明胶—硅氧烷纳米颗粒作为基因载体的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗的主要目的是研制安全有效的基因转染载体。在基因转染载体中,非病毒载体以其低毒性、低免疫原性、低致瘤性及易于制备等优点具有良好的应用前景。本文以新型有机-无机杂化材料——明胶.硅氧烷纳米颗粒作为基础,探讨了此种材料的合成机制,将其应用于基因治疗,并以活性多肽修饰表面增强功能性。取得的主要成果有:
     1.以明胶、GPSM和氨水作为反应物,或以明胶、GPSM和APTMS作为反应物,通过溶胶.凝胶法,制得两种阳离子明胶.硅氧烷颗粒。探讨了两种纳米颗粒的合成机制,探索了一种全新材料的合成和表征方法。
     2.利用明胶.硅氧烷纳米颗粒与质粒DNA的相互作用,系统地研究了明胶-硅氧烷纳米颗作为基因载体的理化性质。纳米颗粒/DNA复合物,能够稳定存在于血清、核酸酶DNaseⅠ、弱酸性和中性的环境中,对DNA具有很好的保护作用,是优良的非病毒基因载体。
     3.从提高明胶.硅氧烷纳米颗粒的转染效率的角度出发,借助Tat多肽,对纳米颗粒表面进行修饰,系统地考察了多肽-明胶-硅氧烷载体作为非病毒载体的潜力。多肽修饰后的纳米颗粒,表面电位升高,纳米颗粒/DNA复合物,能够稳定存在于血清、核酸酶DNaseⅠ、弱酸性和中性的环境中,对DNA具有很好的保护作用,具有进行基因转染的巨大潜力。
The main objective in gene therapy is the development of efficient, non-toxic gene carriers. Non-viral vectors provide opportunities for improved lower toxicity, non-pathogenic and more facile manufacturing. In this work, the new hybrid nanoparticles with organic-inorganic contents of gelatin and siloxane were successfully synthesized. We described the synthesis of gelatin-siloxane nanoparticles and tested these vectors based on those NPs as vectors for gene therapy. The main results are as follows:
     1. Preparing gelatin-siloxane nanoparticles by a sol-gel process in gelatin, GPSM, ammonia system or gelatin, GPSM, APTMS system. The synthetic scheme was also studied.
     2. A systemic study of nanoparticles/DNA complexes in gene therapy was conducted. The complexes with nanosized diameters could protect DNA from digestion in phosphate buffer solution (pH 7.0 and pH 6.0), serum and DNase I solution.
     3. The strategic to improve transfection ability of gelatin-siloxane nanoparticles comprise functionalizing the surface of the NPs with biofunctional peptide. A systemic study of peptide-NPs/DNA complexes in gene therapy was conducted. The peptide-NPs with higher surface charges and nanosized diameters could protect DNA from digestion in phosphate buffer solution (pH 7.0 and pH 6.0), serum and DNase I solution.
引文
[1] Mulligan RC. The basic science of gene therapy. Science, 1993, 260: 926-32
    
    [2] Walsh CE. Gene therapy progress and prospects: gene therapy for the hemophiliac. Gene therapy, 2003,10: 999-1003
    [3] van Deutekom JCT, van Ommen GJB. Advances in Duchenne muscular dystrophy gene therapy. Nature reviews genetics, 2003,4: 774-83
    [4] Ferrari S, Geddes DM, Alton EWFW. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Advanced drug delivery reviwes, 2002,54: 1373-93
    [5] Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene therapy, 2000, 7: 2-8
    [6] Nabel EG. Gene therapy for cardiovascular diseases. Journal of nuclear cardiology, 1999, 6: 69-75
    [7] Dzau VJ, Beatt K, Pompilio G, et al. Current perceptions of cardiovascular gene therapy. American journal of cardiology, 2003, 92: 18-23
    [8] Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson's disease . Gene therapy, 2003, 10: 1721-27
    [9] Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet neurology, 2002, 1:51-7
    [10]Bunnell BA, Morgan RA. Gene therapy for infectious diseases . Clinical microbiology reviwe, 1998,11:42-52
    [11]Cutroneo KR. Gene therapy for tissue regeneration. Journal of cell biochemistry., 2003, 88: 418-25
    [12]Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene therapy, 2000, 7: 2-8
    [13]Roblin R. Human gene therapy: outlook and apprehensions. In: Chaeko G. ed Health Handbook. Amsterdam: North Holland Publishing, 1979: 104-14
    [14]Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science, 1995,270: 475-80
    [15]Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 2000, 288: 669-72
    [16]Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med., 2000, 6: 879-85
    
    [17] Friedman T. Development of human gene therapy. Nature Med. 1996, 2: 144-7
    [18] Daniel W. Pack, Allan S. Hoffman, Suzie Pun, et al. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 2005,4: 581-93
    [19]Gene Therapy Clinical Trials [online] (2005).Website tabulating important statistics regarding gene therapy clinical trials, including their classification by disease and type of vector.
    [20]P.F. Lewis, M. Emerman, Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus, J. Virol. 68 (1994) 510-516
    [21]GL. Buchschacher Jr., F. Wong-Staal, Development of lentiviral vectors for gene therapy for human diseases, Blood 95 (2000) 2499- 2504
    [22] Eric T Juengst, J-P Liu. What next for human gene therapy?Gene transfer often has multiple and unpredictable effects on cells. Bmj Chinese Edition, 2004, Editorials
    [23] J.P. Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy, Bioconjug. Chem. 5 (1994) 382-389
    [24]D. Niculescu-Duvaz, J. Heyes, and C. J. Springer. Structure-activity relationship in cationic lipid mediated gene transfection. Curr. Med. Chem., 2003, 10: 1233-61
    [25]B. Martin, M. Sainlos, A. Aissaoui, N. Oudrhiri, M. Hauchecorne, J. P. Vigneron, J. M. Lehn, and P. Lehn. The design of cationic lipids for gene delivery. Curr. Pharm. Des., 2005, 11: 375-94
    [26]P.L. Feigner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U. S. A., 1987, 84: 7413-7
    [27]N. M. Rao and V. Gopal. Cell biological and biophysical aspects of lipid-mediated gene delivery. Biosci. Rep., 2006,26: 301-24
    
    [28]Lasic DD, Templeton NS. Liposomes in gene terpay. Adv. Drug Deliv Rev. 1996,20: 221-5
    [29]S.W Yi, T.Y. Yune, T.W. Kim, H. Chung, Y.W Choi, I.C. Kwon, E.B. Lee, S.Y. Jeong, A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system, Pharm. Res. 17 (2000) 314- 320
    [30]A. Akinc, D. M. Lynn, D. G. Anderson, and R. Langer. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Amer. Chem. Soc, 2003, 125:5316-23
    [31]F. Yi, H. Wu, and G.-L. Jia. Formulation and characterization of poly(D,L-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery. J. Clin. Pharm. Then, 2006, 31:43-8
    [32]D. M. Lynn, D. G. Anderson, D. Putnam, and R. Langer. Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of a degradable polymer library. J. Amer. Chem. Soc, 2001, 123: 8155-6
    [33]G. T. Zugates, D. G. Anderson, S. R. Little, I. E. B. Lawhorn, and R. Langer. Synthesis of poly(P-amino ester)s with thiol-reactive side chains for DNA delivery. J. Amer. Chem. Soc, 2006, 128: 12726-34
    [34] J. M. Dang and K. W. Leong. Natural polymers for gene delivery and tissue engineering. Adv. Drug Delivery Rev., 2006, 58: 487-99
    [35] T. Ishii, Y. Okahata, T. Sato, Mechanism of cell transfection with plasmid/chitosan complexes, Biochim. Biophys. Acta, 2001, 1514: 51- 64
    [36]T. Sato, T. Ishii, Y. Okahata, In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency, Biomaterials, 2001, 22: 2075-80
    [37]T. Kean, S. Roth, M. Thanou, Trimethylated chitosans as nonviral gene delivery vectors: cytotoxicity and transfection efficiency, J. Control. Release, 2005, 103: 643-53
    [38]T. Kiang, C. Bright, C.Y. Cheung, P.S. Stayton, A.S. Hoffman, K.W. Leong, Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression, J. Biomater. Sci., Polym. Ed., 2004, 15: 1405-21
    [39]M. Kumar, A.K. Behera, H. Matsuse, R.F. Lockey, S.S. Mohapatra, Intranasal IFN-gamma gene transfer protects BALB/c mice against respiratory syncytial virus infection, Vaccine, 1999, 18: 558-67
    [40]J.-Y. Je, Y.-S. Cho, and S.-K. Kim. Characterization of (aminoethyl)chitin/DNA nanoparticle for gene delivery. Biomacromolecules, 2006, 7: 3448-51
    [41]D. Lee, W. Zhang, A. S. Shawna, X. Kong, G. R. Hellermann, R. F. Lockey, and S. Mohapatra. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm. Res., 2007, 24: 157-67
    [42]C. Choi, D.-G. Kim, M.-J. Jang, T.-H. Kim, M.-K. Jang, and J.-W. Nah. DNA delivery using low molecular water-soluble chitosan nanocomplex as a biomedical device. J. Appl. Polym. Sci., 2006, 102:3545-51
    [43]S. Ercelen, X. Zhang, G. Duportail, C. Grandfils, J. Desbrieres, S. Karaeva, V. Tikhonov, Y. Mely, and V. Babak. Physicochemical properties of low molecular weight alkylated chitosans: Anew class of potential nonviral vectors for gene delivery. Colloids Surf. B., 2006, 51: 140-8
    [44] S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, and J. C. Fernandez. Characterization of folate-chitosan- DNA nanoparticles for gene therapy. Biomaterials, 2006, 27: 2060-5
    [45]P. Chan, M. Kurisawa, J. E. Chung, and Y.-Y. Yang. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a nonviral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28: 540-9
    [46]X. Liu, K. A. Howard, M. Dong, M. 0. Andersen, U. L. Rahbek, M. G. Johnsen, O. C. Hansen, F. Besenbacher, and J. Kjems. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 2007, 28: 1280-8
    [47]M. Neu, D. Fisher, and T. Kissel. Recent advances in rational gene transfer vector design based on polyethylene imine) and its derivatives. J. Gene Med., 2005, 7: 992-1009
    [48]S. Nimesh, A. Goyal, V. Pawar, S. Jayaraman, P. Kumar, R. Chandra, Y. Sinhg, and K. C. Gupta. Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J. Controlled Release, 2006,110:457-68
    [49]S. Nimesh, A. Goyal, V. Pawar, S. Jayaraman, P. Kumar, R. Chandra, Y. Sinhg, and K. C. Gupta. Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J. Controlled Release, 2006,110: 457-68
    [50]Wightman L et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001, 3: 362-72
    [51]V.L. Truong-Le, S.M. Walsh, E. Schweibert, H.Q. Mao, W.B. Guggino, J.T. August, K.W. Leong, Gene transfer by DNA-gelatin nanospheres, Arch. Biochem. Biophys. 1999, 361: 47-56
    [52]T. Kushibiki, N. Nagata-Nakajima, M. Sugai, A. Shimizu, Y. Tabata, Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis, J. Control. Release, 2005, 105: 318-31
    [53]T. Kushibiki, N. Nagata-Nakajima, M. Sugai, A. Shimizu, Y. Tabata, Targeting of plasmid DNA to renal interstitial fibroblasts by cationized gelatin, Biol. Pharm. Bull. 2005, 28: 2007-10
    [54] J. Barquinero, H. Eixarch, M. Perez-Melgosa, Retroviral vectors: new applications for an old tool, Gene therapy 2004,1: S3- S9
    [55]G.S. Ralph, N.D. Mazarakis, M. Azzouz, Therapeutic gene silencing in neurological disorders, using interfering RNA, J. Mol. Med. 2005, 83: 413-9
    [56]G. Han, N. S. Chari, A. Verma, R. Hong, C. T. Martin, and V. M. Rotello. Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione. Bioconjugate Chem., 2005,16: 1356-9
    [57] K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, and V. M. Rotello. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem., 2002,13: 3-6
    [58]G. Han, C. C.You, B. J. Kim, R. S. Turingan, N. S. Forbes, C. T. Martin, and V. M. Rotello. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem., 2006,45: 3165-9
    [59]T. Niidome, K. Nakashima, H. Takahashi, and Y. Niidome. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun., 2004, 1978-79
    [60]T. Kawano, M. Yamagata, H. Takahashi, Y. Niidome, S. Yamada, Y. Katayama, and T. Niidome. Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J. Controlled Release, 2006, 111:382-9
    [61]M. Thomas and A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc. Nat. Acad. Sci. USA, 2003,100: 9138-43
    [62]A. S. Lubbe, C. Alexiou, and C. Bergemann. Clinical applications of magnetic dru targeting. J. Surg. Res., 2001, 95: 200-6
    [63]F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, and C. Plank. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene therapy, 2002, 9: 102-9
    [64]R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs, and J. Lewis. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Amer. J. Roentgenol., 1989, 152: 167-73
    [65] S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med., 2004, 6: 923-36
    [66]J.-J. Xiang, J.-Q. Tang, S.-G. Zhu, X.-M. Nie, H.-B. Lu, S.-R. Shen, X.-L. Li, K. Tang, M. Zhou, and G.-Y. Li. IONP-PLL: A novel non-viral vector for efficient gene delivery. J. Gene Med., 2003, 5: 803-17
    [67]C. J. Edgell, D. T. Curiel, P. C. Hu, and H. S. Marr. Efficient gene transfer to human endothelial cells using DNA complexed to adenovirus particles. Biotechniques, 1998, 25: 270-2
    [68]U. Schillinger, T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krotz J. Hirschberger, C. Bergemann, and C. Plank. Advances in magnetofection-Magnetically guided nucleic acid delivery. J. Magn. Magn. Mater., 2005, 293: 501-8
    [69]M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013-6
    [70]F. Chen and D. Gerion. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett., 2004, 4: 1827-32
    [71]C.-C. Chen, Y.-C. Liu, C.-H.Wu, C.-C. Yeh, M.-T. Su, and Y.-C.Wu. Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv. Mater., 2005, 17: 404-7
    [72]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. C -Buckminsterfullerene. Nature, 1985, 318: 162-3
    [73]E. Nakamura, H. Isobe, N. Tomita, M. Sawamura, S. Jinno, and H. Okayama. Functionalized fullerene as a new artificial vector for transfection. Angew. Chem., Int. Ed., 2000, 39: 4254-7
    [74]H. Isobe, W. Nakanishi, N. Tomita, S. Jinno, H. Okayama, and E. Nakamura. Gene delivery by aminofullerenes: Structural requirements for efficient transfection. Chem. Asian J., 2006, 1: 167-75
    [75]L. Lacerda, A. Bianco, M. Prato, and K.Kostarelos. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug. Delivery Rev., 2006,58: 1460-70
    [76]R. Singh, D. Pantarotto, D. McCarthy, 0. Chaloin, J. Hoebeke, C. D. Partidos, J.-P. Briand, M. Prato, A. Bianco, and K. Kostarelos. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Amer. Chem. Soc, 2005,127:, 4388-96
    [77]Q. Lu, J. M. Moore, G Huang, A. S. Mount, A. M. Rao, L. L. Larcom, and P. C. Ke. RNA polymer translocation with single-walled carbon nanotubes. Nano. Lett., 2004,4: 2473-7
    [78]D. Cai, J. M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods, 2005, 2: 449-54
    [79]L. Gao, L. Nie, T. Wang, Y. Qin, Z. Guo, D. Yang, and X. Yan. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem, 2006, 7: 239-42
    [80]Kneuer, C, Sameti, M., Haltner, E. G, Schiestel, T., Schirra, H., Schmidt, H., Lehr, C. M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000,196:257-61
    [81]He, X., Wang, K., Tan, W., Liu, B., Liu, X., Huang, S., Li, D., He, C., Li, J. A novel gene carrier based on amino-modified silica nanoparticles. Chin. Sci. Bull. 2003,48: 223-8
    [82]Kneuer, C., Sameti, M., Haltner, E. G., Schiestel, T., Schirra, H., Schmidt, H., Lehr, C. M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000, 196:257-61
    [83]Kneuer, C., Sameti, M., Bakowsky, U., Schiestel, T., Schirra, H., Schmidt, H., Lehr, C. M. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem. 2000, 11: 926-32
    [84]He, X., Wang, K., Tan, W., Liu, B., Liu, X., Huang, S., Li, D., He, C., Li, J. Bioconjuated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 2003, 125: 7168-9
    [85]Bharali, D. J., Klejbor, I., Stachowiak, E. K., Dutta, P., Roy, I., Kaur, N., Bergey, E. J., Prasad, P. N., Stachowiak, M. K. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11539-44
    [86]Li ZX, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science, 2002, 296: 497-7
    [87]Marshall E. Clinical research - Gene therapy a suspect in leukemia-like disease. Science, 2002, 298: 34-5
    [88]Kaiser J. Gene therapy - Seeking the cause of induced leukemias in X-SCID trial. Science, 2003, 299: 495-5
    
    [89]Boyce N. Trial halted after gene shows up in semen. Nature, 2001,414: 677-7
    [90] Alexandra F, Laura I. Chemical tailoring of porous silica xerogels: local structure by vibrational spectroscopy. Chem. Eur. J., 2004,10: 392-8
    [91]Yu HQ, Mao CB. Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydrate polymers, 2008, 72: 479-89
    [92]Schuleit M, Luisi PL. Enzyme immobilization in silica-hardened organogels. Biotechnology and bioengineering, 2001,72: 249-53.
    [93]Jia J, Wang XW, Zhao YL, et al. Syntheses, structures and coordination behavior of central hydroxyl group containing polydentate ligands. Chinese chemical letter. 2004,15: 292-5
    [94]Brasack I, Bottcher H, Hempel U. Biocompatibility of modified silica-protein composite layers. Journal of sol-gel science and technology, 2000, 19: 479-82.
    [95] Ren L, Tsuru K, Hayakawa S, et al. Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids. Journal of non-crystalline solids, 2001,285: 116-22
    [96] Her, R.K. The Chemistry of Silica, Wiley-Interscience: New York, 1979.
    [97]Mahato RI. Nonviral peptide-based approaches to gene delivery. Journal of drug target. 1999, 7: 249 -68
    [98]Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell molecular life science. 2005, 62: 1839-49
    [99]Gupta B , Levchenko TS , Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Advanced drug delivery reviwes. 2005, 57: 637-51
    [1]De Laporte L,Rea JC,Shea LD.Design of modular non-viral gene therapy vectors.Biomaterials,2006,27:947-54.
    [2]Dang JM,Leong KW.Natural polymers for gene delivery and tissue engineering.Advanced drug delivery review,2006,58:487-99
    [3]Won YW,Kim YH.Recombinant human gelatin nanoparticles as a protein drug carrier.Journal of controlled release,2008,127:154
    [4]Smitha S,Mukundan P,Pillai PK,et al.Silica-gelatin bio-hybrid and transparent nano-coatings through sol-gel technique.Materials chemistry and physics,2007,103:318-22
    [5]Coradin T,Allouche J,Boissiere M,et al.Sol-gel biopolymer/silica nanocomposites in biotechnology.Current nanoscience,2006,2:219-30
    [6]Ren L,Tsuru K,Hayakawa S,et al.Sol-gel preparation and in vitro deposition ofapatite on porous gelatin-siloxane hybrids.Journal of non-crystalline solids,2001,285:116-22
    [7]Ren L,Tsuru K,Hayakawa S,et al.Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering.Biomaterials,2002,23:4765-73
    [8]Zintchenko A,Konak C.Interaction of DNA/polycation complexes with phospholipids:stabilizing strategy for gene delivery.Macromolecular bioscience,2005,5:1169-74
    [9]Ren L,Tsuru K,Hayakawa S,et al.Synthesis and characterization of gelatin-siloxane hybrids derived through sol-gel procedure.Journal of sol-gel science and technology,2001,21:115-21
    [10]Atik M,Aegerter MA.Corrosion resistant sol-gel ZrO_2 coatings on stainless steel.Journal of non-crystalline solids,1992;813:147-148
    [11]Valla B,Macedo M,Aegerter MA.Electrochromic smart windows.Joumal of non-crystalline solids,1992;147:792-798
    [12]Ragusa A,Garcia I,Penades S.Nanoparticles as nonviral gene delivery vectors.IEEE transactions on nanobioscience,2007,6:319-30
    [13]Xu ZP,Zeng QH,Lu GQ,et al.Inorganic nanoparticles as carriers for efficient cellular delivery.Chemical engineering science,2006,61:1027-40
    [14]Florence T,Nanoparticle uptake by the oral route:fulfilling its potential?[J]Drug discovery today,2005,2:75-81
    [15]Kursa M,Walker GF,Roessler V,et al.Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer.Bioconjugate chemistry,2003,14:222-31
    [16]Zintchenko A,Konak C.Interaction of DNA/polycation complexes with phospholipids:stabilizing strategy for gene delivery.Macromolecular bioscience,2005,5:1169-74
    [1] C. Kneuer, M. Sameti, U. Bakowsky, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro, Bioconjugate Chem., 2000, 11:926-32
    [2] M. N. R. Kumar, M. Sameti, S. S. Mohapatra, et al. Cationic silica nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency in vitro and in vivo, J. Nanosci. Nanotechnol., 2004,4: 876-81
    [3] X. X. He, K. Wang, W. Tan, et al. Bioconjugated nanoparticles for DNA protection from cleavage, J. Amer. Chem. Soc, 2003, 125: 7168-9
    [4] S.-G. Zhu, J.-J. Xiang, X.-L. Li, et al. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides, Biotechnol. Appl. Biochem., 2004, 39: 179-87
    [5] D. R. Radu, C. Y. Lai, K. Jeftinija, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent, J. Amer. Chem. Soc, 2004, 126: 13216-7
    [6] I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery, Proc. Nat. Acad. Sci. USA, 2005,102: 279-84
    
    [7] Ren L, Tsuru K, Hayakawa S, et al. Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids . Journal of non-crystalline solids, 2001,285: 116-22
    [8] Arkadi Zintchenko, Cestmir Konak. Interaction of DNA/polycation complexes with phospholipids: stabilizing strategy for gene delivery. Macromolecular bioscience, 2005, 5: 1169-74
    [9] Valla B, Macedo M, Aegerter MA. Electrochromic smart windows . Journal of non-crystalline solids, 1992; 147: 792-798
    [1] Dan Luo and W. Mark S., Synthetic DNA delivery systems . Nature biotechnology, 2000, 18: 33-7
    
    [2] Kleemann E., Neu M., Jekel N. et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release, 2005, 109:299-316
    [3] M. Lundberg, S. Wikstrom, M. Johansson, Cell surface adherence and endocytosis of protein transduction domains . Molecular therapy, 2003, 8: 143-50
    [4] Boeckle S., Wagner E., Ogris M., et al. C-versus N-terminally linked melittin- polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyolexes. Gene Med, 2005,7: 1335-47
    
    [5] Lindgren M., HaEllbrink M., Prochiantz A. and Langel U. Cell-penetrating peptides . Trends Pharmacol. Sci., 2000,21: 99-103
    [6] Wadia S. and Dowdy F. Protein transduction technology. Curr. Opin. Biotechnol., 2002, 13: 52-6
    [7] Truant R. and Cullen R. The arginine-rich domains present in human immunode?ciency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals . Mol. Cell. Biol., 1999, 19: 1207-10
    [8] Lindsay MA, Peptide-mediated cell delivery: application in protein target validation . Curr Opin Pharmacol 2002,2:587-94
    [9] Albarran B, To R, Stayton PS. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells . Protein Eng Des Sel 2005, 18:147-52
    [10]Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells . Proc Natl Acad Sci USA 1994, 91:664-8
    
    [11] Lindsay MA, Peptide-mediated cell delivery: application in protein target validation . Curr Opin Pharmacol 2002, 2:587-94
    
    [12]Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GG. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes . Proc Natl Acad Sci USA 2003, 100:1972-7
    
    [13]Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors . Proc Natl Acad Sci USA 2001, 98:8786-91
    
    [14]Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 2002, 277:38877-83
    [15] Ignatovich IA, Dizhe EB, Pavlotskaya AV, Akifiev BN, Burov SV, Orlov SV, Perevozchikov AP. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J Biol Chem 2003, 278:42625-36
    [16]Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells . Nat Biotechnol 2000, 18:410-4
    
    [17]Tatiana S. and Jeffrey H. Synthesis and in Vitro Characterization of an ABC Triblock Copolymer for siRNA Delivery. Bioconjugate Chem. 2007, 18: 736-45
    [18]Sterghios M, Simon J, Mark L, et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity . Bioconjugate Chem. 2007, 18: 1450-9
    [19] Wagner E, Zenke M, Cotton M, et al.Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad USA. 1990, 87: 3410-3414
    [20] Wagner E, Cotton M, Foisner R, et al.Transferrin-Polycation-DNA complexes: the effect of polyeations on the structure of the complex and DNA delivery to cells. Proc Natl Acad USA. 1991,88:4255-9
    [21] Wagner E, Zatloukal K, Cotton M, et al. Coupling of adenovirus to transferring-polylysine-DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfeeted genes. Proc Natl Acad USA. 1992, 89: 6099-103
    [22] Alexander T, Huan X, Yanli L et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem. 2004, 15: 482-90
    
    [23]Molly M and Kevin R. Peptide-guided gene delivery. The AAPS Journal 2007, 9, E18-29
    [24]Dong L, Young Y and Tae P. Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes. Bioconjugate Chem. 2000, 11: 688-95
    [25]Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J and Langer K. Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes Biomaterials, 2005,26: 2723-32
    [26]Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4'-dithiodipyridine. Analytical and bioanalytical chemistry. 2002, 373: 266-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700