放射性肺损伤的辐射剂量与体积关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立定量肺体积大鼠放射性肺损伤动物模型,比较“大剂量小体积”与“小剂量大体积”放疗引起放射性肺损伤的异同,探讨放射性肺损伤剂量体积关系。
     方法:
     运用ELEKTA precise 2.03治疗计划系统建立定量肺体积大鼠放射性肺损伤动物模型,确定各实验组放疗剂量及体积,应用医用直线加速器实施放疗,放疗后观察16周。各实验动物放疗前1周内及放疗后每2周分别称体重、计数呼吸频率变化情况,眼眶静脉丛取血行ELISA检测血浆TGF-β1含量。放疗后第4、8、16周行胸CT扫描,并分批处死实验动物,制备肺组织石蜡切片,行HE染色,免疫组化检测组织中TGF-β1表达情况。
     结果:
     1、定量肺体积大鼠放射性肺损伤模型:(1)“大剂量小体积”组:前后两野对穿,SAD=100cm,6MVX,照射体积1.748cm~3(25%肺体积),照射剂量DT=4610cGy,单次;(2)“小剂量大体积”组:前后两野对穿,SAD=100cm,6MVX,照射体积6.99cm~3(100%肺体积),照射剂量DT=2000cGy,单次;
     2、放疗前后体重变化情况:接受放疗后的两实验组大鼠体重出现不同程度的增长延缓(2—16周,p<0.05),对照组>“大剂量小体积”组(25%组)>“小剂量大体积”组(100%组);
     3、放疗前后呼吸频率变化情况:接受放疗后的两实验组均出现呼吸频率加快,第6—8周达峰值,此后下降,对照组<25%组<100%组(p<0.05),在此期间5只实验动物死于呼吸衰竭,其中4只为100%组而25%组仅1只;
     4、胸CT:放疗后第4周即出现影像学改变,第8周时最严重,16周时病变局限。100%组主要以全肺透过度下降,广泛性密度增高为主,而25%组则出现毛玻璃样改变、斑片状高密度影及纤维条索状阴影。未见胸腔积液、胸膜增厚以及肺萎陷等征象;
     5、ELISA:放疗后2—4周(25%组为2—6周)血浆TGF-β1含量下降,此后急剧上升,第8周达高峰,随后稍有下降达平稳(25%组则与对照组持平);
     6、HE:放疗后第4周即出现病理学改变,第8周时最严重,16周时病变稳定。100%组以广泛的肺泡壁增厚、血管壁水肿、硬化为主、肺实质损伤相对较轻;25%组以局限性红细胞及炎细胞渗出为主,血管肺实质损伤较重;
     7、免疫组化:对照组TGF-β1呈不表达或低表达。放疗后第4周接受放疗的两组动物肺组织即出现TGF-β1表达增多:对照组<25%组<100%组(p<0.05);第8周时TGF-β1表达有所下降,100%组与25%组之间p>0.05,但均与对照组存在差异;第16周时25%组与对照组未见差异,而上述两组均与100%组存在差异。
     结论:
     1、应用ELEKTA precise 2.03治疗计划系统建立定量肺体积大鼠放射性肺损伤动物模型具有可行性;
     2、“小剂量大体积”与“大剂量小体积”放疗模式引起的放射性肺损伤在发生、发展以及转归等诸多方面存在差别;
     3、“小剂量大体积”照射的大鼠一般情况及肺功能损伤明显,放射性肺损伤发生较早且较严重;“大剂量小体积”照射的大鼠肺组织局部病理损伤明显,但由于周围正常肺组织代偿,故放射性肺损伤的发生相对较晚且较轻;
     4、放疗后定期的影像学检查(前半年内每月1次)有利于放射性肺损伤的提早发现;
     5、放疗后血浆TGF-β1含量与肺组织TGF-β1表达在时间上及数量上均存在差别,故血浆TGF-β1含量对放射性肺损伤的预测作用有待进一步临床试验研究;
     6、临床上,将低剂量分散到大体积中去是不安全的,尽管肺功能损害是一过性的,但有可能是致命的,建议运用IMRT技术做胸部放疗时应慎重;
     7、对于肺组织的放射性损伤而言,照射体积较照射剂量更为重要。预防放射性肺损伤最安全的途径是降低正常肺组织受照剂量的同时降低受照体积。
Objective:
     To investigate the relationships between the irradiation dose and volume in radiation-induced lung injury through setting—up the model of graded volume irradiation of the rat lung.
     Methods:
     ELEKTA precise 2.03 treatment plan system was applied to calculate the irradiation dose and volume.Functional,biochemical,histopathological and CT changes were compared biweekly after single irradiation of the regional lung.
     Results:
     1.Rat model of lung fibrosis:Single dose irradiation(2000cGy and 4610cGy)to two different volume levels(100%and 25%)were applied to set up the model of graded volume irradiation of the rat lung.
     2.Weight:Delayed growth was observed after irradiation(2~(nd)-16~(th)weeks,p<0.05). The weight was presented as control group>100%group>25%group.
     3.Breathing rates(BR):Functionally,both of the 100%and 25%cohorts observed BR increases after irradiation,especially in the period of 6~(th)-8~(th)weeks.100%group was earlier and faster.25%group,although pathology was more severe,hardly any obvious increase in BR was observed.In the period of 6~(th)-8~(th)weeks 5 rats died of respiratory failure,1 in 25%group and 4 in 100%group.
     4.Computed tomography image:Radiographic changes were observed in the early period(4~(th)w)and it comes to the most obvious changes in the mediated period(8~(th)w). The extensiveness of high density and the decreased lung permeability was presented in 100%group and ground glass opacity,patchy consolidation was presented in 25% group without pleural effusion,pleural thickening and lung shrinking.
     5.ELISA:Plasma TGF-β1 levels has a transient decrease during 2~(nd)-4~(th)weeks after radiation in 100%group following a returning of a higher level from the end of the 4~(th) week and then reach peak at the 8~(th)week.TGF-β1 has a continuous low level in 25% group after radiation.
     6.HE stain:Morphologicly,100%group was mainly presented as vascular damage which was signed of vascular wall edema,hypertrophy and sclerosis,25%group was mainly presented as erythrocyte cell exudation,inflammation and parenchymal damage.
     7.Immunohistochemistry:TGF-β1 was observed increased expression at 4~(th)week following a retuming of a low level at the 8~(th)week.The overall trend was presented as control group<25%group<100%group(p<0.05).
     Conclusions:
     1.Setting up the model of graded volume irradiation of rat lung using ELEKTA precise 2.03 treatment plan system is feasible.
     2.The mechanism underlying symptomatic radiation-induced lung injury varies depending on time and irradiation volume,with vascular damage at large volume/low doses and parenchymal injury at higher doses and low volume.
     3.Recoverable vascular damage induced respiratory dysfunction at large volume/low doses and parenchymal injury compensated by normal lung tissue out of irradiation field at higher doses/low volumes.
     4.Radiographic changes were observed in the early period(4w)which has profit of the early detection of radiation-induced lung injury.
     5.The level of TGF-β1 was elevated locally at the site of radiation injury,but it did not pass through the vascular endothelium into the general circulation,so increases in plasma levels were not commensurate and homeochronous with the increases in lung tissue,and the predictive power of TGF-β1 needs advanced study.
     6.Delivery of a small dose of radiation to a large volume is not safe.Low dose smeared out overlarge volumes,albeit reversible,may already give rise to fateful respiratory dysfunction.IMRT delivered low-to-intermediate doses to significant portions of healthy lung and may yield unexpected toxicity,so we therefore recommend caution in the utilization of this technique in lung cancer.
     7.Damage to the lung may be more dependent on the volume irradiation than on the radiation dose.Clinically,the safest approach is to limit both the volume of normal lung that is irradiated and the amount of radiation that it receives.
引文
[1]Chen Y,Hyrien O,Williams J,et al.Interleukin(IL)-1α and IL-6:Applications to the predictive diagnostic testing of radiation pneumonitis[J].Int J Radiation Oncology Biol Phys,2005,62(1):260-266.
    [2]赵路军,王绿化,王小震等.血液中TGF-B、IL-6及ACE含量在预测放射性肺炎中的价值[J].中华放射肿瘤学杂志,2006,15(3):217-221.
    [3]Fu XL,Huang H,Bentel G,et al.Predicting the risk of symptomatic radiationinduced lung injury using both the physical and biologic parameters V30 and transforming growth factor[J].Int J Radiat Oncol Biol Phys,2001,50(4):899-908.
    [4]Barthelemy-Brichant N,Bosquee L,Cataldo D,et al.Increased IL-6 and TGF-β1concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy[J].Int J Radiat Oncol Biol Phys,2004,58(3):758-767.
    [5]Novakova-Jiresova A,Van Gameren MM,Coppes RP,et al.Transforming growth factor-beta plasma dynamics and postirradiation lung injury in lung cancer patients[J].Radiother Oncol,2004,71(2):183-189.
    [6]Vivek Mehta.Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer:pulmonary function,prediction,and prevention[J].Int J Radiation Oncology Biol Phys,2005,63(1):5-24.
    [7]Shimizu M,Saitoh Y,Itoh H.Immunohistochemical staining of Ha-ras oncogene product in normal,benign and malignant human pancreatic tissues[J].Hum Pathol,1990,21(6):607-612.
    [8]Liu HH,Wang X,Dong L,et al.Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(4):1268-1279.
    [9]Murshed H,Liu HH,Liao Z,et al.Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced stage non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(4):1258-1267.
    [10]Willner J,Jost A,Baier K,et al.A little to a lot or a lot to a little 7 An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy[J].Strahlenther Onkol, 2003,179(8):548-556.
    [11]Gopal R,Tucker S,Komaki R,et al.The relationship between local dose and loss of function for irradiated lung[J].Int J Radiat Oncol Biol Phys,2003,56(1):106-113.
    [12]Schallenkamp JM,Miller RC,Briivkmann DH,et al.Incidence of radiation pneumonitis after thoracic irradiation:Dose volume correlates[J].Int J Radiat Oncol Biol Phys.2007,67(2),410-416.
    [13]Yorke ED,Jackson A,Rosenzweig KE,et al.Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy[J].Int J Radiat Oncol Biol Phys,2002,54(2):329-339.
    [14]Yorke ED,Jackson A,Rosenzweig KE,et al.Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study[J].Int J Radiat Oncol Biol Phys,2005,63(3):672-682.
    [15]Wang S,Liao ZX,Wei X,et al.Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis(THP)in patients with non-small-cell lung cancer(NSCLC)treated with concurrent chemotherapy and three-dimensional conformal radiotherapy(3D-CRY)[J].Int J Radiat Oncol Biol Phys,2006,66(5):1399-1407.
    [16]Novakova-Jiresova A,van Luijk P,van Goor H,et al.Changes in injury expression after graded volume irradiation of the rat lung[J].Int J Radiat Oncol Biol Phys,2006,66(3):572.
    [17]李杨,宋良文,王德文等.Smad3、Smad4和Smad7在大鼠放射性肺纤维化中的表达及意义[J].辐射研究与辐射工艺学报,2004,22(3):153-156
    [18]黄山英,宋良文,张勇等.CTGF表达在大鼠放射性肺纤维化中的作用[J].中华放射医学与防护杂志,2005,25(3):213-216
    [19]李绍东,徐凯,程广军等.大鼠放射性肺损伤模型制作及影像学评价[J].中国医学影像技术,2004,27(7):1003-1005
    [20]Novakova-Jiresova A,van Luijk P,van Goor H,et al.Pulmonary radiation injury:identification of risk factors associated with regional hypersensitivity[J].Cancer research,2005,65(9):3568-3576.
    [21]Van Luijk P,Novakova-Jiresova A,Faber H,et al.Damage to the heart enhance early radiation-induced lung function loss[J].Cancer research,2005,65(15):6509-6511.
    [22]Borst GR,De Jaeger K,Belderbos JS,et al.Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival[J].Int J Radiat Oncol Biol Phys,2005,62(3):639-644.
    [23]蔡峰,李光,赵玉霞等.三维适形放疗对Ⅲ期非小细胞肺癌肺功能影响的初步观察[J].中华放射肿瘤学杂志,2006,15(6):440-443.
    [24]Novakova-Jiresova A,van Luijk P,van Goor H,et al.Changes in expression of injury after irradiation of increasing volumes in rat lung[J].Int J Radiat Oncol Biol Phys,2007,67(5):1510-1518.
    [25]Geist BJ,Lauk S,Bornhausen M,et al.Physiologic consequences of local heart irradiation in rats[J].Int J Radiat Oncol Biol Phys,1990,18(5):1107-1113.
    [26]McDonald S,Rubin P,Phillips TL,et al.Injury to the lung from cancer therapy:clinical syndromes,measurable endpoints,and potential scoring systems[J].Int J Radiat Oncol Biol Phys,1995,31(5):1187-1203.
    [27]McChesney SL,Gillette EL,Orton EC.Canine cardiomyopathy after whole heart and partial lung irradiation[J].Int J Radiat Oncol Biol Phys,1988,14(6):1169-1174.
    [28]Travis EL,Down JD,Holmes SJ,Hobson B.Radiation pneumonitis and fibrosis in mouse lung assayed by respiratory frequency and histology[J].Radiat Res,1980,84(1):133-143.
    [29]冯勤付.放射与化疗结合治疗胸部肿瘤的肺组织损伤[J].中华放射肿瘤学杂志,2003,12(4):242.
    [30]Itoh S,Inomata T,Ogawa Y,et al.Serial histopathological changes in irradiated guinea pig lung receiving conventional fractionated and hyperfractionted irradiation[J].Radiat Med,1999,17(3):227-233.
    [31]Ikezoe J,Takashima S,Morimoto S,et al.CT appearance of acute radiation- induced injury in the lung[J].AJR Am Roentgenol,1988,150(4):765-770.
    [32]Vujaskovic Z,Down JD,Vant Veld AA,et al.Radiological and functional assessment of radiation-induced lung injury in the rat[J].Exp lung Res,1998,24(2):137-148.
    [33]Takahashi M,Balazs G,pipman Y,et al.Radiation-induced lung injury using a pig model-Evaluation by hing-resolution computed tomography[J].Invest Radiol,1995,30(2):79-86.
    [34]Rubin P,Johnston C J,Williams JP,et al.A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis[J].Int J Radiat Oncol Biol Phys,1995,33(1):99-109.
    [35]Chen Y,Okunieff P,Ahrendt SA.Translational research in lung cancer[J].Semin Surg Oncol,2003,21(3):205-219.
    [36]Johnston C J,Wright TW,Rubin P,et al.Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and sensitive mice after thoracic irradiation[J].Exp Lung Res,1998,24(3):321-337.
    [37]Hallahan DE,Virudachalam S.Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation[J].Proc Natl Acad Sci USA,1997,94(12):6432-6437
    [38]蒋恒,杨伟志.细胞因子与放射性肺损伤[J].中华放射肿瘤学杂志,2006,15(6):512-514.
    [39]Akiyoshi S,Ishii M,Nemoto N,et al.Targets of transcriptional regulation by transforming gro wth factor-beta:expression profile analysis using oligonucleotide arrays[J].Jpn J Cancer Res.2001,92(3):257-268.
    [40]Blobe GC,Schiemann WP,Lodish HF.Role of transforming growth factor beta in human disease[J].N Engl J Med,2000,342(18):1350-1358.
    [41]Sporn MB,Roberts AB.Transforming growth factor-β:Recent progress and new challenges[J].Cell Biol,1992,119(5):1017-1021.
    [42]Kanzaki T,Olofsson A,Moren A,et al.TGF-β1 binding protein;A component of the large latent complex of TGF-β1 with multiple repeat sequences[J].Cell,1990,61(6):1051-1061.
    [43]Lyons RM,Gentry LE,Purchio AF,et al.Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin[J].J Cell Biol,1990,110(4):1361-1367.
    [44]Krishnan EC,Krishnan L,Jewell B,et al.Dose-dependent radiation effect on microvasculature and repair.J Natl Cancer Inst,1987,79(6):1321-1325.
    [45]李光,党军,赵玉霞等.肺TGF—β1水平及血流分布变化与放射性肺损伤的关系[J].中华放射医学与防护杂志,2006,26(3):241-244.
    [46]Vujaskovic Z,Groen HJ.TGF-beta,radiation-induced pulmonary injury and lung cancer[J].Int J Radiat Biol,2000,76(4):511-516.
    [47]Anscher MS,Murase T,Prescott DM,et al.Changes in plasma TGF beta levels during pulmonary radiotherapy as predictor of the risk of developing radiation pneumonitis[J].Int J Radlat Oncol Biol Phys,1994,30(3):671-676.
    [48]Anscher MS,Kong FM,Marks LB,et al.Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiationinduced pneumonitis[J].Int J Radlat Oncol Biol Phys,1997,37(2):253-258.
    [49]De Jaeger K,Seppenwoolde Y,Kampinga HH,et al.Significance of plasma transforming growth factor-β levels in radiotherapy for non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(5):1378-1387.
    [50]赵路军,王绿化,王小震等.血液中TGF-β、IL-6及ACE含量在预测放射性肺炎中的价值[J].中华放射肿瘤学杂志,2006,15(3):217-221.
    [51]Anscher MS,Kong FM,Andrews K,et al.Plasma transforming growth factor beta 1 as a predictor of radiation pneumonitis[J].Int J Radiat Oncol Biol Phys,1998,41(5):1029-1035.
    [52]Tsoutsou PG,Koukourakis MI.Radiation pneumonitis and fibrosis:mechanisms underlying its pathogenesis and implications for future research[J].Int J Radiat Oncol Biol Phys,2006,66(5):1281-1293.
    [53]Rosai J.Acute pulmonary injury and interstitial pneumonia[J].Acherman's surgical pathology,1996,1(8):358-359.
    [54]Gross NJ.Experimental radiation pneumonitis:IV.Leakage of circulatory proteins onto the alveolar surface[J].J Lab Clin Med,1980,95(1):19-31.
    [55]Abdollahi A,Li M,Ping G,et al.Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis[J].J Exp Med,2005,201(6):925-935.
    [56]白蕴红,王德文,徐在海等.放射性间质性肺炎病变规律及其机理研究[J].解放军医学杂志,1993,18(1):14.
    [57]Theuws JC,Seppenwoolde Y,Kwa SL,et al.Changes in local pulmonary injury up to 48 months after irradiation for lymphoma and breast cancer[J].Int J Radiat Oncol Biol Phys,2000,47(5):1201-1208.
    [58]Woel RT,Munley MT,Hollis D,et al.The time course of radiation therapyinduced reductions in regional perfusion:A prospective study with>5 years of follow-up[J].Int J Radiat Oncol Biol Phys,2002,52(1):58-67.
    [1]Liu HH,Wang X,Dong L,et al.Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(4);1268-1279.
    [2]Murshed H,Liu HH,Liao Z,et al.Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced stage non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(4);1258-1267.
    [3]Willner J,Jost A,Baier K,et al.A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy[J].Strahlenther Onkol,2003,179(8):548-556.
    [4]Gopal R,Tucker SL,Komaki R,et al.The relationship between local dose and loss of function for irradiated lung[J].Int J Radiat Oncol Biol Phys,2003,56(1):106-113.
    [5]Schallenkamp JM,Miller RC,Briivkmann DH,et al.Incidence of radiation pneumonitis after thoracic irradiation: Dose volume correlates[J]. Int J Radiat Oncol Biol Phys.2007,67(2),410-416.
    [6]Yorke ED, Jackson A, Rosenzweig KE, et al. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy [J]. Int J Radiat Oncol Biol Phys, 2002,54(2): 329-339.
    [7]Yorke ED, Jackson A, Rosenzweig KE, et al.Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study[J]. Int J Radiat Biol Phys,2005,63(3):672-682.
    [8]Wang S, Liao ZHX, Wei X,et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis(THP) in patients with non-small-cell lung cancer(NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy(3D-CRT) [J]. Int J Radiat Oncol Biol Phys, 2006,66(5): 1399-1407.
    [9]Novakova-Jiresova A, van Luijk P, van Goor H,et al. Changes in injury expression after graded volume irradiation of the rat lung[J]. Int J Radiat Oncol Biol Phys, 2006,66(3): 572.
    [10]Vivek M. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention[J]. Int J Radiat Oncol Biol Phys, 2005,63(1):5-24.
    [11]Claude L, Perol D, Ginestet C, et al. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis[J]. Radiother Oncol, 2004, 75(2): 175-181.
    [12]Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC) [J]. Int J Radiat Oncol Biol Phys, 1999,45(2):323-329.
    [13]Tsujino K, Hirota S, Endo M, et al. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer[J]. Int J Radiat Oncol Biol Phys, 2003, 55(1): 110-115.
    [14]Hernando ML,Marks LB,Bentel GC,et al.Radiation-induced pulmonary toxicity:a dose-volume histogram analysis in 201 patients with lung cancer[J].Int J Radiat Oncol Biol Phys,2001,51(3):650-659.
    [15]Graham MV.Predicting radiation response[J].Int J Radiat Oncol Biol Phys,1997,39(3):561-562.
    [16]蔡峰,李光,赵玉霞,等.三维适形放疗对Ⅲ期非小细胞肺癌肺功能影响的初步观察[J].中华放射肿瘤学杂志,2006,15(6):440-443.
    [17]殷蔚伯,谷铣之.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,675.
    [18]Wang SL,Liao Z,Vaporciyan AA,et al.Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery[J].Int J Radiat Oncol Biol Phys,2006,64(3):692-699.
    [19]Allen AM,Czerminska M,Janne PA,et al.Fatal pneumonitis associated with intensity-modulated radiotherapy for mesothelioma.Int J Radiat Oncol Biol Phys,2006,65(3):640-645.
    [20]Yom SS,Liao ZX,Liu HH,et al.Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy[J].Int J Radiat Oncol Phys,2007(1),68:94-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700