressors followed by significant autonomic nervous dysfunctional symptoms.③When hyperlipidemia combined with depression, it will significantly change in brain glucose metabolism of many brain regions related with emotion and neuroendocrine, especially in hippocampus. Furthermore, there are significant changes in entorhinal cortex and insular cortex, and left hemisphere is dominated.④CUMS and hyperlipidemia play a synergistic action in the changes of behavior and brain activity of depression.
引文
[1]. Murray CJ, Lopez AD:Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997;349:1498-1504.
    [2]. Hasin DS, Goodwin RD, Stinson FS, Grant BF:Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry 2005;62:1097-1106.
    [3]. Simpson S, Baldwin RC, Jackson A, Burns AS:Is subcortical disease associated with a poor response to antidepressants? Neurological, neuropsychological and neuroradiological findings in late-life depression. Psychol Med 1998;28:1015-1026.
    [4]. Post F:The management and nature of depressive illnesses in late life:a follow-through study. Br J Psychiatry 1972;121:393-404.
    [5]. Fujikawa T, Yamawaki S, Touhouda Y:Incidence of silent cerebral infarction in patients with major depression. Stroke 1993;24:1631-1634.
    [6]. Krishnan KR:Biological risk factors in late life depression. Biol Psychiatry 2002;52:185-192.
    [7]. Ariyo AA, Haan M, Tangen CM, Rutledge JC, Cushman M, Dobs A, Furberg CD:Depressive symptoms and risks of coronary heart disease and mortality in elderly Americans. Cardiovascular Health Study Collaborative Research Group. Circulation 2000; 102:1773-1779.
    [8]. Penninx BW, Guralnik JM, Mendes de Leon CF, Pahor M, Visser M, Corti MC, Wallace RB: Cardiovascular events and mortality in newly and chronically depressed persons> 70 years of age. Am J Cardiol 1998;81:988-994.
    [9]. Rugulies R:Depression as a predictor for coronary heart disease. a review and meta-analysis. Am J Prev Med 2002;23:51-61.
    [10]. Marzari C, Maggi S, Manzato E, Destro C, Noale M, Bianchi D, Minicuci N, Farchi G, Baldereschi M, Di Carlo A, Crepaldi G:Depressive symptoms and development of coronary heart disease events:the Italian longitudinal study on aging. J Gerontol A Biol Sci Med Sci 2005;60:85-92.
    [11]. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M:'Vascular depression' hypothesis. Arch Gen Psychiatry 1997;54:915-922.
    [12]. Krishnan KR, Hays JC, Blazer DG:MRI-defined vascular depression. Am J Psychiatry 1997;154:497-501.
    [13]. Thomas AJ, Ferrier IN, Kalaria RN, Davis S, O'Brien JT:Cell adhesion molecule expression in the dorsolateral prefrontal cortex and anterior cingulate cortex in major depression in the elderly. Br J Psychiatry 2002;181:129-134.
    [14]. Thomas AJ, Ferrier IN, Kalaria RN, Perry RH, Brown A, O'Brien JT:A neuropathological study of vascular factors in late-life depression. J Neurol Neurosurg Psychiatry 2001;70:83-87.
    [15]. Musselman DL, Miller AH, Porter MR, Manatunga A, Gao F, Penna S, Pearce BD, Landry J, Glover S, McDaniel JS, Nemeroff CB:Higher than normal plasma interleukin-6 concentrations in cancer patients with depression:preliminary findings. Am J Psychiatry 2001;158:1252-1257.
    [16]. Kim JS:Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci 1996;137:69-78.
    [17]. Connor TJ, Leonard BE:Depression, stress and immunological activation:the role of cytokines in depressive disorders. Life Sci 1998;62:583-606.
    [18]. Musselman DL, Tomer A, Manatunga AK, Knight BT, Porter MR, Kasey S, Marzec U, Harker LA, Nemeroff CB:Exaggerated platelet reactivity in major depression. Am J Psychiatry 1996;153:1313-1317.
    [19]. 杨斌,张玉堂,王莉,刘建斌:抑郁症患者血小板活化功能的临床研究.中华行为医学与脑科学杂志2009:613-614.
    [20]. Ziegelstein RC, Parakh K, Sakhuja A, Bhat U:Platelet function in patients with major depression. Intern Med J 2009;39:38-43.
    [21]. 曹晶晶,程友琴:老年抑郁症与心血管疾病的关系.中华老年心脑血管病杂志2005;7:206-207.
    [22]. O'Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B:Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease. Br J Psychiatry 1996; 168:679-687.
    [23]. Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH:Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 2000;69:228-232.
    [24]. Tiemeier H, van Tuijl HR, Hofman A, Meijer J, Kiliaan AJ, Breteler MM:Vitamin B12, folate, and homocysteine in depression:the Rotterdam Study. Am J Psychiatry 2002;159:2099-2101.
    [25]. 袁勇贵,李海林,吴瑞枝,叶勤,陆蓉,陈晔,李毅,顾晓瑛,刘阳,张石宁:血浆同型半胱氨酸水平及N5,N10-亚甲四氢叶酸还原酶基因多态性与老年期抑郁症的关联研究.中华精神科杂志2005:38:150-153.
    [26]. McCarron MO, Delong D, Alberts MJ:APOE genotype as a risk factor for ischemic cerebrovascular disease:a meta-analysis. Neurology 1999;53:1308-1311.
    [27]. Nebes RD, Vora IJ, Meltzer CC, Fukui MB, Williams RL, Kamboh MI, Saxton J, Houck PR, DeKosky ST, Reynolds CF,3rd:Relationship of deep white matter hyperintensities and apolipoprotein E genotype to depressive symptoms in older adults without clinical depression. Am J Psychiatry 2001;158:878-884.
    [28]. Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW, Jaffe AS:Association of depression with reduced heart rate variability in coronary artery disease. Am J Cardiol 1995;76:562-564.
    [29]. Glassman AH, Helzer JE, Covey LS, Cottler LB, Stetner F, Tipp JE, Johnson J:Smoking, smoking cessation, and major depression. Jama 1990;264:1546-1549.
    [30]. Covey LS, Glassman AH, Stetner F, Rivelli S, Stage K:A randomized trial of sertraline as a cessation aid for smokers with a history of major depression. Am J Psychiatry 2002;159:1731-1737.
    [31]. Breslau N, Peterson EL, Schultz LR, Chilcoat HD, Andreski P:Major depression and stages of smoking. A longitudinal investigation. Arch Gen Psychiatry 1998;55:161-166.
    [32]. Thomas AJ, O'Brien JT, Davis S, Ballard C, Barber R, Kalaria RN, Perry RH:Ischemic basis for deep white matter hyperintensities in major depression:a neuropathological study. Arch Gen Psychiatry 2002;59:785-792.
    [33]. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM:Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 2000;57:1071-1076.
    [34]. Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, Albert MS:White matter changes with normal aging. Neurology 1998;50:972-978.
    [35]. Steffens DC, Krishnan KR, Crump C, Burke GL:Cerebrovascular disease and evolution of depressive symptoms in the cardiovascular health study. Stroke 2002;33:1636-1644.
    [36]. Taylor WD, MacFall JR, Steffens DC, Payne ME, Provenzale JM, Krishnan KR:Localization of age-associated white matter hyperintensities in late-life depression. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:539-544.
    [37]. Vataja R, Pohjasvaara T, Mantyla R, Ylikoski R, Leskela M, Kalska H, Hietanen M, Juhani Aronen H, Salonen O, Kaste M, Leppavuori A, Erkinjuntti T:Depression-executive dysfunction syndrome in stroke patients. Am J Geriatr Psychiatry 2005; 13:99-107.
    [38]. Teodorczuk A, O'Brien JT, Firbank MJ, Pantoni L, Poggesi A, Erkinjuntti T, Wallin A, Wahlund LO, Gouw A, Waldemar G, Schmidt R, Ferro JM, Chabriat H, Bazner H, Inzitari D: White matter changes and late-life depressive symptoms:longitudinal study. Br J Psychiatry 2007;191:212-217.
    [39]. Versluis CE, van der Mast RC, van Buchem MA, Bollen EL, Blauw GJ, Eekhof JA, van der Wee NJ, de Craen AJ:Progression of cerebral white matter lesions is not associated with development of depressive symptoms in elderly subjects at risk of cardiovascular disease:The PROSPER Study. Int J Geriatr Psychiatry 2006;21:375-381.
    [40]. Baxter LR, Jr., Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM:Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46:243-250.
    [41]. Navarro V, Gasto C, Lomena F, Mateos JJ, Marcos T, Portella MJ:Normalization of frontal cerebral perfusion in remitted elderly major depression:a 12-month follow-up SPECT study. Neuroimage 2002; 16:781-787.
    [42]. Kmura M SK, Mon T, et al.:Changes in regional cerebral blood flow on recovery from depression-comparison of vascular depression and non-vascular depression.International Congress Series 2002;1232:757.
    [43]. 吴志国,方贻儒,谢斌,孙晓光,司明珏,万良荣,陈俊,苑成梅:难治性抑郁症脑局部葡萄糖代谢的初步研究.中国神经精神疾病杂志2009:261-264.
    [44]. 苏亮,施慎逊,管一晖,左传涛,张明园:老年抑郁症患者的脑正电子发射体层摄影术显像分析.中华精神科杂志2006;39:81-84.
    [45]. Tejani-Butt S, Kluczynski J, Pare WP:Strain-dependent modification of behavior following antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:7-14.
    [46]. RO SPR:Evaluation of antidepressant activity in a molel of depressionlike state due to social isolation in rats. Eksp Klin Farmakol 2005;68:11-15.
    [47]. Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J: Long-term effects of early-life environmental manipulations in rodents and primates:Potential animal models in depression research. Neurosci Biobehav Rev 2005;29:649-674.
    [48]. Katz RJ, Roth KA, Carroll BJ:Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 1981;5:247-251.
    [49]. Willner P:Validity, reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation. Psychopharmacology (Berl) 1997; 134:319-329.
    [50]. Willner P:Chronic mild stress (CMS) revisited:consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005;52:90-110.
    [51]. Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y:Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 2007;80:1373-1381.
    [52]. Grippo AJ, Beltz TG, Johnson AK:Behavioral and cardiovascular changes in the chronic mild stress model of depression. Physiol Behav 2003;78:703-710.
    [53]. Gronli J, Murison R, Bjorvatn B, Sorensen E, Portas CM, Ursin R:Chronic mild stress affects sucrose intake and sleep in rats. Behav Brain Res 2004; 150:139-147.
    [54]. Anisman H, Matheson K:Stress, depression, and anhedonia:caveats concerning animal models. Neurosci Biobehav Rev 2005;29:525-546.
    [55]. Pijlman FT, Herremans AH, van de Kieft J, Kruse CG, van Ree JM:Behavioural changes after different stress paradigms:prepulse inhibition increased after physical, but not emotional stress. Eur Neuropsychopharmacol 2003; 13:369-380.
    [56]. D'Aquila PS, Peana AT, Carboni V, Serra G:Exploratory behaviour and grooming after repeated restraint and chronic mild stress:effect of desipramine. Eur J Pharmacol 2000;399:43-47.
    [57]. Jang DP, Lee SH, Lee SY, Park CW, Cho ZH, Kim YB:Neural responses of rats in the forced swimming test:[F-18]FDG micro PET study. Behav Brain Res 2009;203:43-47.
    [58]. Jang DP, Lee SH, Park CW, Lee SY, Kim YB, Cho ZH:Effects of fluoxetine on the rat brain in the forced swimming test:a [F-18]FDG micro-PET imaging study. Neurosci Lett 2009;451:60-64.
    [1]. 赵文华,张坚,由悦,满青青,李红,王春荣,翟屹,李莹,金水高,杨晓光:中国18岁及以上人群血脂异常流行特点研究.中华预防医学杂志 2005;39:306-310.
    [2]. Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A:Midlife vascular risk factors and late-life mild cognitive impairment:a population-based study. Neurology 2001;56:1683.
    [3]. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J:Risk score for the prediction of dementia risk in 20 years among middle aged people:a longitudinal, population-based study. Lancet Neurology 2006;5:735-741.
    [4]. Solomon A, Kareholt I, Ngandu T, Winblad B, Nissinen A, Tuomilehto J, Soininen H, Kivipelto M:Serum cholesterol changes after midlife and late-life cognition:twenty-one-year follow-up study. Neurology 2007;68:751.
    [5]. Morgan RE, Palinkas LA, Barrett-Connor EL, Wingard DL:Plasma cholesterol and depressive symptoms in older men. The Lancet 1993;341:75-79.
    [6]. Partonen T, Haukka J, Virtamo J, Taylor PR, Lonnqvist J:Association of low serum total cholesterol with major depression and suicide. The British Journal of Psychiatry 1999;175:259.
    [7]. Tanskanen A, Vartiainen E, Tuomilehto J, Viinam ki H, Lehtonen J, Puska P:High serum cholesterol and risk of suicide. American Journal of Psychiatry 2000;157:648.
    [8]. Nakao M, Ando K, Nomura S, Kuboki T, Uehara Y, Toyooka T, Fujita T:Depressive mood accompanies hypercholesterolemia in Japanese young adults. Jpn. Heart J 2001;42:739-748.
    [9]. Nakao M, Yano E:Relationship between major depression and high serum cholesterol in Japanese men. The Tohoku Journal of Experimental Medicine 2004;204:273-287.
    [10]. Kim JM, Stewart R, Shin IS, Yoon JS:Vascular disease/risk and late-life depression in a Korean community population. The British Journal of Psychiatry 2004;185:102.
    [11]. Olusi SO, Fido AA:Serum lipid concentrations in patients with major depressive disorder. Biological Psychiatry 1996;40:1128-1131.
    [12]. Apter A, Laufer N, Bar-Sever M, Har-Even D, Ofek H, Weizman A:Serum cholesterol, suicidal tendencies, impulsivity, aggression, and depression in adolescent psychiatric inpatients. Biological Psychiatry 1999;46:532-541.
    [13]. Sonawalla SB, Papakostas GI, Petersen TJ, Yeung AS, Smith MM, Sickinger AH, Gordon J, Israel JA, Tedlow JR, Lamon-Fava S:Elevated cholesterol levels associated with nonresponse to fluoxetine treatment in major depressive disorder. Psychosomatics 2002;43:310.
    [14]. Papakostas GI, Petersen T, Sonawalla SB, Merens W, Iosifescu DV, Alpert JE, Fava M, Nierenberg AA:Serum cholesterol in treatment-resistant depression. Neuropsychobiology 2003;47:146-151.
    [15]. Papakostas GI, Iosifescu DV, Petersen T, Hamill SK, Alpert JE, Nierenberg AA, Rosenbaum JF, Fava M:Serum cholesterol in the continuation phase of pharmacotherapy with fluoxetine in remitted major depressive disorder. Journal of clinical psychopharmacology 2004;24:467.
    [16]. Kumar A, Miller D, Ewbank D, Yousem D, Newberg A, Samuels S, Cowell P, Gottlieb G: Quantitative anatomic measures and comorbid medical illness in late-life major depression. American Journal of Geriatric Psych 1997;5:15.
    [17]. Glueck CJ, Tieger M, Kunkel R, Tracy T, Speirs J, Streicher P, Illig E:Improvement in symptoms of depression and in an index of life stressors accompany treatment of severe hypertriglyceridemia* 1. Biological Psychiatry 1993;34:240-252.
    [18]. Seplowitz AH, Chien S, Smith FR:Effects of lipoproteins on plasma viscosity. Atherosclerosis;38:89.
    [19]. Hawthon K, Cowen P, Owens D, Bond A, Elliott M:Low serum cholesterol and suicide. The British Journal of Psychiatry 1993;162:818.
    [20]. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F:A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002; 112:803-814.
    [21]. Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F:Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 2004;123:429-440.
    [22]. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S:Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry 2003;54:70-75.
    [23]. Belmaker RH, Agam G:Major depressive disorder. New England Journal of Medicine 2008;358:55.
    [24]. Paxinos G:The Rat Brain in Stereotaxic Coordinates.2007.
    [25]. Erlinge D, Edvinsson L, Brunkwall J, Yee F, Wahlestedt C:Human neuropeptide Y Y1 receptor antisense oligodeoxynucleotide specifically inhibits neuropeptide Y-evoked vasoconstriction. European journal of pharmacology 1993;240:77.
    [26]. Norris PJ, Faull RLM, Emson PC:Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains. Molecular Brain Research 1996;41:36-49.
    [27]. Kalra SP:Global Life-Long Health Benefits of Repression of Hypothalamic NPY System by Central Leptin Gene Therapy. Current Topics in Medicinal Chemistry 2007;7:1675-1681.
    [28]. Krukoff TL, Khalili P:Stress-induced activation of nitric oxide-producing neurons in the rat brain. Journal of Comparative Neurology 1997;377:509-519.
    [29]. Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC:Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology:official publication of the American College of Neuropsychopharmacology 2001;24:420.
    [30]. Fredrickson DS, Levy RI, Lees RS:Fat transport in lipoproteins-an integrated approach to mechanisms and disorders. The New England journal of medicine 1967;276:273.
    [31]. Willner P:Validity, reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation. Psychopharmacology 1997; 134:319-329.
    [32]. Matthews K, Forbes N, Reid IC:Sucrose consumption as an hedonic measure following chronic unpredictable mild stress. Physiology & behavior 1995;57:241-248.
    [33]. Harris RBS, Palmondon J, Leshin S, Flatt WP, Richard D:Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Hormones and Behavior 2006;49:615-625.
    [34]. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R:Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987;93:358-364.
    [35]. Boden G, Chen X, Kolaczynski JW, Polansky M:Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. Journal of Clinical Investigation 1997; 100:1107.
    [36]. Kinn AM, Gr nli J, Fiske E, Kuipers S, Ursin R, Murison R, Portas CM:A double exposure to social defeat induces sub-chronic effects on sleep and open field behaviour in rats. Physiology & Behavior 2008;95:553-561.
    [37]. Papez JW, Neylan TC:A proposed mechanism of emotion. Journal of Neuropsychiatry and Clinical Neurosciences 1995;7:102-112.
    [38]. Nordborg C, Johansson BB:Secondary thalamic lesions after ligation of the middle cerebral artery:an ultrastructural study. Acta neuropathologica 1995;91:61-66.
    [39]. 牟君,谢鹏,杨泽松,杨德兰,吕发金,李勇,罗天友:初发抑郁症患者丘脑质子磁共振波谱分析.中国神经精神疾病杂志2007;33:229-232.
    [40]. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA: Regional metabolic effects of fluoxetine in major depression:serial changes and relationship to clinical response. Biological Psychiatry 2000;48:830-843.
    [41]. Bremner JD, Vythilingam M, Ng CK, Vermetten E, Nazeer A, Oren DA, Berman RM, Charney DS:Regional Brain Metabolic Correlates of {alpha}-Methylparatyrosine-Induced Depressive Symptoms:Implications for the Neural Circuitry of Depression. Jama 2003;289:3125.
    [42]. Tanabe T, Yarita H, Iino M, Ooshima Y, Takagi SF:An olfactory projection area in orbitofrontal cortex of the monkey. Journal of Neurophysiology 1975;38:1269.
    [43]. Potter H, Butters N:An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 1980; 18:1-628.
    [44]. Shepherd GM:Perception without a Thalamus How Does Olfaction Do It? Neuron 2005;46:166-168.
    [45]. Kay LM, Sherman SM:An argument for an olfactory thalamus. Trends in Neurosciences 2007;30:47-53.
    [46]. Asai H, Udaka F, Hirano M, Ueno S:Odor abnormalities caused by bilateral thalamic infarction. Clinical Neurology and Neurosurgery 2008; 110:500-501.
    [47]. Phillips ML, Drevets WC, Rauch SL, Lane R:Neurobiology of emotion perception Ⅰ:The neural basis of normal emotion perception. Biological Psychiatry 2003;54:504-514.
    [48]. Krishnan KRR, McDonald WM, Doraiswamy PM, Tupler LA, Husain M, Boyko OB, Figiel GS, Ellinwood EH:Neuroanatomical substrates of depression in the elderly. European archives of psychiatry and clinical neuroscience 1993;243:41-46.
    [49]. Tost H, Wendt CS, Schmitt A, Heinz A, Braus DF:Huntington's disease:Phenomenological diversity of a neuropsychiatric condition that challenges traditional concepts in neurology and psychiatry. American Journal of Psychiatry 2004;161:29.
    [50]. Duesterhus P, Schimmelmann BG, Wittkugel O, Schulte-Markwort M:Huntington disease:a case study of early onset presenting as depression. Journal of Amer Academy of Child & Adolescent Psychiatry 2004;43:1293.
    [51]. Murphy DGM, DeCarli C, Schapiro MB, Rapoport SI, Horwitz B:Age-related differences in volumes of subcortical nuclei, brain matter, and cerebrospinal fluid in healthy men as measured with magnetic resonance imaging. Archives of Neurology 1992;49:839.
    [52]. Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A:Greater availability of brain dopamine transporters in major depression shown by [99mTc] TRODAT-1 SPECT imaging. American Journal of Psychiatry 2003; 160:1836.
    [53]. Austin MP, Dougall N, Ross M, Murray C, Goodwin GM, O'Carroll RE, Moffoot A, Ebmeier KP:Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the endogenous/neurotic continuum. Behavioural Pharmacology 1992;3:5.
    [54]. Mayberg HS, Lewis PJ, Regenold W, Wagner Jr HN:Paralimbic hypoperfusion in unipolar depression. Journal of Nuclear Medicine 1994;35:929.
    [55]. Henry ME, Schmidt ME, Matochik JA, Stoddard EP, Potter WZ:The effects of ECT on brain glucose:a pilot FDG PET study. The Journal of ECT 2001;17:33.
    [56]. Vythilingam M, Charles HC, Tupler LA, Blitchington T, Kelly L, Krishnan KRR:Focal and lateralized subcortical abnormalities in unipolar major depressive disorder:an automated multivoxel proton magnetic resonance spectroscopy study. Biological Psychiatry 2003;54:744-750.
    [57]. Yildiz-Yesiloglu A, Ankerst DP:Review of 1H magnetic resonance spectroscopy findings in major depressive disorder:A meta-analysis. Psychiatry Research:Neuroimaging 2006;147:1-25.
    [1]. Lesperance F, Frasure-Smith N:Depression in patients with cardiac disease::a practical review. Journal of Psychosomatic Research 2000;48:379-391.
    [2]. Vazquez-Barquero JL, Padierna Acero JA, Ochoteco A, Diez Manrique JF:Mental illness and ischemic heart disease:analysis of psychiatric morbidity. General hospital psychiatry. 1985;7:15-20.
    [3]. Ladwig KH, R ll G, Breithardt G, Borggrefe M:Extracardiac contributions to chest pain perception in patients 6 months after acute myocardial infarction. American Heart Journal 1999;137:528-535.
    [4]. Carney RM, Rich MW, Tevelde A, Saini J, Clark K, Jaffe AS:Major depressive disorder in coronary artery disease. The American journal of cardiology 1987;60:1273.
    [5]. Gonzalez MB, Snyderman TB, Colket JT, Arias RM, Jiang JW, O'Connor CM, Krishnan KR: Depression in patients with coronary artery disease. Depression and Anxiety 1996;4:57-62.
    [6]. Ranga Rama Krishnan K, McDonald WM:Arteriosclerotic depression. Medical hypotheses 1995;44:111-115.
    [7]. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M: The'vascular depression'hypothesis. Archives of General Psychiatry 1997;54:915-922.
    [8]. Hance M, Carney RM, Freedland KE, Skala J:Depression in patients with coronary heart disease A 12-month follow-up. General hospital psychiatry 1996; 18:61-65.
    [9]. Rudisch B, Nemeroff CB:Epidemiology of comorbid coronary artery disease and depression. Biological Psychiatry 2003;54:227-240.
    [10]. Silverstone PH:Depression increases mortality and morbidity in acute life-threatening medical illness. J Psychosom Res 1990;34:651-657.
    [11]. Frasure-Smith N, Lesperance F, Talajic M:Depression following myocardial infarction: impact on 6-month survival. Jama 1993;270:1819.
    [12]. Forrester AW, Lipsey JR, Teitelbaum ML, DePaulo JR, Andrzejewski PL, Robinson RG: Depression following myocardial infarction. Int J Psychiatry Med 1992;22:33-46.
    [13]. Jones-Webb R, Jacobs Jr DR, Flack JM, Liu K:Relationships betwen depressive symptoms, anxiety, alcohol consumption, and blood pressure:results from the CARDIA study. Alcoholism-Clinical and Experimental Research 1996;20:420-427.
    [14]. Friedman MJ, Bennet PL:Depression and hypertension. Psychosomatic Medicine 1977;39:134.
    [15]. Thomas AJ, Kalaria RN, O'Brien JT:Depression and vascular disease:what is the relationship? Journal of affective disorders 2004;79:81-95.
    [16]. Baldwin R, Jeffries S, Jackson A, Sutcliffe C, Thacker N, Scott M, Burns A:Treatment response in late-onset depression:relationship to neuropsychological, neuroradiological and vascular risk factors. Psychological medicine 2004;34:125-136.
    [17]. Lyness JM, Caine ED, Cox C, King DA, Conwell Y, Olivares T:Cerebrovascular risk factors and later-life major depression:testing a small-vessel brain disease model. American Journal of Geriatric Psych 1998;6:5.
    [18]. Tiemeier H, van Dijck W, Hofman A, Witteman J, Stijnen T, Breteler M:Relationship between atherosclerosis and late-life depression:the Rotterdam Study. Archives of general psychiatry 2004;61:369.
    [19]. Steffens DC, Helms MJ, Krishnan K, Burke GL:Cerebrovascular disease and depression symptoms in the cardiovascular health study. Stroke 1999;30:2159.
    [20]. Talbot F, Nouwen A:A review of the relationship between depression and diabetes in adults. Diabetes Care 2000;23:1556-1562.
    [21]. Krishnan KR, Hays JC, Blazer DG:MRI-defined vascular depression. American Journal of Psychiatry 1997; 154:497.
    [22]. Alexopoulos GS, Kiosses DN, Klimstra S, Kalayam B, Bruce ML:Clinical Presentation of the. American Journal of Geriatric Psych 2002;10:98.
    [23]. Andersson S, Krogstad JM, Finset A:Apathy and depressed mood in acquired brain damage: relationship to lesion localization and psychophysiological reactivity. Psychological Medicine 1999;29:447-456.
    [24]. Licht-Strunk E, Bremmer MA, van Marwijk HWJ, Deeg DJH, Hoogendijk WJG, de Haan M, van Tilburg W, Beekman ATF:Depression in older persons with versus without vascular disease in the open population:similar depressive symptom patterns, more disability. Journal of affective disorders 2004;83:155-160.
    [25]. Thomas AJ, O'Brien JT, Davis S, Ballard C, Barber R, Kalaria RN, Perry RH:Ischemic basis for deep white matter hyperintensities in major depression:a neuropathological study. Archives of general psychiatry 2002;59:785.
    [26]. Steffens DC, Krishnan K, Crump C, Burke GL:Cerebrovascular disease and evolution of depressive symptoms in the cardiovascular health study. Stroke 2002;33:1636.
    [27]. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, Hofinan A, Breteler M:Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005;128:2034.
    [28]. Artero S, Tiemeier H, Prins ND, Sabatier R, Breteler MMB, Ritchie K:Neuroanatomical localisation and clinical correlates of white matter lesions in the elderly. British Medical Journal 2004;75:1304.
    [29]. Willner P:Validity, reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation. Psychopharmacology 1997;134:319-329.
    [30]. Gr nli J, Murison R, Fiske E, Bjorvatn B, S rensen E, Portas CM, Ursin R:Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiology & behavior 2005;84:571-577.
    [31]. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R:Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987;93:358-364.
    [32]. Kinn AM, Gr nli J, Fiske E, Kuipers S, Ursin R, Murison R, Portas CM:A double exposure to social defeat induces sub-chronic effects on sleep and open field behaviour in rats. Physiology & Behavior 2008;95:553-561.
    [33]. Duman RS, Malberg J, Nakagawa S, D'Sa C:Neuronal plasticity and survival in mood disorders. Biological Psychiatry 2000;48:732-739.
    [34]. 郑晖,马光瑜,许崇涛:不同时段强迫游泳应激对大鼠空间学习记忆和海马神经元损伤的选择性作用.中国行为医学科学2006;15:976-978.
    [35]. Magarinos AM, McEwen BS:Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons:comparison of stressors. Neuroscience 1995;69:83-88.
    [36]. Gould E, Tanapat P:Stress and hippocampal neurogenesis. Biological Psychiatry 1999;46:1472-1479.
    [37]. Chen SJ, Kao CL, Chang YL, Yen CJ, Shui JW, Chien CS, Chen I, Tsai TH, Ku HH, Chiou SH:Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2. Current neurovascular research 2007;4:19-29.
    [38]. Campbell S, Marriott M, Nahmias C, MacQueen GM:Lower hippocampal volume in patients suffering from depression:a meta-analysis. American Journal of Psychiatry 2004;161:598.
    [39]. Videbech P, Ravnkilde B:Hippocampal volume and depression:a meta-analysis of MRI studies. American Journal of Psychiatry 2004;161:1957.
    [40]. Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron CM, Yurgelun-Todd DA: Hippocampal volume in primary unipolar major depression:a magnetic resonance imaging study. Biological Psychiatry 2000;47:1087-1090.
    [41]. Colla M, Kronenberg G, Deuschle M, Meichel K, Hagen T, Bohrer M, Heuser I:Hippocampal volume reduction and HPA-system activity in major depression. Journal of psychiatric research 2007;41:553-560.
    [42]. 林铮,李惠春,龚向阳,卢蕴容,俞少华,禹华良,陈巧珍:抑郁症患者前额叶,海马磁共振质子波谱成像的研究.中华精神科杂志2005;38:193-197.
    [43]. 林涛,韩鸿宾,蔡焯基:首发抑郁症患者海马质子磁共振波谱成像研究.中国心理卫生杂志2008;22:105-108.
    [44]. Montkowski A, Barden N, Wotjak C, Stec I, Ganster J, Meaney M, Engelmann M, Reul J, Landgraf R, Holsboer F:Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. Journal of neuroendocrinology 1995;7:841-846.
    [45]. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature genetics 1999;23:99-103.
    [46]. Azmitia EC, Whitaker-Azmitia PM:Awakening the sleeping giant:anatomy and plasticity of the brain serotonergic systems. The Journal of clinical psychiatry 1991;52:4-16.
    [47]. Chrobak JJ, L rincz A, Buzsaki G:Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 2000;10:457-465.
    [48]. De Toledo-Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA:From healthy aging to early Alzheimer's disease:in vivo detection of entorhinal cortex atrophy. ANNALS-NEW YORK ACADEMY OF SCIENCES 2000;911:240-253.
    [49]. Meti BL, Raju TR:Entorhinal cortex lesioning protects hippocampal CA3 neurons from stress-induced damage. Brain Research 1997;770:302-306.
    [50]. Uehara T, Sumiyoshi T, Itoh H, Kurachi M:Modulation of stress-induced dopamine release by excitotoxic damage of the entorhinal cortex in the rat. Brain research 2003;989:112-116.
    [51]. Sung KK, Jang DP, Lee S, Kim M, Lee SY, Kim YB, Park CW, Cho ZH:Neural responses in rat brain during acute immobilization stress:a [F-18] FDG micro PET imaging study. Neuroimage 2009;44:1074-1080.
    [52]. Oppenheimer SM, Cechetto DF:Cardiac chronotropic organization of the rat insular cortex. Brain Res 1990;533:66-72.
    [53]. Dupont S, Bouilleret V, Hasboun D, Semah F, Baulac M:Functional anatomy of the insula: new insights from imaging. Surgical and Radiologic Anatomy 2003;25:113-119.
    [54]. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K: Neuroanatomical correlates of externally and internally generated human emotion. American Journal of Psychiatry 1997;154:918-925.
    [55]. Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB, Ivanovski B, Sachdev P:Cognitive generation of affect in bipolar depression:an fMRI study. European Journal of Neuroscience 2004; 19:741-754.
    [56]. Phan KL, Wager T, Taylor SF, Liberzon I:Functional neuroanatomy of emotion:a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002; 16:331-348.
    [57]. Oppenheimer S:Cerebrogenic cardiac arrhythmias. Clinical Autonomic Research 2006; 16:6-11.
    [1].Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med,1996,23:1641-1674.
    [2]. Sally L. Pimlott. Radiotracer development in psychiatry. Neuclear Medicine Communications, 2005,26:183-188.
    [3]. Laasonen-Balk T, Kuikka J, Viinamaki H, et al. Striatal dopamine transporter density in major depression. Psychopharmacology,1999,144:282-285.
    [4]. Patterson J, Wyper D, Dempsey MF, et al. A SPECT study of the dopamine and serotonin transporters in treatment resistant compared with treatment responsive depression. Eur J Nucl Med Mol Imaging,2004,31:S227.
    [5]. Delvenne, V., Goldman, S., De Maertelaer, V. et al. Brain hypometabolism of glucose in anorexia nervosa:normalization after weight gain. Biol Psychiatry,1996,40:761-768.
    [6]. Delvenne, V., Lotstra, F., Goldman, S. et al. Brain hypometabolism of glucose in anorexia nervosa:a PET scan study. Biol Psychiatry,1995,37:161-169.
    [7]. Frank, G.K. and Kaye, W.H. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy. Nucl Med Biol,2005,32:755-761.
    [8]. Davids, E., Zhang, K., Tarazi, F.I. et al. Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev,2003,42:1-21.
    [9]. Siegfried, Z., Berry, E.M., Hao, S. et al. Animal models in the investigation of anorexia. Physiol Behav,2003,79:39-45.
    [10]. Watanabe, K., Hara, C. and Ogawa, N. Feeding conditions and estrous cycle of female rats under the activity-stress procedure from aspects of anorexia nervosa. Physiol Behav,1992,51: 827-832.
    [11]. Dixon, D.P., Ackert, A.M. and Eckel, L.A., Development of, and recovery from, activity-based anorexia in female rats. Physiol Behav,2003,80:273-279.
    [12]. Barbarich-Marsteller, N.C., Marsteller, D.A., Alexoff, D.L., et al. Micro PET imaging in an animal model of anorexia nervosa. Synapse,2005,57:85-90.
    [13]. Hillebrand, J.J., Heinsbroek, A.C., Kas, M.J., et al. The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia. J Mol Endocrinol,2006, 36:153-162.
    [14]. Hillebrand, J.J., Koeners, M.P., de Rijke, C.E., et al. Leptin treatment in activity-based anorexia. Biol Psychiatry,2005,58:165-171.
    [15]. van Kuyck, K., Casteels, C., Vermaelen, P., et al. Motor-and food-related metabolic cerebral changes in the activity-based rat model for anorexia nervosa:a voxel-based microPET study. Neuroimage,2007,35:214-221.
    [16]. Bailer, U.F., Frank, G.K., Henry, S.E., et al. Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Arch Gen Psychiatry,2005,62:1032-1041.
    [17]. Frank, G.K., Bailer, U.F., Henry, S.E., et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry,2005,58:908-912.
    [18]. Bailer, U.F., Price, J.C., Meltzer, C.C., et al. Altered 5-HT(2A) receptor binding after recovery from bulimia-type anorexia nervosa:relationships to harm avoidance and drive for thinness. Neuropsychopharmacology,2004,29:1143-1155.
    [19]. Frank, G.K., Kaye, W.H., Meltzer, C.C., et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry,2002,52:896-906.
    [20]. Broocks, A., Liu, J. and Pirke, K.M. Semistarvation-induced hyperactivity compensates for decreased norepinephrine and dopamine turnover in the mediobasal hypothalamus of the rat. J Neural Transm Gen Sect,1990,79:113-124.
    [21]. Mayeda, A.R., Simon, J.R., Hingtgen, J.N., et al. Activity-wheel stress and serotonergic hypersensitivity in rats. Pharmacol Biochem Behav,1989,33:349-353.
    [22]. Barbarich NC, McConaha CW, Halmi KA, et al. Use of nutritional supplements to increase the efficacy of fluoxetine in the treatment of anorexia nervosa. Int J Eat Disord,2004,35: 10-15.
    [23]. Kaye, W.H., Nagata, T., Weltzin, T.E., et al. Double-blind placebo-controlled administration of fluoxetine in restricting-and restricting-purging-type anorexia nervosa. Biol Psychiatry,2001, 49:644-652.
    [24]. Barbarich, N.C., McConaha, C.W., Gaskill, J., et al. An open trial of olanzapine in anorexia nervosa. J Clin Psychiatry,2004,65:1480-1482.
    [25]. Pruessner, J.C., Dedovic, K., Khalili-Mahani, N., et al. Deactivation of the limbic system during acute psychosocial stress:evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol Psychiatry,2008,63:234-40.
    [26]. Gianaros, P.J., Sheu, L.K., Matthews, K.A., et al. Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdale. J Neurosci,2008,28:990-999.
    [27]. Liberzon, I., King, A.P., Britton, J.C., et al. Paralimbic and medial prefrontal cortical involvement in neuroendocrine responses to traumatic stimuli. Am J Psychiatry,2007, 164:1250-1258.
    [28]. Sung, K.K., Jang, D.P., Lee, S., et al. Neural responses in rat brain during acute immobilization stress:a [F-18] FDG micro PET imaging study. Neuroimage,2009,44: 1074-1080.
    [29]. Baxter, L.R., Jr., Schwartz, J.M., Phelps, M.E., et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry,1989,46:243-250.
    [30]. Tutus, A., Simsek, A., Sofuoglu, S., et al. Changes in regional cerebral blood flow demonstrated by single photon emission computed tomography in depressive disorders: comparison of unipolar vs. bipolar subtypes. Psychiatry Res,1998,83:169-177.
    [31]. Davidson, R.J., Pizzagalli, D., Nitschke, J.B. et al. Depression:Perspectives from affective neuroscience. Annual Review of Psychology,2002,53:545-574.
    [32]. Gonul, A.S., Kula, M., Bilgin, A.G., et al. The regional cerebral blood flow changes in major depressive disorder with and without psychotic features. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2004,28:1015-1021.
    [33]. Mayberg, H. Deep brain stimulation for treatment-resistant depression. Journal of Affective Disorders,2008,107:S23-S23.
    [34]. Cryan, J.F., Valentino, R.J. and Lucki, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev,2005, 29:547-569.
    [35]. Hawkins, J., Hicks, R.A., Phillips, N. et al. Swimming rats and human depression. Nature, 1978,274:512-513.
    [36]. Franco Borsini, Giovanna Volterra and Alberto Meli. Does the behavioral "despair" test measure "despair"? Physiology & Behavior,1986,38:385-386.
    [37]. Jang, D.P., Lee, S.H., Lee, S.Y., et al. Neural responses of rats in the forced swimming test: [F-18] FDG micro PET study. Behavioral Brain Research,2009,203:43-47.
    [38]. Jang, D.P., Lee, S.H., Park, C.W., et al. Effects of fluoxetine on the rat brain in the forced swimming test:a [F-18] FDG micro-PET imaging study. Neurosci Lett,2009,451:60-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700