近紫外光LED转换白光用红色荧光粉的制备、发光性质研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以近紫外光激发红色荧光粉为研究对象,利用高温固相反应方法制备了发射波长位于616nm的LiEuMo_(2-x)Si_xO_8和Li_(1-3x)Tb_xEuMo_2O_8,发射波长位于591nmY_2Ti_2O_7:Eu~(3+),和发射主峰位于620nm的Ba_3MgSi_2O_8: Eu~(2+), Tb~(3+), Mn~(2+)等多种高性能红色荧光粉,详细研究了基质晶格修饰、能量传递体系设计、电荷补偿、和助熔剂选择等对荧光粉发光性能的影响。在此基础上结合蓝、绿色荧光粉研制高显色性白光LED器件。具体研究内容如下:
     对白钨矿结构的LiEuMo_2O_8荧光粉进行基质晶格修饰以改善红光发射性能。研究表明Si~(4+)替代部分Mo~(4+)可提高荧光粉在近紫外光395nm激发下的红光发射强度(616nm,5D0→7F2跃迁),在x=0.2时亮度最高,达到LiEuMo_2O_8亮度的1.3倍。激发和吸收光谱分析表明Si掺杂导致基质的电荷迁移吸收带边从420nm蓝移到360nm,减少了基质对紫外光区(360-420nm)的吸收,增强了Eu~(3+)在近紫外光激发下的激发和发射几率。用Tb~(3+)替代部分Li+制备Li_(1-3x)Tb_xEuMo_2O_8红色荧光粉。研究表明,微量的Tb~(3+)共激活剂的引入可显著增强荧光粉在近紫外激发下的红光发射强度;在x=0.04时,样品的红光发射提高了1.4倍。激发光谱和瞬态光谱测试表明Tb~(3+)和Eu~(3+)之间存在Tb~(3+)→Eu~(3+)的能量传递关系,可增强Eu~(3+)在近紫外光激发下的激发和发射几率。
     利用高温固相反应方法制备了烧绿石结构的Y_(2-x)Ti_2O_7:xEu~(3+)新型荧光粉。研究表明,在近紫外光激发下荧光粉发出主峰位于591nm (5D0→7F1跃迁的)橙红色光,随Eu~(3+)浓度的提高616nm(5D0→7F2跃迁)贡献逐渐增大,在x=0.45橙红光发射强度达到最大。变温发光研究表明,Y1.55Ti2O7:0.45Eu~(3+)橙红色荧光粉发光猝灭温度(T50%)高达376摄氏度,显示出在高温发光材料领域的应用潜力。用H3BO3,NH4Cl,NaCl,NH4F,NaF,LiF等助熔剂优化Y_(2-x)Ti_2O_7:xEu~(3+)荧光粉的制备。研究表明NaF助熔剂效果最佳,能提高橙红光发射强度16倍以上。综合SEM、EDAX Mapping和微区阴极射线发光等分析表明NaF助熔剂存在下能形成类球形的、激活剂分布均匀的荧光粉颗粒,这与其制备温度相近的熔点和F-对晶体生长过程的影响相关。
     利用微区阴极射线发光和EDAX Mapping详细表征Ba_3MgSi_2O_8:Eu~(2+), Mn~(2+)荧光粉的发光性质。研究表明,近紫外光激发下荧光粉本征发光位于620nm(Mn~(2+):4T→6A1)和440nm(Eu~(2+):5d→4f),但伴有疑似Ba_2SiO_4: Eu~(2+)杂相的505nm强绿光发射。在高温固相反应体系中加入Tb~(3+)制备Ba_3MgSi_2O_8: Eu~(2+), Tb~(3+), Mn~(2+)荧光粉。XRD和荧光显微分析表明,Tb~(3+)掺杂能抑制杂相生成,显著降低源于杂相的505nm绿光发射,这与Tb~(3+)在高温固相反应中起到电荷补偿剂作用有关。发光和激发光谱分析表明,掺杂Tb~(3+)能提高Mn~(2+)位于620nm红光发射强度;当x=0.1mol时,红光发射强度达到最大,色坐标为(0.52,0.31)。这与Eu~(2+)→Tb~(3+)→Mn~(2+)间形成有效的能量传递体系有关。
In this dissertation, we mainly focus on the red-emitting phosphos under excitation at nearultraviolet, and prepared various red-emitting phosphor with different emitting wavelength,e.g., LiEuMo_(2-x)Si_xO_8and Li_(1-3x)Tb_xEuMo_2O_8phosphor with strongest emitting wavelength at616nm, Y_2Ti_2O_7:Eu~(3+)phosphor with strongest emission wavelength at591nm, Ba_3MgSi_2O_8:Eu~(2+), Tb~(3+), Mn~(2+)phosphor with strongest emission620nm, and study in detail the influenceof modification of host crystal lattice, energy transfer design, charge compensation andchoose method of flux on photoluminescence properties of phosphor. Based on the abovework, we prepared high color rendering index (CRI) white lighting emitting diodes (WLEDs)device combination near ultraviolet LED chips () with green-emitting phosphors(Ba,Sr)2SiO4:Eu~(2+)and (Sr,Mg)4Si3O8Cl:Eu~(2+)blue-emitting, The main contents as follow:
     For LiEuMo_2O_8phosphor with scheelite structure, we focus on modiy host crystal latticefor enhancement the red-emitting intensity. Results indicated that Si partly replace the Mo,red-emitting intensity can be improved1.3times at x=0.2. Excitation and absorpbtion spectraindicated that Si-doped result in the charge transfer band from420nm blue shift to360nm,reduce the absorbtion of host in near ultraviolet (360-420nm), increase the probablility ofexcitation and emission of phosphor. Tb~(3+)partly substitude for Li, results indicated thatintroduction of Tb~(3+)can significatntly improve the red-emitting intensiy under excitation atnerar ultraviolet, the luminous intensity can be increase1.4times at x=0.04. Excitation andlifetime spectra suggest that energy transfer from Tb~(3+)to Eu~(3+)can enhance the probability ofexcitation and emission.
     Novel pyrochlore Y1.55Ti2O7:0.45Eu~(3+)orange-red emission phosphor has been synthesizedby high-temperature solid-state reaction. The results suggest that this phosphor showorange-red emitting at591nm (5D0→7F1) under NUV excitation. Luminous intensity ofred-emitting at616nm increases with increasing content of Eu-doped, and reach the maxmum.This orange–red phosphor Y1.55Ti2O7:0.45Eu~(3+)shows high thermal quenching temperature(T50%) even up to376°C, and be consider as a promising luminescence thermometry at hightemperature. In addition, we chose H3BO3,NH4Cl,NaCl,NH4F,NaF,LiF as flux tooptimize the condition of Y_(2-x)Ti_2O_7:xEu~(3+)phosphor. Experimental results show that NaF isthe best one among the five flux materials, can significantly improve the luminous intensityover16times. According to SEM, EDAX Mapping and CL spectra analysis result indicatedthat NaF flux can modify the paricle morphology and homogenize activator distribution,which is acctributed to the melting point of NaF much more approach to the synthesis temperature of Y_(2-x)Ti_2O_7:xEu~(3+)phosphor.
     According to CL, EDAX Mapping, XRD analysis result of Ba_3MgSi_2O_8:Eu~(2+), Mn~(2+)phosphor indicated that green-emitting peak at505nm is ascribed to byproducts Ba_2SiO_4rather than Ba_3MgSi_2O_8:Eu~(2+), Mn~(2+)phosphor.Tb-doped can inhibit the formation ofbyproducts Ba_2SiO_4. Photoluminescence and flurescence microscope results suggest thatTb-dped not only reduce green-emitting intensity from byproducts but also can significantlyimprove the red-emitting intensity of phosphor, and luminous intensity reach maxmum at x=0.1. As a charge compensator, Tb~(3+)-doped can help the formation of a single phaseBa_3MgSi_2O_8, and improve the efficiency of energy transfer from Eu~(2+)-Mn~(2+). Enhanced redemission of Ba_3MgSi_2O_8:Eu~(2+), Tb~(3+),Mn~(2+)was discussed in terms of Eu~(2+)→Tb~(3+)→Mn~(2+)energy transfer.
引文
[1]H ppe H A. Recent developments in the field of inorganic phosphors[J]. Angew Chem Int Ed,2009,48(20):3572-3582.
    [2]Rohwer L S, Srivastava A M. Development of Phosphors for LEDs[J]. Electrochem Soc Interface,2003,36-39.
    [3]Bergh A, Craford G, Duggal A, et al. The promise and challenge of solid-state lighting[J], Physics Today.2001,42-47.
    [4]Schubert E F, Kim J K. Solid-state light sources getting smart[J]. Science,308:1274-1278.
    [5]Smet P F, Parmentier A B, Poelman D. Selecting conversion phosphors for white light-emitting diodes[J].J Electrochem Soc,2011,158(6): R37-R54.
    [6]Taguchi T, Recent progress and future prospect of hight-performance near-UV based white LEDs-fromECO lighting to medical application[J]. Proc.of SPIE,7422: B1-B13.
    [7]2010-2015年中国LED衬底材料市场调研及投资发展前景分析报告,北京:北京华美汇通咨询有限公司.2010,20-28.
    [8]Service R F, The quest for white LEDs hits the home Stretch[J]. Science,2009,809.
    [9]孙家跃,杜海燕,胡文祥,固体发光材料[M].北京:化学工业出版社.2003:80-85.
    [10]Justel T, Nikol H, Ronda C R, New developments in the field of luminescent materials for lighting anddisplays[J]. Angew Chem Int Ed,1998,37:3084-3103.
    [11]Feldmann C, Justel T, Ronda C R, Schmidt P. Inorganic luminescent materials:100years of researchand application[J], Adv Funct Mater,2008,13(7):511-516.
    [12]王乐.关于LED应用于照明的研究与设计[D].浙江大学硕士论文,2004.
    [13] Narukawa Y, Narita J, Sakahiko T, et al. Recent process of high efficiency white LEDs[J], Phys.Stat.Sol.(a),2007,6:2087-2093.
    [14]Dutta D P, Tyagi A K, Inorganic phosphor materials for solid state white light generation[J], Solid StatePhenomena,2009,155:113-143.
    [15] Yamamoto H, White LED phosphors: the next step[J], Proc. of SPIE,7598,75908-1-75908-10
    [16]Taguchi T, Present Status of Energy Saving Technologies and Future Prospect in White LEDLighting[J], IEEJ Trans,2008,3:21–26.
    [17]Lin C C, Liu R S. Advances in phosphors for light-emitting diodes[J], J Phys Chem Lett,2011,2:1268-1277.
    [18]Kim J K, Luo H, Schubert F E, Strongly Enhanced Phosphor Efficiency in GaInN WhiteLight-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup[J], Jpn J ApplPhys,2005,44(21):L649-L651.
    [19]刘丽,吴庆,黄先,王健,楮明辉,张立功,候凤勤,刘学颜,赵成久,范希武,罗劲松,蒋大鹏.白光LED荧光粉涂敷工艺及光学性质[J].中国发光学报,2007,28:890-894.
    [20]Kwon K H, Im W B, Jang H S, et al. Luminescence properties and energy transfer of site-sensitiveCa6-x-yMgx-z(PO4)4:Eu2+y,Mn2+zphosphors and their application to near-UV LED-Based White LEDs[J],Inorg Chem,2009,48:11525-11532.
    [21]Kim J S, Jenon P E, Choi J C, et al. Warm-white-light emitting diodes utilizing a single-phasefull-color Ba3MgSi+2O8:Eu2, Mn2+phosphor[J], Appl Phys Lett,2004,84(15):2931-2933.
    [22]Huang C C, Chen T M. A novel single-composition trichromatic white-light CaY(CaO)3(BO3)3+4:Ce,Mn2+, Tb3+Phosphor for UV-light emitting diodes[J], J Phys Chem C,2011,115:2349-2355.
    [23]Wei L, Hao Z D, Zhang X, et al. Tunable full-color emitting BaMg2+2Al6Si9O30:Eu, Tb3+, Mn2+phosphor Based on energy transfer[J], Inorg Chem,2011,50:7846-7851.
    [24]李述体,范广涵,周天明,郑树文,王浩,郭志友,孙慧卿.掺Si对AlGaInP/GaInP多量子阱发光性能的影响[J].中国半导体报,2005,26:1159-1163.
    [25]陈献文,吴乾,李述体,郑淑文,何苗,范广涵.双波长InGaN/GaN多量子阱发光二极管的光电特性[J].中国光子学报,2004,40:190-193
    [26]宋秀峰,稀土离子掺杂MSi2O2N2(M=Ca, Sr, Ba)荧光粉的制备和荧光性能[D]:[博士学位论文].南京:南京航天航空大学,2010.
    [27]徐叙瑢.苏勉曾.发光学与发光材料[M].北京:化学工业出版社.2004:324-326.
    [28]Xie R J, Hiroski N, Suehiro T, et al. A simple, efficient synthetic rounte to Sr2Si25N8:Eu+-based redphosphors for white light-emitting diodes[J], Chem Mater,2006,5578-5583.
    [29]Jang H S, Im W B, Lee D C, et al. Enhancement of red spectral emission intensity ofY3Al5O12:Ce3+phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J], J Lumin,2007,126:371–377.
    [30]Chiu C H, Liu C H, Huang S B, et al. Sensors and Displays:Principles, Materials, and Processing-White Light Emitting Diodes Using Red Emitting LiEu(WO4)2-x(MoO4)xPhosphors[J]. Journal of theElectrochemical Society,2007,154(7):181.
    [31]Neeraj S, N Kijima, Cheetham A K, Novel red phosphors for solid-state lighting:the systemNaM(WO3+4)2x(MoO4):Eu[J]. Chem Phys Lett,2004,387:1-3.
    [32]谢安.白光LED用钥酸盐红色荧光粉的制备及发光性能研究[D]:博士学位论文.北京:中国地质大学,2010.
    [33]Hu Y S, Zhuang W D, Ye H Q, et al. A novel red phosphors for white light emitting phosphors[J]. JAlloys Compd.2005,390:226-229.
    [34]Chang Y C, Liang C H, Yan S A, et al. Synthesis and Photoluminescence characteristics of high colorprutiy and brightness Li3Ba2Gd3(MoO4)3+8:Eu[J], J Phys Chem C,2010,114,3645-3652.
    [35]Zhao X, Wang X, Chen B. Luminescent properties of Eu3+doped-Gd2(MoO4)3phosphor for whitelight emitting diodes.Optical Materials[J],2007,29(12):1680-1683.
    [36]Wang J G, Jing X P, Yan C H, et al. Influence of fluoride on f-f transition s of Eu3+in LiEuMo2O8(M=Mo, W)[J]. J Lumin,2006,121:57-61.
    [37]Li P L,Yang Z P, Wang Z J, et al. White-light-emitting diodes of UV-based Sr3Y2(BO+3)4:Dy3andluminescent properties[J]. Mater Lett,2008,62(10):1455.
    [38]Kim K, Moon Y M, Choi S, et al. Luminescent properties of a novel green-emitting gallium boratephosphor under vacuum ultraviolet excitation[J]. Mater Lett,2008,62(24):3925.
    [39]Uheda K, Hirosaki N, Yamamoto Y, et al. Sensors and Displays: Principles, Materials and Processing-Luminescence Properties of a Red Phosphor, CaAlSiN+3:Eu3, for White Light-Emitting Diodes[J].IEEE-ECS,2006,9(4):22-26.
    [40]K Uheda, N Hirosaki, H Yamamoto. Host lattice materials in the system Ca3N2-AlN-Si3N4for whitelight emitting diode[J]. Physica Status Solidi A,2006,203(11):2712-2715.
    [1]Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emitting-SiAlON: Eu2+powder phosphors for white light-emitting diodes[J]. Appl Phy Lett,2005,86(21):211905-211908.
    [2]Lee S, Seo S Y. Optimization of yttrium aluminum garnet: Ce3+phosphors for white light-emitting diodes bycombinatorial chemistry method[J]. J Electroem Society,2002,149(11): J85-J88.
    [3]Park J K, Lim M A, Kim C H, et al. White light-emitting diodes of GaN-based Sr2SiO4:Eu and theluminescent properties[J], Appl Phy Lett,2003,82(5):683-685.
    [4]Huh Y D, Shim J H, Kim Y, Do Y R. Optical properties of three-band white light emitting diodes[J], J.Electrochem Soc,2003,150(2):H57-H60.
    [5]H ppe H A. Recent developments in the field of inorganic phosphors[J]. Angew Chem Int Ed,2009,48(20):3572-3582
    [6]Neeraj S, Kijima N, Cheetham A K, Novel red phosphors for solid-state lighting: The system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chemical Physics Letters,2004,387(1-3):2-6.
    [7]Wu H, Zhang X, Guo C, Xu J, et al. Three-band white light from InGaN-based blue LED chip precoatedwith green/red phosphors[J]. IEEE Photonics Technology Letters,2005,17(6):1160-1162.
    [8]Sani E, Toncelli A, Tonelli M, et al. Effect of cerium codoping in Er3+, Ce3+: NaLa(MoO4)2crystals[J]. JAppl Phy,2005,97(12):123531.
    [9]Woo S I, Kim J S, Jun H K. Characterization of Ca-Bi-Mo oxide catalyst for selective propaneammoxidation, using XRD, XPS, TPRX/TPRO, and IR/Raman[J], J Phy Chem B,2004,108(26):8941-8946.
    [10]Nagai E, Sumoto M, Akiyama, T.1968, Japan. Patent,43,006,077.
    [11]Tamura Y, Kobayashi I.1971, Japan. Patent,46,027,546.
    [12]Ahmad G, Dickerson M B, Church B C, et al. Rapid, room-temperature formation of crystalline calciummolybdate phosphor microparticles via peptide-induced precipitation[J]. AdvMater,2006,18(13):1759-1763.
    [13]Wang J, Jing X, Yan C., et al. Ca1-2xEuxLixMoO4: A novel red phosphor for solid-state lighting based on aGaN LED[J], J. Electrochem. Soc,2005,152(3): G186-G188.
    [14]Chiu C H, Liu C H, Huang S B, et al. White-light-emitting diodes using red-emitting LiEu(WO4)2-x(MoO4)xphosphors[J]. J. Electrochem. Soc,2007,154(7): J181-J184.
    [15]Zhang Z H, Huang Q, Zhao et al. Enhanced red emission of CaMoO+4:Eu3phosphor by structuraladjustment for white light-emitting diodes application[J]. Physica Status Solidi (A) Applications andMaterials,2009,206(12):2839-2843.
    [16]Ye S, Wang C H, Jing X P Long wavelength extension of the excitation band of LiEu MO2O8phosphorwith Bi3+doping[J]. J Electrochem Soc,2009,156(6): J121-J124.
    [17]Jin Y, Zhang J, LüS, Zhao H, et al. Fabrication of Eu3+and Sm3+codoped micro/nanosized MMoO4(M=Ca, Ba, and Sr) via facile hydrothermal method and their photoluminescence properties through energytransfer[J]. J Phy Chem C,2008,112(15):5860-5864.
    [18]Wang Z, Liang, H, Gong M, et al. A potential red-emitting phosphor for LED solid-state lighting[J].Electrochem Solid-State Lett,2005,8(4): H33-H35.
    [19]Wang J, Jing X, Yan C., et al. Photoluminescent properties of phosphors in the system Ca3xCd1-xMoO4:Eu+,Li+[J], J Electrochem Soc,2005,152(7):534-G536.
    [20]Blasse G, Grabmaier B C. Luminescent Materials[M], Berlin:Springer-Verlag,1994.
    [21]Zhang X., Udagawa, K., Liu, Z., et al. Photocatalytic and photoelectrochemical studies on N-doped TiO2photocatalyst[J]. J Photochem Photobio A: Chemistry,2009,202(1):39-47.
    [22]Tian Y, Qi X, Wu X, Hua R, Chen B. Luminescent properties of Y2(MoO4)3:Eu3+red phosphors withflowerlike shape prepared via coprecipitation method[J]. J Phy Chem C,2009,113(24):10767-10772.
    [23]Blasse G, Grabmaier B C. Luminescent Materials[M], Berlin:Springer-Verlag,1994.55-57.
    [24]Blasse G, Grabmaier B C. Luminescent Materials[M], Berlin:Springer-Verlag,1994.45-46.
    [25]Sivakumar V, Varadaraju U V, Intense red-emitting phosphors for white light emitting diodes[J], JElectrochem Soc,2005,152(10): H168-H171.
    [26]Blasse G. Influence of crystal structure on luminescence[J]. Materials Research Bulletin,1968,3(10):807-815.
    [27]Sivakumar V, Varadaraju U V, A promising orange-red phosphor under near UV excitation[J]. ElectrochemSolid-StateLett,2006,9(6): H35-H38.
    [1]Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emitting-SiAlON: Eu2+powder phosphors for white light-emitting diodes[J]. Appl Phy Lett,2005,86(21):211905-211908.
    [2]Lee S, Seo S Y. Optimization of yttrium aluminum garnet: Ce3+phosphors for white light-emittingdiodes by combinatorial chemistry method[J]. J Electroem Soc,2002,149(11): J85-J88.
    [3]Park J K, Lim M A, Kim C H, et al. White light-emitting diodes of GaN-based Sr2SiO4:Eu and theluminescent properties[J], Appl Phy Lett,2003,82(5):683-685.
    [4]Huh Y D, Shim J H, Kim Y, Do Y R. Optical properties of three-band white light emitting diodes[J], J.Electrochem Soc,2003,150(2):H57-H60.
    [5]H ppe H A. Recent developments in the field of inorganic phosphors[J]. Angew Chem Int Ed,2009,48(20):3572-3582
    [6]Neeraj S, Kijima N, Cheetham A K, Novel red phosphors for solid-state lighting: The system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chemical Physics Letters,2004,387(1-3):2-6.
    [7]Wu H, Zhang X, Guo C, Xu J, et al. Three-band white light from InGaN-based blue LED chip precoatedwith green/red phosphors[J]. IEEE Photonics Technology Letters,2005,17(6):1160-1162.
    [8]Sani E, Toncelli A, Tonelli M, et al. Effect of cerium codoping in Er3+, Ce3+: NaLa(MoO4)2crystals[J]. JAppl Phy,2005,97(12):123531.
    [9]Di W H, Wang X J, Zhu P F, et al, Energy transfer and heat-treatment effect of photoluminescenceinEu3+-doped TbPO4nanowires[J], Journal of Solid State Chemistry,180(2007)467–473.
    [10]Wang J W, Tanner P A. Energy transfer and photoextinction from Ln3+to Tb3+and Eu3+in aqueouschloride solutions[J], Journal of Luminescence,128(2008)1846–1850.
    [11]Hiramatsu R, Ishida K, Aiga F, et al, Tb3+luminescence by energy transfer from Eu2+in (Sr,Ba)2SiO4phosphor[J], Journal of Applied Physics.2009,106,093513.
    [12]Liao J S, Zhang S A, You H Y, et al, et al, Energy transfer and luminescence properties of Eu3+-dopedNaTb(WO4)2phosphor prepared by a facile hydrothermal method[J], Optical Materials,2011,33,953-957.
    [13]Zhang Z J, Chen H H, Yang X X, et al, Preparation and luminescent properties of Eu3+and Tb3+ions inthe host of CaMoO4[J], Materials Science and Engineering B,2007,145,34-40.
    [14]Moadhen A, Elhouichet H, Canut B, et al, Evidence for energy transfer between Eu3+and Tb3+inporous silicon matrix[J], Materials science and Engineering B,2003,105,157-160.
    [15]Bettinelli M, Speghini A, Piccinelli F, et al, Energy transfer processes in Sr3Tb0.9Eu0.1(PO4)3[J],Optical Materials,2010,33,119-122.
    [16]Hou Z Y, Chai R T, Zhang M L, et al, Fabrication and luminescence properties of one-dimensionalCaMoO4: Ln3+(Ln=Eu, Tb, Dy) Nanofibers via Electrospinning Process[J]. Langmuir,2009,25,12340-12348.
    [17]Yang Z W, Huang X G, Sun L, et al, Energy transfer enhancement in Eu3+doped TbPO4inverse opalphotonic crystals[J], Journal of Applied Physcis,2009,105,083523.
    [18]Energy transfer and Tunalbe luminescence properties of Eu3+in TbBO3Microspheres via facilehydrothermal process[J], Inorganic Chemistry,2008,47,7262-7270.
    [1]Schubert E F, Kim J K. Solid-State Light Sources Getting Smart[J]. Science,2005,308:1274-1278.
    [2]H ppe H A. Recent Developments in the Field of Inorganic Phosphors[J]. Angew. Chem. Int. Ed,2009,48:3572-82.
    [3]Eliseeva S V, Bunzli J-C G. Lanthanide Luminescence for Functional Materials and Bio-Sciences[J].Chem Soc Rev,2010,39(1):189-227.
    [4]Jüstel T, Nikol H, Ronda C, New Developments in the field of Luminescent Materials for Lighting andDispaly[J]. Angew Chem Int E,1998,37:3084-3103.
    [5]Tang Y S, Hu S F, Lin C C, et al. Thermally Stable Luminescence of KSrPO4: Eu2+Phosphor for WhiteLight-Emitting Diode[J]. Appl Phys Lett,2007,90:151108-151103.
    [6]Yamamoto H, White LED Phosphors: the Next Step[J]. Proc. of SPIE,2010,7598:759808-1.
    [7]Chambers M D, Clarke D R, Doped Oxides for High-Temperature Luminescence and LifetimeThermometry[J]. Annu Rec Mater. Res,2009,39:325-359.
    [8]Steenbakker R J L, Feist J. P, Wellman R G, et al. Sensor Thermal Barrier Coatings: Remote In SituCondition Monitoring of EB-PVD Coatings at Elevated Temperatures[J]. J Eng Gas Tubines Power,1991,113:041301-041311.
    [9]Im W B, Kim Y I, Fellows N N, et al. A Yellow-emitting Ce3+phosphor, La1-xCexSr2AlO5, for WhiteLight-Emitting Diodes[J]. Appl. Phys. Lett,2008,93:091905-1.
    [10]Blasse G, Grabmaier B C, Radiative Returen to the Ground State: Emission[M] pp.33-38and“Nonradiative Transitions In an Isolated Luminescent Centre” pp.74-75in Luminescent Materials, Charpt3-4, Springer-Verlag, Berlin,1994.
    [11]Nyman M, Rodriguez A M, Shea-Rohwer L E, et al. Highly Versatile Rare Earth Tantalate PyrocholreNonaphosphors[J]. J Am Chem Soc,2009,131:11652-11653.
    [12]Jenouvrier P, Fick J, Audier M, et al. Microstructure and Photoluminescence Properties of So-GelY2-xErTi2O7Thin Films[J]. Opt Mater,2004,27:131-137.
    [13]Zhang Y. Jia C H, Su Z H, et al. The Enhanced and Color Tunable Photoluminescence of Eu3+/V5+Co-doped Gd2Ti2O7nanocrystal[J]. J Alloys Compd,2009,479:381-384.
    [14]Greedan J E, Frustrated Rare Earth magnestim: Spin Glasses, Spin Liquids and Spin Ices in PyrochloreOxides[J]. J Alloys Compd,2006,408:444-455.
    [15]Martos M, Julian-Lopez B, Cordoncillo E, et al. Structural and Spectroscopic Study of A NovelErbium Titanate Pink Pigment Prepared by So-Gel Methodology[J]. J Phys Chem B,2008,112:2319-2325.
    [16]Ewing R C, Veber W J, Lian J, Nuclear Waste Disposal-Pyrochlore (A2B2O7): Nuclear Waste Form ofimmobilization of Plutonium and “Minor” actinides[J]. JAppl Phys,2004,95(11):5949-5971.
    [17]Kim N J, Grey C P, Solid-State NMR Study of the Anionic Conductor Ca-Doped Y2Ti2O7[J]. DaltonTrans,2004,35:3048-3052.
    [18]Abe R, Higashi M, Zou Z G, et al Photocatalytic Water Splitting Into H2and O2over R2Ti2O7(R=Y,Rare Earth) with Pyrochlore Structure[J]. Chem Lett,2004,33(8):954-955.
    [19]Lei H C, Song Y P, Zhu X B, et al. Chemical Solution Deposition of Y2Ti2O7-La2Ti2O7CompositionBuffer Layer[J]. IEEE Trans Appl Supercond,2007,17:3819-3823.
    [20]Teki R, Berttand G, Aourag H, et al. Ab Initio Caculations of Structural and Electronic Properties ofY2Ti2O7and Cd2Nb2O7[J]. Phys Rev B,2006,392:341-347.
    [21]G. Blasse and B. C. Grabmaier, Luminescent Materials[M], Berlin:Springer-Verlag,1994Chapter3,41-44.
    [22]Gupta H C, Brown S, Rani N, et al. Lattice Dynamic Investigation of the Zone Center Wavenumber ofthe Cubic A2B2O7Pyrochlores[J]. J Raman Spectrosc,2001,32:41-44.
    [23]Fuentes A F, Boulahya K, Maczka M, et al. Synthesis of Disordered Pyrochlores, A2Ti2O7(A=Y, Gdand Dy), by Mechnical Milling of Constituent Oxides[J]. Solid State Science,2005,7:343-353.
    [24] Deshazer L G, Dieke G H, Spectra and Energy Levels of Eu3+in LaCl3[J]. J Chem Phys,1963,38(9):2190-2199.
    [25]Blasse G, Energy Transfer In Oxides Phosphors[J]. Phys Lett,1968,28(6).
    [26]G. Blasse and B. C. Grabmaier, Luminescent Materials[M], Berlin:Springer-Verlag,1994,95-99
    [27]G. Blasse and B. C. Grabmaier, Luminescent Materials[M], Berlin:Springer-Verlag,1994,95-97
    [28]Uheda K, Hirosaki N, Yamamoto H, Host Lattice Materials in the systerm of Ca3N2-AlN-Si3N4forWhite Light-Emitting Diode[J], Phy Stat Sol a,2006,203(11):2712-2717.
    [29]Shioi K, Hirosaki N, Xie R J, Takeda T, et al. Photoluminescence and Thermal Stability ofYellow-Emitting Sr--SiAlON:Eu2+Phosphor[J]. J Mater Sci,2010,45:3198-3203.
    [30]Liu L H, Xie R J, Hirosaki N, et al. Temperature Dependent Luminescence of Yellow-Emitting-Sialon:Eu2+Oxynitride Phosphors for White Light-Emitting Diodes[J]. J Am Ceram Soc,2009,92(11):2668-2673.
    [31]Chang Y C, Liang C H, Yan S A, et al. Synthesis and Photoluminescence Characteristics of High ColorPurity and Brightness Li3Ba2Gd33(MoO4)O8:Eu+Red Phosphors[J]. J. Phys. Chem. C,2010,114:3645-3652.
    [32]Riseberg L A, Moss H. W, Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ionsin Crystal[J]. Phys Rev,1968,174(2):429-438.
    [33]Fonger W H, Struck C W, Eu3+5D Resonance Quenching to the Charge-Transfer States in Y2O2S,La2O2S and LaOCl[J]. J Chem Phys,1970,52(12):6364-6371.
    [34]Peng H S, Song H W, Chen B J, et al. Temperature Dependence of Luminescent Spectra and Dynamicsin Nanocrystalltine Y2O3:Eu3+[J]. J Chem Phys,2003,118(7):3277-3282.
    [1]H ppe H A, Recent Developments in the Field of Inorganic Phosphors[J]. Angew Chem Int Ed,2009,48:3572-3582.
    [2]Yamamoto H, White LED Phosphors: the Next Step[J]. Proc of SPIE,2010,7598:759808.
    [3] Ohno K, Abe T, The Synthesis and Particle Growth Mechanism of Bright Green Phosphor YAG: Tb[J],J Electrochem Soc.1994,141:1252-1254.
    [4]Lo C L, Duh J G, Chiou B S, et al. Synthesis of Eu3+-activated Yttrium Oxysulfied Red Phosphor byFlux Fusion Method[J]. Mater Chem Phys,2001,71:179-189.
    [5]Lee H J, Kim K P, Hong G Y, et al. The Effect of Materials on the Physical and Optical Properties ofEu3+-activated Yttrium Oxide Phosphors[J]. J Lumin,2010,130:941-46.
    [6]Kang Y. C, Lenggoro I. W, Park S B, et al. Photoluminescence Characteristics of YAG:Tb PhosphorParticles with Spherical Morphology and Non-aggregation[J]. J Phys Chem Solid,1999,60,1855-1858.
    [7]Jia G, Song Y H, Yang M, et al. Uniform YVO3+4: Ln(Ln=Eu, Dy and Sm) Nanocrystals: SolvothermalSynthesis and Luminescence Properties[J]. Opt Mater,2009,31:1032-1037.
    [8] Xu Z H, Li C X, Hou Z Y, et al. Morphological Controll and Luminescence Properties of LanthanideOrthovanadate LnVO4(Ln=La to Lu) Nano-/microcrystals Via Hydrothermal Process[J]. CrysEngComm,2011,13:474-482.
    [9] http://en.wikipedia.org/wiki/Solid_state_reaction_route.
    [10]Mao Y B, Park T J, Zhang F, et al. Environmentally Friendly Methodologies of NanostructureSynthesis[J]. Small,2007,3:1122-1139.
    [11]Teshima K, Lee S H, Shikine N, et al. Flux Growth of Highly Crystalline NaYF4: Ln (Ln=Yb, Er, Tm)Crystals with Upconversion Flurescence[J]. Cryst Growth Des,2011,11:995-999.
    [12]Lee J H, Kim Y J, Photoluminescent Properties of Sr2+2SiO4: EuPhosphors Prepared by Solid-StateReaction Method[J], Mater Sci Eng B,2008,146:99-102.
    [13]Wang J G, Jing X P, Hua C C, et al. Influence of Fluoride on f-f Transitions of Eu3+in LiEuMo2O8(M=Mo, W)[J]. J Lumin,2006,121:57-61.
    [14]Dai P P, Zhang X T, Zhou M, et al. Thermally Stable Pyrochlore Y3+2Ti2O7:EuOrange-Red EmittingPhosphors[J]. J Am Ceram Soc,2011,95:658-662.
    [15] Blasse G, Grabmaier B C, Luminescent Materials[M]. Berlin:Springer-Verlag,1994,41-44.
    [16] Cai Z Y, Xing X R, Yu R B, et al. Morphology-Controlled Synthesis of Lead Titanate Powders[J],Inorg Chem,2007,46:7423-7437.
    [17]Davey R J, Garside J, Crystal Morphology[M]. Oxford, Mancherster,2000,36-43.
    [18]Voorhees P W, Ostwald Ripening of Two-Phase Mixtures[J]. Ann Rev Mater Sci,1992,22:197-215.
    [19] http://www.alexandrite.net/chapters/glossary/flux-fusion-method.html.
    [20]Davey R J, J. Garside, Crystal growth[M]. Mancherster: Oxford,2000,32-35.
    [21]Yoon K H, Cho Y S, Kang D H, Molten Salt Synthesis of Lead-based Relaxors[J], J Mater Sci,1998,33:2977-2984.
    [22]Lei F, Yan B, Molten Salt Synthesis, Characterization, and Luminescence Properties of Gd2MO+6:Eu3(M=W, Mo) Phosphors[J], J Am Ceram Soc,2007,92:1262-1267.
    [23]Johnsen O, Formation and Growth of Crystals[M], New York: Oxford,2002,26-27
    [24]Deshazer L G, Dieke G H, Spectra and Energy Levels of Eu3+in LaCl3[J]. J Chem Phys,1963,38[9]:2190-2199.
    [25]Blasse G, Grabmaier B C, Luminescent Materials[M]. Chapter5, Berlin:Springer-Verlag,1994.95-99.[26] Williams D K, Bihari B, Tissue B M, Preparation and Fluorescence Spectroscopy of BulkMonoclinic Y2O3+3:Euand Comparison to Eu3+:Y2O3Nanocrystals[J]. J Phys Chem B,1998,102:916-920.
    [27]Williams D K, Yuan H B, Tissue B M, Size Dependence of the Luminescence Spectra and Dynamics ofY2O3+3:EuNanocrystals[J]. J Lumin,1999,83:297-300.
    [28]Raju G S R, Jung H C, Park J Y, et al. The Influence of Sintering Temperature on thePhotoluminescence Properties of Oxyapatite Eu3+: Ca2Gd8Si6O26Nanophosphors[J]. Sensor ActuatB-Chem,2010,146:395-402.
    [29]Werts M H V, Jukes R T F, Verhoeven J W, The Emission Spectrum and the Radiative Lifetime of Eu3+in Luminescent Lanthanide Complexes[J]. Phys Chem Chem Phys,2002,4:1542-1548.
    [1]Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-colorBa+3MgSi2O8:Eu2, Mn2+phosphor[J], App Phy Lett,2004,84:2931T.
    [2] Kim J S, Lim K T, Jeong Y S, et al, Full-color Ba3MgSi2O8:Eu2+, Mn2+phosphors forwhite-light-emitting diodes[J], Solid state Communications,2005,135:21-24.
    [3]Ma Liang, Wang D J, Zhang H M, et al, The orgin of505nm Peaked Photoluminescence fromBa+3MgSi2O8:Eu2+,Mn2Phosphor for white-light emitting diodes[J]. Electrochemical and solid-state letters,2008,11, E1-E4.
    [4]Liu Y H, Mao Z Y, Yu W H, et al, Green-light-emitting phase in Ba3MgSi2O2+8:Eu,Mn2+full-colorphosphor for white-light-emitting diodes via addition of Si3N4[J]. Journal of Alloys and Compounds,2010,493,406-409.
    [5]You H, Hong G, Wu X, et al, A new type of highly efficient luminescent material-The system Al2O3-B2O3containing Ce3+and Tb3+ions[J], Chemistry of Materials,2003,15(10):2000-2004
    [6] akeuchi N, Ishida S, Matsumura A. et al, Time-resolved study of luminescence in LiGd31-xF4Eu+x[J]Journal of Physical Chemistry B,2004,108(33):12397-12403
    [7]Wegh R T, Donker H, Oskam K D, et al Visible quantum cutting in LiGdF3+4:Euthroughdownconversion[J], Science,1999,283(5402):663-666
    [8]Yang W J, Luo L Y, Chen T M, et al, Luminescence and energy transfer of Eu-and Mn-coactivatedCaAl2Si2O8as a Potential Phosphor for White-light UV LED[J], Chem. Mater,2005,17:3833-3888.
    [9]Liu M, Wang S W, Zhang J, et al, Dominant red emission (4F49/2→I15/2) via upconversion in YAG(Y3Al3+5O12):Yb,Er3+nanopowders[J], Optical Materials,2007,29(11):1352-1357.
    [10]Ye S, Liu Z S, Wang T X, Wang J G, et al, Emission properties of Eu2+, Mn2+in MAlSi2O8(M=Sr,Ba)[J], Journal of Luminescence,2008,129:50-54.
    [11]Ye Shi, Liu Z S, Wang X T, et al, Emission properties of Eu2+, Mn2+in MAl2Si2O8(M=Sr, Ba)[J],Journal of Luminescence,2009,129:50-54.
    [12]Yang W J, Chen T M, White-light generation and energy transfer in SrZn2(PO4):Eu, Mn phosphor forultraviolet light-emitting diodes[J], App Phy Lett,2006,88:101903.
    [13]Park C H, Hong S T, Keszler D A, Superstructure of a phosphor materials Ba3MgSi2O8determined byneutron diffraction data[J], Journal of Solid State Chemistry,2009,182:496-501.
    [14]Ronda C. Luminescence from theory to application[M], Wiley-VCH Verlag Gmbh&co. KGaA.
    [15]Lu W, Hao Z D, Zhang X, Luo Y S, et al. Tunalbe Full-color Emitting BaMg2Al6Si9O2+30:Eu,Tb3+,Mn2+phosphors based on energy transfer[J]. Inorganic Chemistry,2011,50:7846-7851.
    [16]Umetsu Y, Okamoto S J, Yamamoto H J, Photoluminescence Properties ofBa3MgSi2O8:Eu2+BluePhosphor and Ba3MgSi2O+8:Eu2,Mn2+Blue-Red Phosphor underNear-Ultraviolet-Light Excitation[J], Journal Electrochemical society,2008,155:J193-J197.
    [17]You H P, Song Y H, Jia G, et al, Energy transfer from Tb3+to Mn2+in LaMgAl11O19:Tb,Mnphosphors[J], Optical Materials,2008,31:342-345.
    [18]Chen Y, Wang J, Zhang X G, Zhang G G, et al, An intense green emitting LiSrPO24:Eu+,Tb3+forphosphor-converted LED[J], Sensors and Actuators B: Chemical,2010,148:259-263.
    [19]Huang C H, Chen T M, Liu W C, et al. A single-phased Emission-Tunable phosphor Ca9Y(PO4)7:Eu2+,Mn2+with efficient energy transfer for white-light-emitting diodes[J], Applied Materials&Interface,2010,2:259-264.
    [20]Chan T S, Liu R S, Baginskiy I, Synthesis, Crystal structure, and luminescence properties of a novelgreen-yellow emitting phosphor LiZn1-xPO4:Mnxfor light emitting diodes[J], Chem Mater,2008,20:1215-1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700