超声波在清洗技术中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声技术出现在二十世纪初期,近一个世纪的发展表明,超声技术是声学发展中最为活跃的一个部分,如今它已经渗透到国防建设、国民经济、人民生活和科学技术等各个领域。其中超声波清洗技术也得到了广泛的发展,相比其他多种的清洗方式,超声波清洗显示出了巨大的优越性。超声波清洗机的高效率和高清洁度,得益于其声波在介质中传播时产生的穿透性和空化冲击波,所以很容易将带有复杂外形,内腔和细孔的零部件清洗干净。超声清洗的物理机制主要是超声空化,所以要达到良好的效果必须选择合适的声学参数和清洗剂的物理化学性质。声强愈高,空化愈强烈,但声强达到一定值后,空化趋于饱和。超声波清洗机主要由超声波发生器和超声波换能器组成,本文重点介绍超声波发生器。
     本文涉及以下几方面的内容:
     1、主回路的研究:包括逆变主电路、开关管的保护、功率管驱动和高频变压器的设计,即输入电路(包括输入保护电路、整流滤波电路)、半桥逆变电路(超声频发生电路)和匹配电路(电感匹配)。主电路设计在满足产生超声频信号和最佳匹配的要求下,又可以使在电网电压过大或者过小输入时保护发生器。半桥逆变驱动电路的设计本文采用的是IR公司的集成半桥驱动器IR21844。用这种方法可以避免设计驱动变压器,简化设计步骤,同时可以减少元件,节省成本。
     2、换能器电端匹配网络研究:本文介绍了几种常见的匹配网络,并且根据实际要求选择电感匹配网络。在设计匹配电感参数时,应用阻抗分析仪精确测量了清洗槽(带有换能器)中有负载(清洗液)时的等效电路的电参数,并根据数学推导出来的匹配电感计算公式求出匹配电感的感值。
     3、实现自动频率跟踪的控制电路:本文采用了数字锁相环的方法,利用集成数字锁相环CD4046和较少的独立元件构成锁相电路,从而提高了自动频率跟踪的可靠性。
     4、数字PWM信号发生器研究设计:采用直接数字频率合成技术(DDS技术)作为信号发生器,将DDS技术应用于信号源中可以大大提高信号源的分辨率,有效的降低成本、缩小体积。
Ultrasound technology appeared in the early twentieth century. Nearly a century's development has shown that ultrasound technology is the most active part in the acoustic development. Now it has penetrated into the building of national defense, national economy, people's livelihood, and science and technology fields. Of all these, ultrasonic cleaning technology has been extensively developed. Compared with a variety of other cleaning measures, ultrasonic cleaning has shown significant advantages. High efficiency and high cleanliness of ultrasonic cleaning machines derive from its penetrability and shock wave of air when the sound is communicated in the medium. So it is easy to clean those parts with complex shapes, inner cavity and stomas. The physical mechanism of Ultrasonic cleaning is ultrasound shock wave of air. In order to achieve good results, acoustic parameters and the physical and chemical properties of appropriate cleaning agentia must be selected. The higher the sound intensity is, the stronger shock wave of air is. But when the sound intensity reached a certain value, shock wave of air intends to saturation. Ultrasonic cleaning machines is mainly made up of ultrasonic generator and ultrasonic transducer. The paper focuses on ultrasonic Generator.
     This paper covers the following several aspects:
     1 .Main circuit research, including main inverter circuits, the protection of switch valves, the driver of power tubes and design of high frequency power transformers, namely, input circuits (including input protection circuits, rectifier filter circuits), the half-bridge inverter circuits (ultra - Audio circuit) and matching circuit (inductance match). On the one hand, the main circuit design can meet the demand of producing ultrasound frequency signals and the best match. On the other hand, it can protect the generators when a too small or too large power grid voltage is input. The design of half-bridge inverter drive circuits used in this paper is integrated half-bridge drive IR21844 from IR Corporation. In this way We can avoid designing driven transformers, simplify the designing steps, and can reduce components, saving cost.
     2.the research of transducer-matching network: The paper introduces a couple of common matching networks and selects inductance match networks according to practical requirements. During the course of designing matched inductance parameters, we accurately measures the electrical parameters of the equivalent circuits in the tank with loads through an impedance analyzer and work out the value of matched inductance using mathematical formula.
     3. control circuits of automatic frequency tracking. The paper takes the method of PLL. The PLL is made up of integrated digital PLL CD4046 and less independent components. Thus, the reliability of automatic frequency tracking is improved.
     4.design of digital PWM signal generator. The signal generator is using direct digital synthesis technology (DDS technology). It can greatly improve the resolution, effectively reduce costs and reduce the volume.
引文
[1]林仲茂.20世纪功率超声在国内外的发展.声学技术,2000,02:101-105
    [2]徐涛.超声波发生器电源技术的发展(上).清洗技术.2003.6:10-15
    [3]曹凤国.《超声加工技术》.化学工业出版社.2005
    [4]张占松.蔡宣三《开关电源的原理与设计》电子工业出版社.1998
    [5]林仲茂.超声清洗发展概况[J].化学清洗.1998(1)24-28
    [6]www.dianyuan.com/bbs/u/39/1141804835.jpg自控超声波发生器
    [7]www.pcbic.net/Article/Print.asp?ArticleID=9556超声波清洗机的技术现状与建议
    [8]产生超声波的功率源电路,选自《近代超声原理与应用》袁易全主编作者:陈思忠
    [9]张胜宇.数字式超声波发生器的研制.哈工大硕士论文
    [10]W.Michael,W.Korte(Germany).Quality assurance in ultrasonic Welding on the basis of statistical process modles-prediction of weld strength.Welding in the world,1665,35(3):348-351
    [11]Eko Purwanto.Development of an Ultrasonic Motor as a Fire-Qrienting Stage.IEEE Transactions on Bobotics and Automation,2001,17(8):464-471
    [12]田修波,杨士勤.声波塑料焊机声学系统频率特性研究[J].电焊机,1997(5):12-14
    [13]方少元,梁剑.超声焊塑机电源及其频率自适应控制系统[J].华南理工大学学报,1997(3):53-57
    [14]董惠娟,张广玉等.压电超声换能器电端匹配下的电流反馈式频率跟踪[J].哈尔滨工业大学学报,2000,32(3):115-117
    [15]刘殿通,于思远等.程控超声加工电源的频率跟踪和恒幅控制[J].电加工与模具,2000(2):23-25
    [16]叶惠贞,杨兴洲.新颖开关稳压电源.国防工业出版社,1999.77-80
    [17]曾泽君,王德生.单片机实现的超音频SPWM逆变器的研究[J].电子技术,1997(1)5-7
    [18]李爱文,张承慧.现代逆变技术及其应用[M].科学出版社,2000.22-30
    [19]韩西京,赵淳生.超声马达的驱动与控制技术研究进展[J].振动、测试与诊断,1999,19卷(2):86-92
    [20]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.《超声检测》.机械工业出版社.2005
    [21]林仲茂.功率超声发展近况和展望[J].声学技术,1994,04:145-149
    [22]王建明.功率超声技术的现状与展望[J].声学技术,1997,01:46-48
    [23]鲍建东.换能器的阻抗匹配设计[J],应用声学,1996,03:37-40
    [24]鲍善惠.压电换能器的动态匹配[J],应用声学,1998,02:16-20
    [25]朱武,张佳民等二基于数字电感的压电换能器动态匹配的研究[J].应用声学,2000,02:31-34
    [26]陆庆扬.大功率超声清洗机研制中的一些技术问题[J].声学技术,1998,02:78-81
    [27]罗淑云,赵学军等.高频超声换能器的阻抗匹配研究[J].应用声学,1994,06:25-27
    [28]朱武,金长善.超声波换能器电功率分析仪的研究[J].声学技术,1998,03
    [29]朱昌平,陈兆华等.超声换能器的宽带阻抗匹配器研究[J].声学技术,1994,02:79-81
    [30]韩一胜,锁相环在功率超声设备中的应用,1991年全国功率超声学术会议论文,中国声学学会功率超声分会桂林,1991,11:23-24
    [31]罗伟雄,韩力等.锁相技术及其应用北京理工大学出版社,1990:92-94
    [32]张厥盛,郑继禹,万心平锁相技术西安电子科技大学出版社,2000:16.102-103
    [33]张东卓,刘昭和,马铭杰.功率超声电源的研制.声学技术,2000,19(2):64-67
    [34]田修波,阎久春,蔡七兄,杨士勤.超声波塑料焊机发生器研制的若干问题.声学技术.1994,(132):69-74
    [35]郑渝.换能器的匹配,声学技术,1994,13(1):11-14
    [36]林书玉.匹配电路对压电陶瓷超声换能器振动性能的影响压电与声光,1995,6:27-30
    [37]鲍建东.换能器的阻抗匹配设计.应用声学,1995,15(3):37-39
    [38]鲍善惠.压电换能器的动态匹配、应用声学,1998,17(2):16-20
    [39]张梅,侯振程,漆小龙.一种新型超声波电源电力电子技术,1998,8:13-15
    [40]张镜澄.调频超声清洗技术的研究,声学技术,1993,12(2):28-30
    [41]朱武,张佳民,金长善等基于数字电感的压电换能器动态匹配的研究应用声学,2000,19(2):31-34
    [42]周长川,朱训生,赵波.新型多功能超声发生器的研制,机械工程师,1999,2:16-18
    [43]王鸿钰.实用电源技术手册.上海科学技术出版社,2002,11:116-119
    [44]杨旭,裴云庆,王兆安.开关电源技术.机械工业出版社,2004:222-223
    [45]张占松,蔡宣三.开关电源的原理与设计电子工业出版社,2001:368-394
    [46]林渭勋.现代电力电子电路浙江大学出版社,2002:367-370
    [47]林书玉.夹心式功率超声压电换能器负载特性研究.陕西师范大学学报2002,6:29-34
    [48]熊腊森,全亚杰.CD4046锁相环在感应加热电源中的应用.电焊机,2000,6:14-17
    [49]鲍善惠.用锁相环电路跟踪压电换能器并联谐振频率区应用声学,2001,20卷3期:1-5
    [50]朱武,金长善,蔡鹤皋.超声换能器振动系统控制的研究哈尔滨理工大学学报,1999,6:46-49
    [51]杨士勤,阎久春,田修波等.超声波塑料焊接机的能量控制模式焊接学报,1995,6:118-123
    [52]马伯志,吴敏生等.基于DDS技术的智能超声波功率源的研究[J].电子技术应用,2004(8)
    [53]滕旭东等.基于CPLD的数字PWM信号发生器的设计[J].微计算机信息,2007,10-2
    [54]徐涛.超声波发生器电源技术的发展[J].洗净技术,2003(7)
    [55]傅友登等.CDXX-2002系列超声波清洗机电源说明书.四川大学新星技术研究所.2002年
    [56]高建华.一种基于CPLD的单片机与PCI接口设计解决方案[J].微计算机信息,2006,6-2:224-226
    [57]HIKeda,T.Suzuki,H.Yoshida,S.Shinohara,K.Hayeiwa.DC-TO-RF MOS-FET Power Inverter with Output Power of 1KW at 2.5MHz.Proceeding of 33~(rd)MWSCAS,1990:1102-1106
    [58]HIKeda,T.Suzuki,T.Nakabori,H.Yoshida.Full-bridged MOS-FET DC-TO-RF Power Inverter for Use with High-Frequancy High-Power Ultrasonic Transduer.IEEE IECON,1994;108-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700