基于ARM7的两足步行机器人控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桌面型的两足步行机器人不仅在教学、比赛和娱乐等方面应用广泛,并且也可以作为两足步行研究的平台。本文在“KONDO”两足步行机器人的机械结构的基础上,设计了基于ARM7处理器和μC/0S—Ⅱ实时操作系统的两足步行机器人控制系统,包括硬软件设计及其实现;设计了两足步行机器人的步行模式,实现了在平面上的稳定步行。
     针对“KONDO”机器人的机械结构和驱动器特点,选用ARM7内核处理器LPC2131作为处理器,设计了硬件;选用高性能电池作为机器人的电源,增加了机器人的灵活性;控制电路和驱动电路进行了光耦隔离,使得电路更加稳定和安全;并对所设计的硬件电路进行了测试,测试表明电路运行正常,设计正确。
     在硬件电路的处理器中,移植了μC/0S—Ⅱ操作系统;在操作系统下,设计了多个任务和中断处理函数,实现了两足步行机器人控制系统的各项功能,建立了完整的两足步行机器人控制系统软件框架;改进了通常的多路PWM信号产生方法,使控制信号的精度达到了1μs以上,解决了由于中断嵌套影响控制信号精度,从而引发机器人抖动的问题;并对机器人进行了关节调试。
     建立了“KONDO”两足机器人的多连杆运动模型;设计了该两足步行机器人的静态步行模式,并在控制系统中实现,使机器人能在平面上稳定行走;在分析了三维线性倒立摆的运动特性的基础上生成了动态步行模式,并在Matlab中做了仿真,为进一步深入研究作准备。
The Biped walking desktop-robot is not only applied widely in teaching, competitions and entertainments, but also treated as a research tool of biped walking. In this thesis, a control system for biped walking desktop-robot is designed, which is based on ARM7 processor and Embedded Real Time Operating SystemμC/OS-II, and works well in the mechanism of the KONDO biped walking desktop-robot. A walking pattern for the biped robot is presented, and the robot can walk stably on the flat.
     The hardware circuit based on the ARM7-core processor LPC2131 for the robot is designed, which is suitable to the mechanical configuration and the drivers of the KONDO robot. Battery is used as the power-supply of the robot to increase the agility, and the photoelectricity-couplers are used to insulate the control circuit from the drive circuit for more stabilization and safety. The hardware circuit is tested to works well, and the result proves that the design of the hardware circuit is correct.
     The open-code operating systemμC/OS-II is explanted to the processor of the circuit. Under the operating system, several tasks and interrupt service routines are designed to accomplish the functions of the control system for the biped working robot. The frame of software is completed, which is for the control system for biped walking desktop-robot. A improved method of producing multiple PWM signals is presented, and the precision of the control signal can be improved to 1μs, and the problem that the robot shakes because of the interrupt-nesting is solved. A test to the articulations of the robot is done.
     The simple kinematics model in possession of multiple rigid shanks is built. The static walking pattern for the robot is designed and come into true in the control system, which makes the robot walk stably on the plat. And the dynamic walking pattern for biped walking robot is built based on the kinetic characteristic of three-dimensional linear inverted pendulum.The emulation of the dynamic walking pattern is done in the Matlab to make preparation for the further study.
引文
[1] Eric R. Westervelt, and Carlos Canudas-de-Wit. Walking and Running Biped Robots[J]. IEEE Robotics & Automation Magazine, June 2007:6-7.
    [2] Vishnu Vardhan Madadi, and Sabri Tosunoglu. Design and Development of a Biped Robot[J], Proceedings of the 2007 IEEE International symposium on Computation Intelligence in Robotics and Automation,June 2007:243-247.
    [3] Hun-ok Lim, and Kensuke Tjima. Development of a Biped Walking Robot[J], International Conference on Control, Automation and Systems 2007, Oct 2007:1126-1131.
    [4] Shuxiang Guo, Xiufen Ye, and Yuya Okuda. The Development of a Hybrid Type of Underwater Micro Biped Robot[J], Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Oct 2006:2430- 2435.
    [5] Mami Nishida, Kazuo Tanaka, and Hua O. Wang. Development and Control of a Micro Biped Walking Robot using Shape Memory Alloys[J],Proceeding of the 2006 IEEE International Conference on Robotics and Automation, May 2006: 1604-1609.
    [6] Ren. C. Luo, Chiung-wei Tzeng, and Po-zen Cheng. Trajectory-Tracking of Nonlinear Biped Robot System Based on Adaptive Fuzzy Sliding Mode Control[J], The 33~(rd) Annual Conference of the IEEE Industrial Electronics Society(IECON), Nov 2007:2789-2794.
    [7] Hun-ok Lim, Yu Ogura, and Atsuo Takanishi. Dynamic Locomotion and Mechanism of Biped Walking Robot[J], SICE-ICASE International Joint Conference 2006, Oct 2006:3484-3489.
    [8] Koh Hosoda, and Kenichi Narioka. Synergistic 3D Limit Cycle Walking of an Anthropomorphic Biped Robot[J], Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,Oct 2007:470-475.
    [9] Hideto SHIMIZU, Yuki WAKAZUKI, Yaodong PAN, etc. Biped walking robot using a stick on uneven ground[J], SICE Annual Conference 2007, Sept 2007: 83-88.
    [10] M. Albero, F. Blanes, G. Benet, etc. Advanced Distributed Architecture for a Small Biped Robot Control[J], Humanoids' 06, 2006:358-363.
    [11] Kyu-Cheon Choil, Hyun-Jeong Lee, and Min Cheol Lee. Fuzzy Posture Control for Biped Walking Robot Based on Force Sensor for ZMP[J],SICE-ICASE International Joint Conference 2006, Oct 2006:1185-1189.
    [12] Jae Won Kho, Dong Cheol Lim, and Tae Yong Kuc. Implementation of an Intelligent Controller for Biped Walking Robot using Genetic Algorithm[J], IEEE ISIE 2006, July 2006:49-54.
    [13] Qingjiu Huang, and Takamasa Hase. Energy-Efficient Trajectory Planning for Biped Walking Robot[J], Proceeding of the 2006 IEEE International Conference on Robotics and Biomimetics, Dec 2006:648-653.
    [14] S. Ali A. Moosavian, Amir Takhmar, and Mansoor Alghooneh. Regulated Sliding Mode Control of a Biped Robot[J], Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation, August 2007:1547-1552.
    [15] Yosuke Asano, and Atsuo Kawamura. Stability on Orientation Motion of Biped Walking Robot aiming at a Target Object[J], AMC' 06-Istanbul,Turkey, 2006: 428-432.
    [16] Fumihiko Asano, and Zhi-Wei Luo. Asymptotically Stable Gait Generation for Biped Robot Based on Mechanical Energy Balance[J],Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2007:3327-3333.
    [17] M. Albero, F. Blanes, and G. Benet. Distributed real time architecture for small biped robot YABIR0[J], Proceeding 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, June 2005:653-658.
    [18] Itaru Miyagawa, and Kajiro Watanabe. Running Control of Biped Robot[J], SICE Annual Conference 2007, Sept 2007:2190-2193.
    [19] Jean J, Labrosse. μC /OS-II:the Real Time Kernel[M], 中国电力出版社,2001.
    [20] Philips Semiconductors. LPC213x User Manual, http://www.zlgmcu.com/philips/arm/lpc2132/LPC2131_32_34_36_38_3_en. pdf, June 2005.
    [21]包志军,马培荪.从两足机器人到仿人型机器人的研究历史及其问题[J],机器人,1999(4):312-319.
    [22]满翠华,范迅,张华等.类人机器人研究现状和展望[J],农业机械学报,Sept 2006:204-208.
    [23]棍田秀司.仿人机器人[M].管贻生译.清华大学出版社,Mar 2007.
    [24]刘莉,汪劲松,陈恳等.THB IP2I拟人机器人研究进展[J],机器人,May 2002,24(3):262-267.
    [25]徐凯.仿人机器人步态规划算法及其实现研究[D],清华大学工学硕士学位论文,Jun 2006.
    [26]周杰,陈伟海,于守谦.基于ARM的嵌入式系统在机器人控制系统中应用[J],机器人技术 2007,23:271-274.
    [27]刘志雄,李浙昆,谢军等.基于ARM和μ C/OS-Ⅱ的嵌入式移动机器人平台设计[J],机电产品开发与创新,Jan 2007,20(1):14-15.
    [28]吕永江.嵌入式系统μ C/OS-Ⅱ的应用研究[D],武汉理工大学工学硕士学位论文,hpr 2006.
    [29]王永宁,赵士杰,齐长远.μ C/OS-Ⅱ及其在ARM平台上的实现[J],计算机应用与软件,Dec 2007,24(12):180-181.
    [30]胡凌云,孙增圻.双足机器人步态控制研究方法综述[J],计算机研究与发展,2005,42(5):728-733.
    [31]石宗英,徐文立,冯元琨等.仿人型机器人动态步行控制方法[J],机器人,Nov 2001,23(6):569-574.
    [32]胡洪志.仿人步行机器人的运动规划方法研究[D],国防科技大学研究生院学位论文,Nov 2002.
    [33]王勇,杨杰.基于被动动力式的两足机器人研究现状[J],机械工程师,2005,6:31-33.
    [34]付成龙,陈恳.双足机器人稳定性与控制策略研究进展[J],高技术通讯,Mar 2006,16(3):319-324.
    [35]周杰,陈伟海,于守谦.基于ARM的嵌入式系统在机器人控制系统中应用[J],机器人技术,2007,23(1-2):271-274.
    [36]刘森,慕春棣,赵明国.基于ARM嵌入式系统的拟人机器人控制器的设计[J],清华大学学报(自然科学版),Vol 2008,48(4):482-485.
    [37]杨晶东,黄庆成,洪炳镕.双足足球机器人实时避障导航系统研究[J],机器人,Nov 2005,27(6):530-534.
    [38]马德新.实时操作系统μ C/OS-Ⅱ的改进与应用研究[J],单片机与嵌入式 系统应用,Feb 2007(2):75-77.
    [39]赵星星,罗克露,张军等.嵌入式实时操作系统移植技术的研究与应用[J],计算机工程,Sep 2007,33(17):90-92.
    [40]徐亮,徐中伟.μ C/OS-Ⅱ实时系统任务调度优化[J],计算机工程,Oct 2007,33(19):57-59.
    [41]吴平.μ C/OS-Ⅱ中任务调度算法的改进[J],单片机与嵌入式系统应用,Mar 2006(3):23-25.
    [42]吴伟国,李小宁,王瑜.类人机器人腰部关节平衡作用研究与仿真[J],机械设计与制造,May 2005,(5):112-114.
    [43]黄燕平.μ C/OS-Ⅱ ARM移植要点详解[M],北京航空航天大学出版社,Nov 2005.
    [44]刘森,慕春棣,赵明国.基于ARM嵌入式系统的拟人机器人控制器的设计[J],清华大学学报(自然科学版),2008,48(4):482-485.
    [45]施华,薛广涛.机器人控制系统实时性的研究[J],计算机工程,Jan 2003,29(1):91-92.
    [46]李开生,张慧慧,费仁元.机器人控制器体系结构研究的现状和发展[J],机器人,May 2000,22(3):235-240.
    [47]颜永军,李梅.Protel 99电路设计与应用[M],国防工业出版社,2001.
    [48]施华,陈一民,李超.基于RT-Linux的实时机器人控制器研究[J],计算机工程与科学,2002,24(6):91-95.
    [49]徐青,申忠宇,赵瑾等.基于ARM的两足步行机器人系统设计[J],仪器仪表学报(增刊),Aug 2007,28(8):499-501.
    [50]姜培玉.两足机器人动态步行研究[D],西北工业大学硕士学位论文,Mar 2004.
    [51]万松峰,黄惟公.基于WinCE&ARM的嵌入式工业监控系统的开发[J],西华大学学报(自然科学版),Nov 2005,24(6):26-29.
    [52]李红征,周烽,王永.基于DSP的双足步行机器人设计[J],机械与电子,2007(11):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700