Wnt/β-catenin通路在胰腺癌的表达及干扰CXCR4基因对其抑制作用的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     胰腺癌恶性度高,发病率逐年上升。据报道,80%的胰腺癌患者由于转移的发生失去手术机会。Wnt/β-catenin通路在消化道肿瘤进展中具有重要作用。此外,肿瘤转移的趋向性学说以及趋化因子受体CXCR4的作用备受关注。据此,设计该实验,旨在
     1.明确Wnt/β-catenin经典通路在胰腺癌细胞中的活性,以及Wnt/β-catenin通路靶基因在胰腺癌细胞中的表达;
     2.观察Wnt拮抗剂DKK-1和sFRPs因子在胰腺癌中的表达,探讨Wnt拮抗剂表遗传学改变对胰腺癌Wnt/β-catenin通路的作用机制;
     3.观察胰腺癌组织中CXCR4的表达变化以及与临床病理特征之间的关系;
     4.观察胰腺癌组织中β-catenin的表达变化,探讨其与CXCR4的相互关系;
     5.利用RNAi技术构建CXCR4 shRNA表达载体,观察Wnt/β-catenin通路活性及靶基因的变化,验证CXCR4调控Wnt/β-catenin通路抑制胰腺癌的假设;
     6.观察CXCR4基因干扰后胰腺癌细胞增殖、细胞周期以及侵袭能力的变化。
     方法:
     1.通过PGL3-OT/OF荧光素酶检测方法观察Wnt/β-catenin通路在胰腺癌细胞中的活性,应用Real-time PCR技术检测Wnt通路下游靶基因及Wnt拮抗剂DKK-1和sFRPs mRNA水平的表达,观察Wnt/β-catenin经典通路在胰腺癌细胞中的变化;
     2.通过MSP方法和5-氮杂-脱氧胞苷酸处理分析Wnt拮抗剂sFRPs、DKK-1在胰腺癌细胞中的甲基化,并应用基因重组技术双向调节DKK-1在不同胰腺癌细胞中的表达,观察Wnt通路活性的变化,分析Wnt拮抗剂的甲基化对Wnt通路的调节作用;
     3.通过免疫组化分析CXCR4、β-catenin在胰腺癌组织中的表达,以及与临床病理特征之间的关系,探讨CXCR4与β-catenin的相关性;
     4.通过RNAi技术构建CXCR4 shRNA表达载体,转染胰腺癌CXCR4高表达细胞,通过Realtime-PCR、Western Blot实验观察RNAi对CXCR4基因的抑制效率;
     5.通过PGL3-OT/OF荧光素酶检测方法观察CXCR4基因沉默后对胰腺癌Wnt/β-catenin经典通路活性的影响,并通过Realtime-PCR、Western Blot实验观察CXCR4 shRNA对Wnt/β-catenin通路下游靶基因以及侵袭转移相关蛋白的影响;
     6.通过MTT实验、流式细胞术、软琼脂克隆形成实验检测CXCR4基因干扰后胰腺癌细胞增殖、细胞周期以及细胞成瘤性的变化,并应用Transwell侵袭小室观察CXCR4干扰对胰腺癌细胞侵袭转移力的影响。
     结果:
     1.与正常胰腺细胞相比,多数胰腺癌细胞表现为Wnt/β-catenin通路的异常激活,此外,Wnt/β-catenin下游靶基因的mRNA水平也具有不同程度的升高,通过对β-catenin Exon 3的测序分析,未发现胰腺癌具有β-catenin Exon 3的突变;
     2. Wnt拮抗剂sFRPs和DKK-1因子在胰腺癌细胞中表达水平较低,MSP分析发现sFRPs和DKK-1启动子区在胰腺癌细胞中发生甲基化,5-氮杂-脱氧胞苷酸处理后能显著提高DKK-1和sFRP-1的表达(P<0.01)。当RNAi技术干扰DKK-1表达后,Wnt通路活性上升;当PCMV-XL5-DKK1转染细胞上调DKK-1表达时,Wnt通路活性下降(P<0.05);
     3. CXCR4与β-catenin在胰腺癌组织中具有异常表达,两者之间有显著相关性(rs=0.443, P=0.002)。此外,CXCR4表达高的胰腺癌患者临床预后差;
     4.特异性CXCR4基因沉默能够在基因和蛋白水平稳定、高效、特异地抑制CXCR4的表达,抑制效率达70%以上,同时,磷酸化CXCR4蛋白表达水平也有明显的下降(P<0.05);
     5.特异性CXCR4干扰后能够显著抑制PGL3-OT转染后的荧光素活性(P<0.05)以及Wnt/β-catenin靶基因的表达;
     6.特异性CXCR4 shRNA能够抑制细胞生长,细胞达到对数生长期的时间延长(P<0.05),同时CXCR4基因沉默能够阻滞Miapaca-2细胞于G0/G1期,减少S期细胞的数目,抑制细胞的增殖能力。同时,软琼脂克隆形成实验发现CXCR4干扰后,细胞克隆数目显著减少(P<0.01)。Transwell实验证明CXCR4基因干扰后细胞侵袭能力减低(P<0.05),即使SDF-1的刺激也不能够使细胞侵袭能力增加。结论:
     1.胰腺癌细胞中存在Wnt/β-catenin通路的异常激活。Wnt通路的激活与β-catenin Exon 3的突变无关;
     2.胰腺癌中Wnt拮抗剂发生表遗传学变化,启动子区的甲基化引起DKK-1表达沉默可能是胰腺癌Wnt通路异常激活的原因,DKK-1的表达与胰腺癌Wnt经典通路的活性呈负相关;
     3. CXCR4在胰腺癌中异常表达,与β-catenin表达显著相关,CXCR4表达高的胰腺癌患者临床预后差;
     4. CXCR4基因沉默能抑制Wnt/β-catenin经典通路在胰腺癌中的活性,阻遏Wnt/β-catenin通路下游靶基因表达,抑制胰腺癌细胞增殖、侵袭和成瘤能力。
Objectives:
     Extra-pancreatic metastasis is a difficult problem for surgical intervention on pancreatic cancer. CXC chemokine receptor 4 (CXCR4) was considered as an important role in this process. Wnt pathway activity is abnormal in gastrointestinal cancer but poorly understood on pancreatic cancers. Previous study on neural development confirmed that SDF-1/CXCR4 could effectively modulate the Wnt/β-catenin signaling. We hypothesized that CXCR4 functional study may contribute to the pancreatic cancer progression through inhibiting canonical Wnt pathway. Here we study:
     1. Wnt pathway activity in pancreatic cancer cells and its target gene expression;
     2. The methylation of Wnt antagonists and its possible function on pancreatic cancers;
     3. CXCR4 andβ-catenin expression on pancreatic cancer tissues and their relation with clinical characteristics;
     4. The influence of CXCR4 knockdown on the expression of Wnt/β-catenin pathway;
     5. The influence of CXCR4 knockdown on pancreatic cancer cell growth, cell cycle, cell tumorigenesis, cell invasive ability.
     Methods:
     1. To observe the canonical Wnt pathway activity in pancreatic cancer cells, PGL3-OT/OF luciferase activity was applied. The expression of Wnt/β-catenin signaling target genes and Wnt antagonists were detected with Realtime-PCR technique.
     2. To observe the methylation of Wnt antagonists, MSP analysis was applied. To modulate the DKK-1 expression on pancreatic cancers, gene recombination technique was applied.
     3. To analyze the expression of CXCR4 andβ-catenin expression on pancreatic cancer tissues, immunohistochemical technique was applied. Kaplan-Meier estimated curves, Spearman and Chi-square analysis were used to study the relation between CXCR4 expression and clinical characteristics.
     4. RNAi technique was applied to construct the CXCR4 shRNA expression vector. Lipofecatime 2000 was used to transfect the CXCR4 high expression pancreatic cancer cell Miapaca-2. Realtime-PCR and Western Blot were used to observe the inhibitory effect of RNAi on CXCR4 expression.
     5. Realtime-PCR and Western Blot were applied to observe the influence of specific CXCR4 shRNA on Wnt signaling target gene expression. PGL3-OT/OF luciferase activity was used to observe the influence of CXCR4 shRNA on Wnt activity.
     6. MTT assay was applied to assess the influence of specific CXCR4 shRNA on cell growth; Flow cytometry was applied to analyze the cell cycle change; Soft agar assay was to observe the CXCR4 shRNA influence of cell tumorigenesis; Transwell method was to observe the cancer cell invasive ability.
     Results:
     1. Abnormal canonical Wnt pathway activity was detected in pancreatic cancer cell lines. Compared with normal pancreas cell lines, Wnt activity and its target gene expression were upregulated in most of pancreatic cancer cells. Moreover, the sequence ofβ-catenin Exon 3 showed that there is no mutation in pancreatic cancer cell lines.
     2. Wnt antagonists including sFRPs and DKK-1 mRNA level were obviously downregulated in pancreatic cancers. MSP analysis confirmed that methylation of Wnt antagonist was detected in pancreatic cancer cells. The percentage of methylated DKK-1 in pancreatic cancer cells was 6/17. Moreover, the percentage of sFRP-1, 2, 4, 5 is 11/17, 17/17, 8/17, 5/17, respectively. With 5-aza-2'-deoxycytidine treatment, the expression of Wnt antagonists especially DKK-1 and sFRP-1 could be repaired (P<0.01).
     3. With the upregulation of DKK-1 expression, the Wnt pathway activity was inhibited. On the contrary, with the knockdown of DKK-1 expression, the Wnt pathway activity was increased (P<0.05).
     4. Abnormal expression of CXCR4 andβ-catenin were detected on pancreatic cancer tissues. There is obvious relation between CXCR4 andβ-catenin expression (rs=0.443, P=0.002). Moreover, Kaplan-Meier estimated curve showed that CXCR4 expression could influence the clinical survival of pancreatic cancer patients.
     5. Through RNAi technique, the CXCR4 shRNA expression plasmid was successfully constructed. After the transfection on CXCR4 high expression pancreatic cancer cell line Miapaca-2, one plasmid which has the inhibitoriest effect was selected in the following experiment in vitro.
     6. CXCR4 gene interference could effectively inhibit Wnt pathway activity and Wnt/β-catenin target gene expression on pancreatic cancer cell lines.
     7. In CXCR4 shRNA transfected cells, cell growth was slower than that of control cells (P<0.05). A prolonged and prominent delay in progression from the G0 to G1 phase, a decrease at the S phase and G2-M phase were detected. Moreover, CXCR4 shRNA could decrease the cell tumorigenesis and cell invasive ability.
     Conclusions:
     1. The canonical Wnt/β-catenin pathway was deregulated in pancreatic cancer cells, which has no relation withβ-catenin Exon 3 mutation.
     2. Epigenetic Modification of the Wnt antagonists was considered to contribute to active Wnt pathway in pancreatic cancers. The modulation of DKK-1 could influence the Wnt pathway activity in pancreatic cancer cells.
     3. CXCR4 was abnormally expressed in pancreatic cancers. There is some relation between CXCR4 andβ-catenin expression. High CXCR4 expression was a predictor of poor clinical survival.
     4. CXCR4 knockdown could inhibit Wnt/β-catenin pathway and its target gene expression, which could result in the decrease of pancreatic cancer cell growth, cell tumorigenesis and invasive ability.
引文
[1] Shaib YH, Davila JA, El-Serag HB. The epidemiology of pancreatic cancer in the United States: changes below the surface[J]. Aliment Pharmacol Ther, 2006, 24 (1): 87-94.
    [2] Bockman DE, Guo J, Buchler P, et al. Origin and development of the precursor lesions in experimental pancreatic cancer in rats[J]. Lab Invest, 2003, 83 (6): 853-859.
    [3] Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer[J]. Clin Cancer Res, 2000, 6 (8): 2969-2972.
    [4] Ben-Ze'ev A, Shtutman M, Zhurinsky J. The integration of cell adhesion with gene expression: the role of beta-catenin[J]. Exp Cell Res, 2000, 261 (1): 75-82.
    [5] Kim K, Lu Z, Hay ED. Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT[J]. Cell Biol Int, 2002, 26 (5): 463-476.
    [6] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature, 2001, 410 (6824): 50-56.
    [7] Luo Y, Cai J, Xue H, et al. SDF1alpha/CXCR4 signaling stimulates beta-catenin transcriptional activity in rat neural progenitors[J]. Neurosci Lett, 2006, 398 (3): 291-295.
    [8] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007[J]. CA Cancer J Clin, 2007, 57 (1): 43-66.
    [9] Kim R, Emi M, Tanabe K, et al. Tumor-driven evolution of immunosuppressive networks during malignant progression[J]. Cancer Res, 2006, 66 (11): 5527-5536.
    [10] Ramanathan RK, Lee KM, McKolanis J, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer[J]. Cancer Immunol Immunother, 2005, 54 (3): 254-264.
    [11] Gold DV, Modrak DE, Schutsky K, et al. Combined 90Yttrium-DOTA-labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft[J]. Int J Cancer, 2004, 109 (4): 618-626.
    [12] Kondo H, Hazama S, Kawaoka T, et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes[J]. Anticancer Res, 2008, 28 (1B): 379-387.
    [13] Duxbury MS, Ito H, Benoit E, et al. A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells[J]. Cancer Res, 2004, 64 (11): 3987-3993.
    [14] Bauer C, Bauernfeind F, Sterzik A, et al. Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model[J]. Gut, 2007, 56 (9): 1275-1282.
    [15] Saif MW. Anti-angiogenesis therapy in pancreatic carcinoma[J]. Jop, 2006, 7 (2): 163-173.
    [16] Kindler HL, Friberg G, Singh DA, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer[J]. J Clin Oncol, 2005, 23 (31): 8033-8040.
    [17] Cohenuram M, Saif MW. Epidermal growth factor receptor inhibition strategies in pancreatic cancer: past, present and the future[J]. Jop, 2007, 8 (1): 4-15.
    [18] Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics[J]. Nat Rev Cancer, 2002, 2 (12): 897-909.
    [19] Mimeault M, Brand RE, Sasson AA, et al. Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies[J]. Pancreas, 2005, 31 (4): 301-316.
    [20] Hebrok M. Hedgehog signaling in pancreas development[J]. Mech Dev, 2003, 120 (1): 45-57.
    [21] Heiser PW, Lau J, Taketo MM, et al. Stabilization of beta-catenin impacts pancreas growth[J]. Development, 2006, 133 (10): 2023-2032.
    [22] Murtaugh LC, Law AC, Dor Y, et al. Beta-catenin is essential for pancreatic acinar but not islet development[J]. Development, 2005, 132 (21): 4663-4674.
    [23] Kawahira H, Scheel DW, Smith SB, et al. Hedgehog signaling regulates expansion of pancreatic epithelial cells[J]. Dev Biol, 2005, 280 (1): 111-121.
    [24] Heller RS, Dichmann DS, Jensen J, et al. Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation[J]. Dev Dyn, 2002, 225 (3): 260-270.
    [25] Kayed H, Kleeff J, Keleg S, et al. Indian hedgehog signaling pathway: expression and regulation in pancreatic cancer[J]. Int J Cancer, 2004, 110 (5): 668-676.
    [26] Sundaram MV. The love-hate relationship between Ras and Notch[J]. Genes Dev, 2005, 19 (16): 1825-1839.
    [27] Pasca di Magliano M, Sekine S, Ermilov A, et al. Hedgehog/Ras interactions regulate early stages of pancreatic cancer[J]. Genes Dev, 2006, 20 (22): 3161-3173.
    [28] Abraham SC, Klimstra DS, Wilentz RE, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations[J]. Am J Pathol, 2002, 160 (4): 1361-1369.
    [29] Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm[J]. Cancer Res, 2001, 61 (23): 8401-8404.
    [30] Al-Aynati MM, Radulovich N, Riddell RH, et al. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia[J]. Clin Cancer Res, 2004, 10 (4): 1235-1240.
    [31] Sharma RP, Chopra VL. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster[J]. Dev Biol, 1976, 48 (2): 461-465.
    [32] Rijsewijk F, Schuermann M, Wagenaar E, et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless[J]. Cell, 1987, 50 (4): 649-657.
    [33] Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin[J]. Science, 2002, 296 (5573): 1644-1646.
    [34] Mlodzik M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation?[J]. Trends Genet, 2002, 18 (11): 564-571.
    [35] Kuhl M, Sheldahl LC, Park M, et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape[J]. Trends Genet, 2000, 16 (7): 279-283.
    [36] Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies[J]. Nat Rev Genet, 2004, 5 (9): 691-701.
    [37] Behrens J, Jerchow BA, Wurtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta[J]. Science, 1998, 280 (5363): 596-599.
    [38] Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism[J]. Cell, 2002, 108 (6): 837-847.
    [39] Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway[J]. Genes Dev, 2002, 16 (9): 1066-1076.
    [40] Hart M, Concordet JP, Lassot I, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell[J]. Curr Biol, 1999, 9 (4): 207-210.
    [41] Kitagawa M, Hatakeyama S, Shirane M, et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin[J]. Embo J, 1999, 18 (9): 2401-2410.
    [42] Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science, 2004,303 (5663): 1483-1487.
    [43] van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway[J]. Curr Opin Genet Dev, 2003, 13 (1): 28-33.
    [44] Polakis P. Wnt signaling and cancer[J]. Genes Dev, 2000, 14 (15): 1837-1851.
    [45] Glinka A, Wu W, Delius H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J]. Nature, 1998, 391 (6665): 357-362.
    [46] Fedi P, Bafico A, Nieto Soria A, et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling[J]. J Biol Chem, 1999, 274 (27): 19465-19472.
    [47] Li L, Mao J, Sun L, et al. Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled[J]. J Biol Chem, 2002, 277 (8): 5977-5981.
    [48] Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia[J]. Br J Cancer, 2004, 91 (4): 707-713.
    [49] Liu TH, Raval A, Chen SS, et al. CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia[J]. Cancer Res, 2006, 66 (2): 653-658.
    [50] Shih YL, Shyu RY, Hsieh CB, et al. Promoter methylation of the secreted frizzled-related protein 1 gene sFRP1 is frequent in hepatocellular carcinoma[J]. Cancer, 2006, 107 (3): 579-590.
    [51] Ugolini F, Charafe-Jauffret E, Bardou VJ, et al. WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene sFRP1 in most invasive carcinomas except of the medullary type[J]. Oncogene, 2001, 20 (41): 5810-5817.
    [52] Suzuki T, Yano H, Nakashima Y, et al. Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process[J]. J Gastroenterol Hepatol, 2002, 17 (9): 994-1000.
    [53] Caldwell GM, Jones C, Gensberg K, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis[J]. Cancer Res, 2004, 64 (3): 883-888.
    [54] Castellone MD, Guarino V, De Falco V, et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas[J]. Oncogene, 2004, 23 (35): 5958-5967.
    [55] Batra S, Shi Y, Kuchenbecker KM, et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma[J]. Biochem Biophys Res Commun, 2006, 342 (4): 1228-1232.
    [56] Lin YC, You L, Xu Z, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines[J]. Biochem Biophys Res Commun, 2006, 341 (2): 635-640.
    [57] Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway[J]. J Cell Sci, 2003, 116 (Pt 13): 2627-2634.
    [58] Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4[J]. Nat Genet, 1998, 19 (4): 379-383.
    [59] Dessimoz J, Grapin-Botton A. Pancreas development and cancer: Wnt/beta-catenin at issue[J]. Cell Cycle, 2006, 5 (1): 7-10.
    [60] Brennan KR, Brown AM. Wnt proteins in mammary development and cancer[J]. J Mammary Gland Biol Neoplasia, 2004, 9 (2): 119-131.
    [61] Pandur P, Lasche M, Eisenberg LM, et al. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis[J]. Nature, 2002, 418 (6898): 636-641.
    [62] Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche byWnt signaling pathways[J]. Cell Res, 2007, 17 (9): 746-758.
    [63] Kim JS, Crooks H, Foxworth A, et al. Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors[J]. Mol Cancer Ther, 2002, 1 (14): 1355-1359.
    [64] Pierce M, Wang C, Stump M, et al. Overexpression of the beta-catenin binding domain of cadherin selectively kills colorectal cancer cells[J]. Int J Cancer, 2003, 107 (2): 229-237.
    [65] Verma UN, Surabhi RM, Schmaltieg A, et al. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells[J]. Clin Cancer Res, 2003, 9 (4): 1291-1300.
    [66] van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells[J]. Cell, 2002, 111 (2): 241-250.
    [67] Yamada Y, Oyama T, Hirose Y, et al. beta-Catenin mutation is selected during malignant transformation in colon carcinogenesis[J]. Carcinogenesis, 2003, 24 (1): 91-97.
    [68] Hirose Y, Kuno T, Yamada Y, et al. Azoxymethane-induced beta-catenin-accumulated crypts in colonic mucosa of rodents as an intermediate biomarker for colon carcinogenesis[J]. Carcinogenesis, 2003, 24 (1): 107-111.
    [69] Ilan N, Tucker A, Madri JA. Vascular endothelial growth factor expression, beta-catenin tyrosine phosphorylation, and endothelial proliferative behavior: a pathway for transformation?[J]. Lab Invest, 2003, 83 (8): 1105-1115.
    [70] Hao X, Tomlinson I, Ilyas M, et al. Reciprocity between membranous and nuclear expression of beta-catenin in colorectal tumours[J]. Virchows Arch, 1997, 431 (3): 167-172.
    [71] Cui J, Zhou X, Liu Y, et al. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes[J]. J Gastroenterol Hepatol, 2003, 18 (3): 280-287.
    [72] Joo M, Lee HK, Kang YK. Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression[J]. J Korean Med Sci, 2003, 18 (2): 211-217.
    [73] Gotoh J, Obata M, Yoshie M, et al. Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis[J]. Carcinogenesis, 2003, 24 (3): 435-442.
    [74] Brozek I, Plawski A, Podralska M, et al. Thyroid cancer in two siblings with FAP syndrome and APC mutation[J]. Int J Colorectal Dis, 2008, 23 (3): 331-332.
    [75] Odajima T, Sasaki Y, Tanaka N, et al. Abnormal beta-catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features[J]. Hum Pathol, 2005, 36 (3): 234-241.
    [76] Jass JR, Barker M, Fraser L, et al. APC mutation and tumour budding in colorectal cancer[J]. J Clin Pathol, 2003, 56 (1): 69-73.
    [77] Clements WM, Wang J, Sarnaik A, et al. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer[J]. Cancer Res, 2002, 62 (12): 3503-3506.
    [78] Lowy AM, Fenoglio-Preiser C, Kim OJ, et al. Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma[J]. Ann Surg Oncol, 2003, 10 (3): 284-290.
    [79] Lowy AM, Knight J, Groden J. Restoration of E-cadherin/beta-catenin expression in pancreatic cancer cells inhibits growth by induction of apoptosis[J]. Surgery, 2002, 132 (2): 141-148.
    [80] Pasca di Magliano M, Biankin AV, Heiser PW, et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma[J]. PLoS ONE, 2007, 2 (11): e1155.
    [81] Li YJ, Wei ZM, Meng YX, et al. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis[J]. World JGastroenterol, 2005, 11 (14): 2117-2123.
    [82] Mikami I, You L, He B, et al. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells[J]. BMC Cancer, 2005, 5 (1): 53.
    [83] Mazieres J, You L, He B, et al. Wnt2 as a new therapeutic target in malignant pleural mesothelioma[J]. Int J Cancer, 2005, 117 (2): 326-332.
    [84] Nagayama S, Fukukawa C, Katagiri T, et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas[J]. Oncogene, 2005, 24 (41): 6201-6212.
    [85] Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of sFRP genes allows constitutive WNT signaling in colorectal cancer[J]. Nat Genet, 2004, 36 (4): 417-422.
    [86] Hoang BH, Kubo T, Healey JH, et al. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway[J]. Cancer Res, 2004, 64 (8): 2734-2739.
    [87] Gonzalez-Sancho JM, Aguilera O, Garcia JM, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer[J]. Oncogene, 2005, 24 (6): 1098-1103.
    [88] Veeramachaneni NK, Kubokura H, Lin L, et al. Down-regulation of beta catenin inhibits the growth of esophageal carcinoma cells[J]. J Thorac Cardiovasc Surg, 2004, 127 (1): 92-98.
    [89] Boon EM, Keller JJ, Wormhoudt TA, et al. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines[J]. Br J Cancer, 2004, 90 (1): 224-229.
    [90] Maier TJ, Janssen A, Schmidt R, et al. Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells[J]. Faseb J, 2005, 19 (10): 1353-1355.
    [91] Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited[J]. Nat Rev Cancer, 2003, 3 (6): 453-458.
    [92] Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice[J]. Proc Natl Acad Sci U S A, 1998, 95 (16): 9448-9453.
    [93] Hesselgesser J, Halks-Miller M, DelVecchio V, et al. CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons[J]. Curr Biol, 1997, 7 (2): 112-121.
    [94] Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature, 1998, 393 (6685): 595-599.
    [95] Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood[J]. J Exp Med, 1997, 185 (1): 111-120.
    [96] Kim CH, Broxmeyer HE. Chemokines: signal lamps for trafficking of T and B cells for development and effector function[J]. J Leukoc Biol, 1999, 65 (1): 6-15.
    [97] Roland J, Murphy BJ, Ahr B, et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling[J]. Blood, 2003, 101 (2): 399-406.
    [98] Psenak O. [Stromal cell-derived factor 1 (SDF-1). Its structure and function][J]. Cas Lek Cesk, 2001, 140 (12): 355-363.
    [99] Juarez J, Bendall L, Bradstock K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis[J]. Curr Pharm Des, 2004, 10 (11): 1245-1259.
    [100] Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, et al. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway[J]. Faseb J, 1999, 13 (13): 1699-1710.
    [101] Zhang XF, Wang JF, Matczak E, et al. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells[J]. Blood, 2001, 97 (11): 3342-3348.
    [102] Manes S, Lacalle RA, Gomez-Mouton C, et al. Membrane raft microdomains in chemokine receptor function[J]. Semin Immunol, 2001, 13 (2): 147-157.
    [103] Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways[J]. J Biol Chem, 1998, 273 (36): 23169-23175.
    [104] Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion[J]. J Mol Histol, 2004, 35 (3): 233-245.
    [105] Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion[J]. Blood, 2002, 100 (7): 2597-2606.
    [106] Kremer KN, Humphreys TD, Kumar A, et al. Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine[J]. J Immunol, 2003, 171 (1): 360-367.
    [107] Horuk R. Chemokine receptors[J]. Cytokine Growth Factor Rev, 2001, 12 (4): 313-335.
    [108] Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor[J]. J Biol Chem, 2003, 278 (5): 3378-3385.
    [109] Soon LL. A discourse on cancer cell chemotaxis: where to from here?[J]. IUBMB Life, 2007, 59 (2): 60-67.
    [110] Arya M, Ahmed H, Silhi N, et al. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration[J]. Tumour Biol, 2007, 28 (3): 123-131.
    [111] Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis[J]. Faseb J, 2004, 18 (11): 1240-1242.
    [112] Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases[J]. Cancer Res, 2003, 63 (13): 3833-3839.
    [113] Helbig G, Christopherson KW, 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4[J]. J Biol Chem, 2003, 278 (24): 21631-21638.
    [114] Matteucci E, Locati M, Desiderio MA. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness[J]. Exp Cell Res, 2005, 310 (1): 176-185.
    [115] Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL[J]. Nature, 2003, 425 (6955): 307-311.
    [116] Wehler T, Wolfert F, Schimanski CC, et al. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease[J]. Oncol Rep, 2006, 16 (6): 1159-1164.
    [117] Koshiba T, Hosotani R, Miyamoto Y, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression[J]. Clin Cancer Res, 2000, 6 (9): 3530-3535.
    [118] Saur D, Seidler B, Schneider G, et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer[J]. Gastroenterology, 2005, 129 (4): 1237-1250.
    [119] Billadeau DD, Chatterjee S, Bramati P, et al. Characterization of the CXCR4 signaling in pancreatic cancer cells[J]. Int J Gastrointest Cancer, 2006, 37 (4): 110-119.
    [120] Mori T, Doi R, Koizumi M, et al. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer[J]. Mol Cancer Ther, 2004, 3 (1): 29-37.
    [121] Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4[J]. SeminCancer Biol, 2004, 14 (3): 171-179.
    [122] Wang J, Guan E, Roderiquez G, et al. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages[J]. J Biol Chem, 2001, 276 (52): 49236-49243.
    [123] Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro[J]. Cancer Res, 2003, 63 (16): 4801-4804.
    [124] Bertolini F, Dell'Agnola C, Mancuso P, et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma[J]. Cancer Res, 2002, 62 (11): 3106-3112.
    [125] Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4[J]. Cancer Res, 2004, 64 (12): 4302-4308.
    [126] Wang Z, Ma Q. Beta-catenin is a promising key factor in the SDF-1/CXCR4 axis on metastasis of pancreatic cancer[J]. Med Hypotheses, 2007, 69 (4): 816-820.
    [127] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391 (6669): 806-811.
    [128] Tijsterman M, Ketting RF, Plasterk RH. The genetics of RNA silencing[J]. Annu Rev Genet, 2002, 36: 489-519.
    [129] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281-297.
    [130] Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409 (6818): 363-366.
    [131] Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs[J]. Genes Dev, 2003, 17 (4): 438-442.
    [132] Caudy AA, Ketting RF, Hammond SM, et al. A micrococcal nuclease homologue in RNAi effector complexes[J]. Nature, 2003, 425 (6956): 411-414.
    [133] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002, 296 (5567): 550-553.
    [134] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411 (6836): 494-498.
    [135] Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5515-5520.
    [136] Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy[J]. Nucleic Acids Res, 2003, 31 (7): e38.
    [137] Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products[J]. Rna, 2002, 8 (11): 1454-1460.
    [138] Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells[J]. Genes Dev, 2002, 16 (8): 948-958.
    [139] Duxbury MS, Ito H, Zinner MJ, et al. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells[J]. Oncogene, 2004, 23 (2): 465-473.
    [140] Duxbury MS, Ito H, Zinner MJ, et al. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma[J]. Oncogene, 2004, 23 (7): 1448-1456.
    [141] Katoh M. WNT2 and human gastrointestinal cancer (review)[J]. Int J Mol Med, 2003, 12 (5): 811-816.
    [142] Verras M, Brown J, Li X, et al. Wnt3a growth factor induces androgen receptor-mediated transcription and enhances cell growth in human prostate cancer cells[J]. Cancer Res, 2004, 64 (24): 8860-8866.
    [143] Aguilera O, Fraga MF, Ballestar E, et al. Epigenetic inactivation of the Wnt antagonistDICKKOPF-1 (DKK-1) gene in human colorectal cancer[J]. Oncogene, 2006, 25 (29): 4116-4121.
    [144] Sakorafas GH, Tsiotou AG. Multi-step pancreatic carcinogenesis and its clinical implications[J]. Eur J Surg Oncol, 1999, 25 (6): 562-565.
    [145] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25 (4): 402-408.
    [146] Ahmad I, Rao DN. Chemistry and biology of DNA methyltransferases[J]. Crit Rev Biochem Mol Biol, 1996, 31 (5-6): 361-380.
    [147] Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression[J]. Curr Opin Genet Dev, 1993, 3 (2): 226-231.
    [148] Tamura G. Genetic and epigenetic alterations of tumor suppressor and tumor-related genes in gastric cancer[J]. Histol Histopathol, 2002, 17 (1): 323-329.
    [149] Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype[J]. Cancer Res, 1999, 59 (21): 5438-5442.
    [150] Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer[J]. Cancer Res, 1997, 57 (16): 3370-3374.
    [151] Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434 (7035): 843-850.
    [152] Urakami S, Shiina H, Enokida H, et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA[J]. Clin Cancer Res, 2006, 12 (23): 6989-6997.
    [153] Luu HH, Zhang R, Haydon RC, et al. Wnt/beta-catenin signaling pathway as a novel cancer drug target[J]. Curr Cancer Drug Targets, 2004, 4 (8): 653-671.
    [154] Peifer M. Beta-catenin as oncogene: the smoking gun[J]. Science, 1997, 275 (5307): 1752-1753.
    [155] Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma[J]. Jpn J Cancer Res, 1999, 90 (12): inside front cover.
    [156] Wright K, Wilson P, Morland S, et al. beta-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours[J]. Int J Cancer, 1999, 82 (5): 625-629.
    [157] Miyaki M, Iijima T, Kimura J, et al. Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer[J]. Cancer Res, 1999, 59 (18): 4506-4509.
    [158] Dahl E, Veeck J, An H, et al. [Epigenetic inactivation of the WNT antagonist sFRP1 in breast cancer][J]. Verh Dtsch Ges Pathol, 2005, 89: 169-177.
    [159] Lo PK, Mehrotra J, D'Costa A, et al. Epigenetic suppression of secreted frizzled related protein 1 (sFRP1) expression in human breast cancer[J]. Cancer Biol Ther, 2006, 5 (3): 281-286.
    [160] Qiao L, Xu ZL, Zhao TJ, et al. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling[J]. Cancer Lett, 2008, 269 (1): 67-77.
    [161] Jiang YP, Wu XH, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression[J]. Gynecol Oncol, 2006, 103 (1): 226-233.
    [162] Holm NT, Byrnes K, Li BD, et al. Elevated levels of chemokine receptor CXCR4 in HER-2 negative breast cancer specimens predict recurrence[J]. J Surg Res, 2007, 141 (1): 53-59.
    [163] Zeng G, Germinaro M, Micsenyi A, et al. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma[J]. Neoplasia, 2006, 8 (4): 279-289.
    [164] Pilarsky C, Ammerpohl O, Sipos B, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling[J]. J Cell Mol Med, 2008.
    [165] Slettenaar VI, Wilson JL. The chemokine network: a target in cancer biology?[J]. Adv Drug Deliv Rev, 2006, 58 (8): 962-974.
    [166] Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999, 286 (5441): 950-952.
    [167] Marx J. Interfering with gene expression[J]. Science, 2000, 288 (5470): 1370-1372.
    [168] Sharp PA. RNAi and double-strand RNA[J]. Genes Dev, 1999, 13 (2): 139-141.
    [169] Kiger AA, Baum B, Jones S, et al. A functional genomic analysis of cell morphology using RNA interference[J]. J Biol, 2003, 2 (4): 27.
    [170] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431 (7006): 343-349.
    [171] Barik S. Silence of the transcripts: RNA interference in medicine[J]. J Mol Med, 2005, 83 (10): 764-773.
    [172] Simmer F, Moorman C, van der Linden AM, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions[J]. PLoS Biol, 2003, 1 (1): E12.
    [173] Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein[J]. Gene, 1992, 111 (2): 229-233.
    [174] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263 (5148): 802-805.
    [175] Kain SR, Adams M, Kondepudi A, et al. Green fluorescent protein as a reporter of gene expression and protein localization[J]. Biotechniques, 1995, 19 (4): 650-655.
    [176] Woerner BM, Warrington NM, Kung AL, et al. Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies[J]. Cancer Res, 2005, 65 (24): 11392-11399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700