陆地棉优质纤维QTL的分子标记筛选及其定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的天然纤维作物,也是重要的油料作物之一。21世纪,随着纺织工业加工速度的加快和人民生活水平的提高,对棉纤维品质的要求愈来愈高。在高产、稳产的基础上,高品质棉育种成为棉花育种的主要目标之一。筛选到与优质性状中的主效基因紧密连锁的分子标记进行辅助选择,在棉花生长的早期阶段或早期分离世代就能追踪这个重要性状,可大大提高纤维品质的选择效率,加速高品质育种的进程。
     本文利用01525、J415和TM-1等3个纤维品质显著差异的陆地棉材料,构建了两个F_2分离群体。通过分子标记技术和F_2分离群体构建具有较高覆盖率的陆地棉品种间的分子标记遗传图谱,进而发掘01525、J415和TM-1上与纤维品质相关的数量性状基因位点。
     主要研究结果如下:
     1.利用陆地棉品种01525、优质纤维材料J415和陆地棉遗传标准系TM-1作为研究材料,配置了(01525×J415)F_2和(01525×TM-1)F_2两个分离群体,使用本实验室开发或合成的SSR引物对亲本进行多态性筛选,分别获得213和128个多态性位点。在(01525×J415)F_2中,150个多态性位点构建了总长为1161.1cM的遗传图谱,该图谱由28个连锁群组成,除一个连锁群未与任何染色体对应外,其余27个与22条染色体相对应,覆盖棉花基因组的23%。在(01525×TM-1)F_2中,90个多态性位点构建了总长为1011.3cM的遗传图谱上,该图谱由24个连锁群组成,除两个连锁群未与任何染色体对应外,其余22个与17条染色体相对应,覆盖棉花基因组的22.48%。利用Joinmap 3.0完成两张图谱的整合,获得了一张包含了214个多态性位点、总长为1762.03cM的新陆地棉种内遗传连锁图谱,该图谱由39个连锁群组成,与23条染色体相对应,有两个连锁群未与任何染色体对应,覆盖棉花全基因组的35.38%,标记间平均距离8.23cM。
     2.应用复合区间作图法分析了两个组合的F_2单株和F_(2:3)家系纤维品质性状,在LOD≥2.0的水平下,总共检测到66个纤维品质数量性状基因座(QTL)。包括11个纤维长度QTL,10个纤维比强度QTL,13个马克隆值QTL,12个整齐度QTL,5个短纤维率QTL及15个伸长率QTL,解释各性状表型变异的范围分别为5.3%-21.9%、4.5%-24.5%、5.8%-15.7%、5.2%-34.2%、6.1%-15.7%和5.3%-31.5%。其中9个稳定的QTL可以同时在F_2和F_(2:3)检测到,有5个QTL能在两个群体中同时检测到。两个群体增效基因的方向都与期望的表型值基本一致,大部分纤维品质的增效基因都来自于优质亲本。从QTL成簇分布和纤维品质相关分析进一步说明,纤维品质性状之间存在显著的相关性。
     3.研究发现在D1、D2、A6、D6、D8、A9、A10、D10和A13上,纤维品质相关的QTL成簇分布,结合本实验室已鉴定的不同来源优质QTL的染色体定位结果,发现D6、D8、A10和A13是优质QTL的富集区。
     研究结果为分析不同来源优质QTL分布特点和合理利用分子标记技术选育优质纤维品种提供了参考依据。
Cotton is the most important textile fiber crop and the world's second-most important oil-seed crop after soybean.Demands for enhancement of fiber quality traits such as fiber length and strength have been increasing because of changes in spinning technology in the textile industry.The primary breeding goal for the worldwide cotton researcher is how to genetically improve both yield and fiber quality.The development on molecular marker technology offer plant breeders a powerful tool in breeding.Especially,if the marker linked tightly with major gene controlling interesting traits is identified,the marker would allow cotton breeders to trace this very important trait in early plant-growing stage or early separation generation,and selection assisted with the marker will improve the efficiency of selection.
     In this paper,molecular markers and two F_2 segregation populations derived from three parents were used to develop genetic linkage map and to exploit QTL concerned with fiber quality using upland cotton accessions 01525,J415 and TM-1,whose fiber quality is significantly different among them.
     The main results are followed:
     1.Two genetic linkage maps were constructed by the F_2 segregation population derived from 01525 hybridized with the J415,a high quality cotton accession and TM-1,a genetic standard line,respectively.By screening 6771 pairs of SSR primers,213 and 128 polymorphic loci were identified,respectively.Using(01525×J415)F_2 population,the genetic map is comprised of 28 linkage groups with 150 mapped loci,which could homologous with 22 chromosomes,except one linkage groups unknown to any chromosome.The 150 loci had a total genetic distance of 1161.1 cM,and covered 23%of the whole cotton genome.Using(01525×TM-1) F_2 population,the genetic map comprised of 24 linkage groups with 90 mapped loci was constructed,and could homologous with 17 chromosomes,except two unknown with any chromosome.The map had a total genetic distance of 1011.3 cM,and covered 22.48%of the whole cotton genome.A joinmap linkage map was integrated for the two F2 with SSR markers and JOINMAP3.0 software. The new integrated map is comprised of 39 linkage groups with 214 mapped loci,and could homologous with 23 chromosomes,with remained two linkage groups fail to be assigned to any chromosome.The 214 loci covered the genetic distance of 1762.03 cM, which was approximately 35.38%of the total recombination length of the cotton genome. The average distance between loci was 8.23 cM genome wide.
     2.The fiber characteristics QTL of the two F_2 populations were screened using composite interval mapping(CIM) method and 66 putative quantitative trait loci(QTL) were detected for 6 fiber qualities traits,11 for fiber length,10 for fiber strength,13 for fiber micronaire,12 for fiber uniformity,5 for fiber short index,and 15 for fiber elongation. These QTL explained their corresponding phenotypic variations with 5.3%-21.9%、4.5 %-24.5%、5.8%-15.7%、5.2%-34.2%、6.1%-15.7%and 5.3%-31.5%,respectively. Among them,9 stable QTL could be found in F_2 and F_(2:3) simultaneously.At least 5 QTL could be identified at two different populations and different environments.It is also revealed that the direction of addition gene was consistent with the represent of expected value in two populations,which is inclined to the elite parents.We analyzed the relationship between clustered QTL and fiber quality,and it is also displayed to have singnificant correlation between them.
     3.QTL were clustered on Chromosome D1,Chromosome D2,Chromosome A6, Chromosome D6,Chromosome D8,Chromosome A9,Chromosome A10,Chromosome D10 and Chromosome A13.Combining with the QTL tagging results fi:om different elite fiber lines in the lab,many QTL associated with fiber quality were rich in Chromosome D6, Chromosome D8,Chromosome A10 and Chromosome A13.
     These results will provide references for the distribution of different QTL and utilizing the fiber quality QTL reasonably in fiber quality breeding improvement in Upland cotton.
引文
1.陈佩度.作物育种生物技术.北京:中国农业科技出版社,2001.
    2.董承光,丁业掌,郭旺珍,张天真.海岛棉Gl_2~e显性无腺体基因的精细定位,科学通报,2007,2374-2378.
    3.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学技术出版社,2002.
    4.高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位.棉花学报,2003,15(2):73-78.
    5.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种.科学通报,2003,48(5):410-417.
    6.郭旺珍,张天真,丁业掌,等.分子标记辅助聚合两个棉纤维高强主效QTLs的选择效果。遗传 学报,2005,32(12):1275-1285.
    7.郭旺珍,张天真.棉花基因组育种现状与展望.棉花学报,2003,15(5):298-303.
    8.郭旺珍,王凯,张天真.利用SSR标记技术研究棉属A、D染色体组的进化。遗传学报2003,30(2):183-188.
    9.韩志国,郭旺珍,张天真.一个FIF1基因的SNP及定位研究(英文).作物学报,2007,2:496-501.
    10.何风华.水稻QTL分析的研究进展.西北植物学报,2004,24(11):2163-2169.
    11.何旭平,冷苏凤,承泓良。高品质棉花品种在渝棉1号.江苏农业学报,2000,4,pp203
    12.何永政.推行1 mm长度分级,严格麦克隆值考核.中国质量报,2002,8.
    13.贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位(博士学位论文).华中农业大学,2005,55-74.
    14.胡绍安,催荣霞,王坤波,等.棉属野生种与栽培棉种间杂交新种质创造研究.棉花学报,1993,5(2):7-13.
    15.胡文静,张晓阳,张天真,郭旺珍,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析.作物学报,2008,34(4):578-586.
    16.黄一清,祝水金.从浙江省棉纺市场需求论我国棉花纤维品质改良.中国棉花,2002,3:2-3.
    17.黄滋康,季道藩,潘家驹.中国棉花遗传育种学.山东:山东科技出版社.2003.
    18.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    19.景润春,黄青阳,朱英国.图位克隆技术在分离植物基因中的应用.遗传学报,2000,22(3):180-185.
    20.李宏伟,高丽锋,刘曙东,等.用EST-SSRs研究小麦遗传多样性.中国农业科学,2005,38(1):7-12
    21.李朋波,曹美莲,刘惠明,等.陆地棉遗传图谱构建与纤维品质性状QTL定位.西北植物学报,2006,26(6):1098-1104.
    22.李守成,江先炎.利用陆中杂交后代培育棉花高强优质材料.中国棉花,1997,24(11):9-11.
    23.梁正兰.棉花远缘杂交的遗传与育种.北京:科学出版社,1999.
    24.刘金元,赵广荣,李骥.棉花纤维品质改良的分子工程.植物学报,2000,42(10):991-995.
    25.刘鹏渊,朱军.标记辅助选择改良数量性状的研究进展.遗传,2001,23(4):375-380.
    26.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rfl育性恢复基因和抗虫Bt基因.Molecular Plant Breeding,2003,111(11):48-52.
    27.陆朝福,朱立煌.植物育种中的分子标记辅助选择.生物工程进展,1995,15(4):11-17.
    28.罗明,李名杨,侯磊,等.棉花纤维发生相关AFLP标记.遗传学报,2001,28(7):677-682.
    29.马淑萍,蔡派,熊宗伟,等.中国棉花品质现状及其国际地位.中国棉花,2002,29(10):12-19,24-28.
    30.农业部种植业管理司经济作物处.关于2006年发展棉花生产的意见.中国棉花.2006,33(5):4-5.
    31.潘家驹.棉花育种学.北京:中国农业出版社,1998.
    32.钱思颖,黄骏骐,周宝良,等.陆地棉(G hirsutum L.)克劳茨基棉(G.klotzschianum)的研究和利用.江苏农业学报,1996,12(4):18-22.
    33.钱思颖,黄骏麒,彭跃进,等.陆地棉与异常棉种间种的研究及其在育种上的应用.中国农业科学,1992,25(6):44-51.
    34.秦鸿德.陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择(博士学位论文).南京农业大学,2007.
    35.上官小霞,王凌健,李燕娥,等.对转蚕丝芯蛋白轻链基因棉花的分析.作物学报,2007,33(5):697-702.
    36.沈新莲,袁有禄,郭旺珍,等.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果.高技术通讯,2001,10:13-16.
    37.沈新莲.陆地棉纤维品质QTL的筛选、定位及其应用(博士学位论文).南京农业大学,2004.
    38.宋宪亮,孙学振,张天真,等.偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286-292.
    39.宋宪亮,孙学振,张天真,王洪刚,等.棉花遗传多态性研究进展.西北植物学报,2004,24(12):2393-2397.
    40.唐灿明.陆地棉纤维品质改良目标及途径.江苏农业科学,2005,6:25-29.
    41.万少安,任琪.中外棉花纤维品质比较分析.中国棉花加工,2007,1:27-28.
    42.王娟,郭旺珍,张天真,等.渝棉1号优质纤维QTI的标记与定位.作物学报,2007,33(12):1915-1921.
    43.王鹏,丁业掌,陆琼娴,郭旺珍,张天真.陆地棉遗传标准系TM-1背景的海岛棉染色体片段置换系的培育,科学通报,2007,53(9):1065-1069.
    44.王仁晓,李培金,陈红旗,等.水稻顶节间长度控制基因(EUI)的精细定位.遗传学报,2005,32(9):955-959.
    45.王学德,余碧霞,夏如冰,等.浙江棉区棉花纤维品质生态分布的研究.浙江农业科学,1994,1:3-7.
    46.吴建利,柴荣耀,樊叶杨.抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布.中国水稻科学,2004,18(6):567-569.
    47.项时康,余楠,胡育昌,等.论我国棉花质量现状.棉花学报,1999,11(1):1-10.
    48.邢以华,靖深蓉.棉花杂种优势预测初步研究.中国棉花,1984,4:11-13.
    49.徐云碧,申宗坦,朱立煌,等.水稻形态性状与分子标记的相互关联及其检测.浙江农业学报,1994,6:1-6.
    50.薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):631-638.
    51.杨昶,郭旺珍,张天真,等.陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位.分子植物育种,2007,5(6):797-805
    52.杨存义,陈忠正,庄楚雄,等.水稻籼粳杂种不育基因座sc的遗传图和物理图精细定位.科学通报,2004,49(13):1273-1277.
    53.杨伟华,项时康,唐淑荣,等.20年我国自育棉花品种纤维品质分析.棉花学报,2001,13(6):377-384.
    54.杨伟华,熊宗伟,唐淑荣,等.从不同领域棉花品质差异谈实行区划种植必要性.中国棉花,2002,29(4):2-6.
    55.易成新,郭旺珍,朱协飞,等.陆地棉分子标记辅助轮回选择聚合育种Ⅰ.群体创建与基础群体的评价.中国农业科学,2004,37(5):634-641.
    56.殷剑美,武耀廷,张军.陆地棉产量性状QTLs的分子标记及定位.生物工程学报,2002,18(2):162-166.
    57.于晓红棉纤维发育与改良的初步研究.中国科学院上海植物生理研究所博士研究生学位论文,1999.
    58.张风鑫.发展高品质棉迎接加入WTO新挑战-棉花纤维品质改良的进展.安徽农学通报,2000,6(6):6-8.
    59.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测.棉花学报,2000,12(5):267-269.
    60.张天真,郭旺珍.棉花分子育种的现状、问题与展望.中国农业科技导报,2007,9(2):19-25.
    61.张天真,袁有禄,郭旺珍,等.棉花高强纤维QTLs的微卫星标记筛选.中国农业科学,2001,34(4):363-366.
    62.章元明.作物QTL定位方法研究进展。科学通报2006,51(19),2223-2231。
    63.周宝良,陈松,黄骏麒,等.论我国棉花纤维品质改良的紧迫性、可行性及策略.科技导报,1998.5:56-58.
    64.周宝良,陈松,沈新莲,等.陆地棉高品质纤维种质基因库的拓建.作物学报,2003,29(4):514-519.
    65.周宝良,朱协飞,郭旺珍,张天真,等.棉花高品质种质系杂交后代纤维品质性状间的偏相关分析.棉花学报,2006,18(6):352-356.
    66.周晔君,杨亦梅.我国棉纺工业的发展对原棉质量的要求.中国棉花学会经二次中青年学术沙龙论文汇编.2000,江苏南京,44-49.
    67.Abdalla AM,Reddy OUK,El-Zik K M,et al.Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP.Theor Appl Genet,2001,102:222-229.
    68.Altaf MK,Zhang JF,Steward JM,et al.Integrated molecular map based on a trispecific F_2population of cotton.Beltwide cotton conf.1998,491-492.
    69.Baohua Wang,Wangzhen Guo,Xiefei Zhu,Yaoting Wu,Naitai Huang,Tianzhen Zhang.QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton.Euphytica,2006,152:367-378.
    70.Bell CJ.Assessment of 30 microsatelite loci to the linkage mapping of Arabidopsis.Genomies,1994,250:39-49.
    71.Brew RB,Yvert G,Clinton R,et al.Genetic dissection of transcriptional regulation in budding yeast.Science,2002,296:752-755.
    72.Brornan KW.The genomes of recombinant inbred lines.Genetics,2005,169:1133-1146.
    73.Brondani C,Rangel PHN,Borba TCO,et al.Transferability of microsatellite and sequence tagged site markers in Oryza species.Hereditas,2003,138:187-192.
    74.Brubaker CL,Wendel JF.On the specificstatus of Gossypium lanceolatum Todaro.Genetic resources and cropevolution,1993,40(3):165-170.
    75.Brubaker CL,Wendel JE Revaluating the origin of domesticated cotton(Gossypium Hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms(RFLPs).Amer.Bot,1994,81(10):1309-1326.
    76.Culp T W,Harrell D C,Kerr T.Some genetic implications in the transfer of high fiber strength genes to upland.Crop Sci,1979,19:481-484.
    77.Culp T W,Harrell D C.Breeding quality cotton at the Pee Dee Experiment Station,Florence SC,USDA Publ,ARS-S-30.1974.
    78.Davila JA,Loarce Y,Ferrer E.Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley.Theor Appl Genet,1999,98:256-273.
    79.Donis-Keller H,Green P,Helms C,et al.A genetic linkage map of the human genome.Cell,1987,51:319-377.
    80.Draye X,Chee P,Jiang C X.Molecular dissection of interspecifie variation between Gossypium hirsutum and G.barbadense(cotton) by a backcross-self approach:Ⅱ Fiber fineness.Theor.Appl.Genet.,2005,111:764-771.
    81.Edwards MD,Johnson L.RFLP for rapid recurrent selection:Analysis of Molecular Marker Data.Theor Appl Genet,1994,88:33-40.
    82.Edwards MD,Stuber CW,Wendel JE Molecular-marker-facilitated investigated of quantitative trait loci in maize.Ⅰ.Numbers,genomic distribution and types of gene action.Genetics,1987,116:113-125.
    83.Endrizzi JE,Turcotte EL,Kohel RJ.Genetics,cytology and evolution of Gossypium,Adv Genet,1985,23:271-375。
    84.Garcia de Leon FJ,Canonne M,Quillet E,.et al.The application of microsatellite markers to breeding programmes in the sea bass,Dicentrarchus labrax.Aquaculture,1998,159:303-316.
    85.Gibson G,Weir B.The quantitative genetics of transcription.Trends Genet,2005,21(11):616-623.
    86.Guo WZ,Cai CP,Wang CB,et al.A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossypium.Genetics,2007,176:527-541.
    87.Guo WZ,Zhang TZ,Pan JJ,et al.Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton.Chinese Science Bulletin,1998,43:52-54.
    88.Haigler CH,Johnson S.A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose.Natl.Acad.Sci.USA,1995,92:9353-9357.
    89.Hallauer AR.Compedium of recurrent selection methods and their applicaton.Plant Sci.,1985,3:1-33.
    90.Han ZG,Guo W Z,Song X L.Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreumin allotetraploid cotton.Mol.Gen.Genomics,2004,272:308-327.
    91.Han ZG,Wang CB,Song XL,et al.Characteristics,development and mapping of Gossypium hirsutum derived-EST-SSRs in allotetraploid cotton.Theor Appl Genet,2006,112:430-439.
    92.I.Y.Abduraktmonov,Z.T.Buriev,S.Saha,A.E.Pepper,J.A.Musaev,A.Alrnatov,S.E.Shermatov,E N.Kushanov,G.T.Mavlonov,U.K.Reddy,J.Z.Yu,J.N.Jenkins,R.J.Kohel,A.Abdukarimov.Microsatellite markers associated with lint percentage trait in cotton,Gossypium hirsutum.Euphytica,2007,156:141-156
    93.Jansen R C.Interval mapping of multiple quantitative traits loci.Genetics,1993,135:205-211.
    94.Jansen R C.Quantitative trait loci in inbred lines.In:Balding D J,Bishop M,Cannings C,eds.
    95.Jean-Marc Lacape,Trung-Bieu Nguyen,Brigitte Courtois,Jean-Louis Belot,Mare Giband,Jean-Paul Gourlot,Ge'rard Gawryziak,et al.L.Analysis of Cotton Fiber Quality Using Multiple Gossypium hirsutum×Gossypium barbadense Backcross Generations.Crop Sci,2005,45:123-140
    96.Jiang C X,Wright R J,E1-Zik K M,et al.Polyploid formation created unique avenues for response to selection in Gossypium(cotton).Proc Natl Acad Sci USA,1998,95(8):4419-4424.
    97.John ME,Keller G.Metabolic pathway engineering in cotton:Biosynthesis of polyhydroxybutyrate in fiber cells.Natl Acad Sci USA,1996,93:12768-12773.
    98.John ME,Structural characterization of genes corresponding to cotton fiber mRNA,E6:Reduced E6 protein in transgenic plants by antisense gene.Plant Molecular Biology,1999,30:297-306.
    99.Kao CH,Zeng ZB,General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm.Biometrics,1997,53:653-665.
    100.Kao CH,Zeng ZB,Teasdale R D.Multiple interval mapping for quantitative trait loci.Genetics,1999,152:1203-1216.
    101.Kao CH,Zeng ZB.Modeling epistasis of quantitative trait loci using Cockerham's model.Genetics,2002,160:1243-1261.
    102.Kao CH.Multiple-Interval Mapping for quantitative trait loci controlling endosperm traits.Genetics,2004,167:1987-2002.
    103.Kao CH.On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci.Genetics,2000,156:855-865.
    104.Karaca M,Saha S,Jenkins J N,et al.Simple sequence repeat(SSR) markers linked to the Lintless (Lil) mutant in cotton.Hered,2002,93:221-224.
    105.Knapp SJ.Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes.Crop Science,1998,38:1164-1174.
    106.Kohel R J,Park Y H,Sloeum M K.Analysis of the origion of extra long staple fiber in Gossypium barbadense L.In Biochemistry of cotton,1994,Sep 28-30,Galveston,Texas,pp84-88.
    107.Kohel R J,Yu J,Park Y H.,Lazo G R.Molecular mapping and characterization of traits controlling fiber quality in cotton.Euphytica 2001,121:163-172.
    108.Kohel RJ Cotton g Kohel R J,Lewis C F.description of a genetic standard for Gossypium hirsutum L.Crop Sci.,1970,10:670-671.
    109.Lacape JM,Nguyen T B,Courtois B,et al.QTL analysis of cotton fiber quality using multiple Gossypium hirsutum ×Gossypium barbadense backcross generations. Crop Sci, 2005, 45: 123— 140.
    110. Lacape JM, Nguyen T B, Thibivilliers S, Bojinnov T B, Courtois B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutumx×Gossypium barbadense backcross population. Genome ,2003,46:612—626.
    111.Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199.
    
    112. Li G, Quiros CF. Sequence related amplified polymorphism (SRAP). A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet, 2001,103:455-461.
    
    113. Martin G B, Brmmonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436.
    
    114. Martinez O, Curnow RN. Estimation the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet, 1992, 85: 480—488.
    
    115. May OL. Genetic variation in fiber quality. Cotton fibers developmental biology, quality improvement, and testile processing. Basra A.S. .ln. Food product press. NY. 1999, pp183—229.
    
    116. McCouch S, Kochert G, Yu Z, et al. Molecular mapping of rice chromosomes.Theor Appl Genet, 1988,76:815—829.
    
    117. Mei M, Syed N H, Gao S. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor. Appl. Genet., 2004,108: 280—291.
    
    118. Meredith WR, Brown JS. Heterosis and combing ability of cottons originating from different regions of the United States. Cotton Sci, 1998, (2): 77-84.
    
    119. Meredith WR, Jr. Cotton breeding for fiber strength. In Proceedings from cotton fiber cellulose: Structure, function, and utilization conference. Memphis, TN; National Cotton Council of American, 1992, pp289—302.
    
    120. Multanid S, Lyon B R. Genetic finger pringtmg of Australian cotton cultivars with RAPD markers . Genome, 1995, 38:1005—1008.
    
    121. Paterson AH, Saranga Y, Menz M, Jiang C X. QTL analysis of genotype × Environment interaction affecting cotton fiber quality. Theor Appl Genet, 2003, 106:384—396.
    
    122. Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Mol Theor Appl Genet, 2008, Theor Appl Genet DOI 10.1007/s00122-008-0828-x
    
    123. Quisenberry J E. Inheritance of fiber properties among crosses of Acala and High Plains cultivars of Upland cotton. Crop Sci, 1975,15:202—204.
    
    124. Reddy OUK, Pepper A E, Saha S, et al., New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. Cotton Sci, 2001,5:103-113.
    125. Reinisch A J, Dong J M, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum ×Gossypium barbadense: chromosome organization and evolution in disomic polyploidy genome. Genetics, 1994,138:829-847.
    126. Richmond T R. Procedures and methods of cotton breeding with special reference to American cultivated species. Advanced in Genentics, 1951,4:213-245.
    127. Rinehart J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A Demonstration of promoter activity in transgenic plants. Plant Physiol.l 1996,12:1331-1341.
    128. Roder M S, Plaschke J, Konig SU, et al. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet, 1995, 246: 327-333.
    129. Schadt E E, Monks S A, Drakes T A, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature, 2003,422:297—302.
    130. Shappley Z W, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton.Cot Sci, 1998,4:153—163.
    131. Shappley Z W. Construction of RFLP linkage groups and mapping of quantitative trait loci in upland cotton (Gossypium hirsutum L.). (Ph.D. dissertation) Mississippi State University, 1996.
    132. Stuber CW and MD Edwards. Genotypic selection for improvement of quantitative traits in corn using molecular marker loci. 41 st Annual Com and Sorghum Research Conf, Am. Seed Trade Assoc,1986,41:40-83.
    133. Tanksley SD, Nelson CJ. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor.Appl.Genet., 1996, 92: 191—203.
    134. Tenaillon M I, Sawkins MC, Long AD, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays L). Pro Natl Acad Sci USA, 2002,98: 9161—9166.
    135. Tipton K W, et al. Inheritance of fiber elongation in two separate crosses of Upland cotton having a common parent. In proceedings of the sixteenth Annual cotton improvement conferences, 1964, pp13—20.
    136. Ulloa M, Cantrell RG, Pency RG. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. Cotton Sci, 2000,4: 10—18.
    137. Ulloa M, Meredith Jr WR. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population.Cotton Sci, 2000,4:161—170.
    138. Ulloa M, Meredith JR, Shappley Z W. RFLP genetics linkage maps from four F2: 3 populations and a joinmap of Gossypium hirsutum L. Theor. Appl. Genet., 2002,104 (2-3): 200—208.
    139. Voorips RE. Mapchart Version 2.0: Windows software for the graphical presentation of the linkage maps and QTL. Wageningen, the Netherlands: Plant Research International, 2001.
    140. Vroh Bi, A Maquet, J-P. Baudoin, P du Jardin, JM Jacquemin and G Mergeai. Breeding for "low-gossypol seed and high-gossypol plants"in upland cotton. Analysis of tri-species hybrids and backcross progenies using AFLPs and mapped RFLPs. TAG, 1999,99:1233—1244.
    141. Vroh Bi, JP Baudoin, B Hau and G Mergeai. Development of high-gossypol cotton plants with low-gossypol seeds using trispecies bridge crosses and in vitro culture of seed embryos. Euphytica, 1999,106:243—251.
    142. Wang BH, Guo WZ, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006,152:367-378.
    143. Wang CB, Guo WZ, Cai CP, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51: 557-561.
    144. Wang H, Zhang YM, Li XM, et al. Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics, 2005,170:465-480.
    145. Wendel JF. New world tetraploid cottons contain old world cytoplasm. Proc. Natl. Acad. Sci. USA, 1989, 6:4132—4136.
    146. Williams JGK, AR Kabelik, KJ Livak and SV Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res. 1990, 18:6531—6535.
    147. Williams JGK, RS Reiter, RM Young,. Scolnik. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucl. Acids Res. 1993,21:2697—2702.
    148. WZ Guo, ZQ Sang, BL Zhou, TZ Zhang. Genetic relationships of D-genome species based on two types of EST-SSR markers derived from G. arboretum and G. raimondii in Gossypium. Plant Science 2007,172 :808-814.
    149. Yu J, Park Y H, Lazo GH, et al. Molecular cotton genome with molecular markers. Beltwide Cotton Conferences, 1997, pp447.
    150. Yu J, R J Kohel. Update of the cotton genome mapping. Beltwide cotton conf. 1999, pp485.
    151. Yu J, Y H Park, G Lazo R, Kohel RJ, Molecular cotton genome with molecular markers. cotton improvement conference. 1997, pp447.
    152. Yu J, Y H Park, GR Lazo, R J Kohel, Molecular mapping of the cotton genome:QTL analysis of fiber quality properties. Cotton Improvement Conference, 1998, pp485.
    153. Zeng Z B. Precision mapping of quantitative trait loci, Genetics 1994,136:1457—1468.
    154. Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet, 2003,106: 262—268.
    155. Zhu H, G Briceno, R Dovel et al. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl Genet, 1999, 98:772—779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700