C4烯烃催化裂解制丙烯/乙烯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C_4C_5烯烃催化裂解是增产丙烯的有效方法之一,论文以丁烯为反应物,对该过程中催化剂的制备及反应条件的优化进行了系统的研究。
     首先计算了丁烯以不同途径转化各反应的热力学平衡常数及丁烯平衡转化率,讨论了温度和压力对各反应平衡的影响,确定了提高目的产物丙烯/乙烯选择性的可能性与可行性,为催化剂筛选及反应条件的优化提供了理论指导。
     系统研究了不同结构分子筛的反应性能,表明择形性与稳定性均较佳的为ZSM-5和MCM-22;小孔分子筛对丙烯/乙烯有最优的择形性能;大孔、小孔及一维孔道结构分子筛稳定性均较差。高硅ZSM-5较弱的酸性可抑制氢转移及芳构化副反应的发生,大大提高丙烯选择性及催化剂稳定性;小晶粒分子筛显示出更好的稳定性。首次将K改性及水热处理方法引入C_4烯烃裂解制丙烯催化剂的制备过程中,发现适宜的水热处理及K改性均可效抑制氢转移及芳构化副反应的发生,提高丙烯选择性,并考察了反应条件对性能较佳的改性催化剂性能的影响,反应结果与文献中报导的结果相当(45~55%丙烯选择性,35~39%收率)。
     首次将MCM-22用于本反应中,发现反应初期其性能存在一个突变:转化率快速下降,丙烯选择性大幅上升一归因于其超笼的快速失活;而后,在反应的平台期,给出与高硅ZSM-5相当的丙烯+乙烯选择性(~66%)。以不同产物产率对原料转化率作图,分析了不同产物生成机理,提出了C_4烯烃转化的反应网络,为认识反应本质及有效通过各种手段抑制副反应发生提供了依据。首次发现氟硅酸铵(AHFS)处理是制备高硅MCM-22的有效方法,制备样品硅铝比可高达160且保持较好结晶度,大大拓宽了直接合成MCM-22硅铝比范围(20~50)。适当的AHFS处理或水热处理可明显提高其在C_4裂解反应中的稳定性。
     采用较低反应温度有利于提高催化剂的稳定性,所用的分子筛催化剂有较好的再生使用性能。
Catalysts design and reaction conditions optimization were investigated systemically for the process of C_4 alkene catalytic cracking, an effective way enhancing propene production.
    The equilibrium constant of each reaction for butene conversion, along with the effects of temperature and pressure on each reaction, were calculated thermodynamically. According to that, the possibility and feasibility to increase the selectivity of propene in C4 alkene cracking were discussed. These results provided guidance for catalysts design and reaction conditions optimization in C_4 alkene cracking.
    The catalytic performance of the zeolites with various structures and pore diameters were tested in the process and it was found that: ZSM-5 and MCM-22 exhibited better shape-selectivity for propene plus ethene and the best stability among the zeolites studied; the small-pore SAPO-34 zeolite was the most "shape-selective" for propene and ethene; the large-pore zeolites, the small-pore zeolites and the zeolites with one-dimensional structure all exhibited poor stability due to the covering of the acid sites or channel blockage by the coke.
    On ZSM-5 zeolite with higher Si/Al_2 ratio, higher selectivities of propene/ethene and better stability were gained, resulted from its lower acidity suppressing the secondary reaction of the alkenes and the coking reaction. High silica ZSM-5 with smaller particles gave better stability in the process. The means modifying the ZSM-5 zeolite by K addition or steaming treatment were introduced to the process of catalyst preparation for C_4 alkene cracking. The catalysts modified to a
引文
1 白尔铮,胡云光.四种增产丙烯催化工艺的技术经济比较.工业催化,2003,11(5):8~12
    2 Euro. Chem. News. 2001, 75(1982): 24~24
    3 李雅丽.多产丙烯生产技术进展.当代石油石化,2001,9(4):31~35
    4 J Cosyns, J Chodorge, D Commereuc. Maximize propylene production. Hydrocarbon Processing, 1998, 3:61~66
    5 Ulrich Koss. Producing propylene from low valued olefins. Hydrocarbon Engineering, 1999,5: 66~68
    6 钱伯章.增产丙烯技术及其进展.石油炼制与化工,2001,32(11):19~23
    7 王瀚舟,钱伯章.增产丙烯的技术进展.石油化工,2000,29(9):705~711
    8 李小明,宋芙蓉.催化裂解制烯烃的技术进展.石油化工,2002,31(7):569~573
    9 孙可华.国内外丙烯生产及供需分析.国内外石油化工快报,2003,33(6):1~4;2003,33(7):1~4;2003,33(8):1~5;2003,33(9):1~3
    10 彭琳.先进的丙烯生产路线.国内外石油化工快报,2005,35(3):6~12
    11 宋芙蓉.烯烃生产新方法.国内外石油化工快报,2004,34(1):1~4;34(2):1~6;34(3):1~4;34(4):1~7.
    12 彭琳.由烯烃生产丙烯.国内外石油化工快报,2004,34(1):5~7
    13 张司苒.丙烯增产技术.国内外石油化工快报,2004,34(1):8~12
    14 石华信.增产丙烯的几种主要技术措施.石油化工要闻,2004年5月13日:13~15
    15 曹湘洪.增产丙烯,提高炼化企业盈利能力.化工进展,2003,22(9):911~919
    16. Xiangxue Zhu, Shenglin Liu, Yueqin Song, Longya Xu. Catalytic cracking of C4 alkenes to propene and ethenc: Influences of zeolites pore structures and Si/AlP2 ratios. Appl. Catal. A: Gen. 2005, In press.
    17. J S Buchanan, Y G Adewuyi. Effects of high temperature and high ZSM-5 additive level on FCC olefins yields and gasoline composition.Applied Catalysis A: General, 1996(134): 247~262
    18 Xinjin Zhao. ZSM-5 additive in fluid catalytic cracking. 1. effect of additive level and temperature on light olefins and gasoline olefins. Ind. Eng. Chem. Res. 1999(38): 3847~3853
    19 The propylene demand in the world. Chem. Eng. News, 2000,78(26): 58~62
    20. J Hairston. Process advance for increase propylene production. Chem. Eng., 1999,106 (5):30~36
    21. Y Chauvin, D Commereuc. Process for metathesis of olefins with an improved rhenium catalyst. US 5 449 852, 1995
    22 Commereuc D, Hugues F, Saussine L. Process for preparing a rhenium and cesium based metathesis catalyst. US 6 277 781,2001
    23 H V Bolt, S Glanz. Increase propylene yields cost-effectively. Hydrocarbon Processing, 2002,12:77~80
    24 W Liebner. Propylur and upgrade of olefin by-product. In: 2002 Dewitt petrochemical review, Houston Texas USA: Willy & Sons press, 2002:19~21
    25 G E Jochief. Triolefins process of increase propylene. Oil & Gas J. 1999, 97(38): 62~66
    26 J C Mol, Industrial applications ofolefin metathesis. J. Mol. Catal. A 2004, 213: 39~45
    27 罗承先.ABB鲁姆斯开以增加丙烯产量的裂解新技术.石油化工要闻,2002年4月18日:21~21
    28 A new metathesis process to make propylene from ethylene and butene. Chemical Engineering, 1987, 94(13): 9
    29 Metathesis, dehydro fill propylene shortfall. Chemical Week, 1999,161 (41): 41
    30 Petrochemical process 2001: propylene. Hydrocarbon Processing, 2001, 80(3): 130
    31 P Schwab, A Hoehn. Preparation of propene. US 6 271 430, 2001
    32 P Schwab, B Breitscheidel, R Schulz. Metathesis catalysts and its preparation and use. US 6130181, 2001.
    33 P Schwab, B Breitscheidel, R Schulz.Preparation ofolefins.US 6 166 279, 2000.
    34 P Schwab, B Breitscheidel, C Oost. Process for preparing propylene and 1-butene. DE 19 805 716, 1999.
    35 P Schwab, A Hoehn. Process for the Preparation of propene. EP 832 867, 1998
    36 BASF公司.丙烯及如果需要的1-丁烯的制备.CN1228404,1999~09~15
    37 BASF公司.丙烯的制备.CN1218787,1999~06~09
    38 Liu shenglin, Huang Shengjun, Xin Wenjie, Baijie, Xie Sujuan, Xu Longya. Metathesis of ethylene and butylenes-2 to propylene with Mo on Hβ-Al_2O_3 catalysts. Catal. Today 2004,93: 471~476
    39 Liu shenglin, Huang Shengjun, Xin Wenjie, Baijie, Xie Sujuan, Xu Longya. Metathesis of butylene-2 and ethylene to propylene over 3.0Mo/(Hβ+γ-Al2O3) catalyst with different γ~Al_2O_3 contents. Chemical Research in Chinese Universities. 2005, 21 (2): 213~216
    40 P K Ladwig, J E Asplin, G F Stuntz, W A Wachter, B E Henry. Process for selectively producing light oiefins in a fluid catalytic cracking process. US Patent 6,069,287 (2000) (to Exxon Research and Engineering Corporation)
    41 J P Dath, W Vermeiren, K Herrenbout. Production of olefins. WO 00/78894 (2000) (to Fina Oil and Chemical Corporation)
    42 L D Johnson, E K Nariman, A R Ware. Catalytic production of light olefins rich in propylene .US Patent 6,222,087 (2001Xto Mobil Oil Corporation)
    43 T R Stiffens, P K Ladwig. Process for selectively producing light olefins. US Patent 6,455,750 (2002) (to Exxonmobil Chemical Patents Incorporation)
    44 J P Dath, Jean~pierre, W Vermeiren. Production of olefins. WO 01/00749 (to Fina Oil &Chemical Corporation)
    45 谢朝钢.制取低碳烯烃的催化裂解催化剂及其工业应用.石油化工,1997,26(12):825~829
    46 DCC technology for increasing propylene. Hydro. Proc. 2000, 79(11): 103
    47 Selectivity component cracking process. Hydro. Proc. 2000, 79(11): 107
    48 SCC advanced FCCU technology for maximum propylene production. Hydrocarbon Asian, 1999, 10
    49 J Hairston. Process advance for increase propylene production. Chem. Eng. 1999, 106(5): 30~36
    50 Boosting propylene output: the FCC options. Euro. Chem. News, Chemscope, 1998, May: 13
    51 Petro FCC design for production propylene. Euro. Chem. News 2000, 73 (1917): 25
    52 UOP提高烯烃产物的FCC新工艺.石油与化工要闻,2000年10月19日:13~14
    53 罗承先.日本开发成功石脑油催化裂解工艺.石油与化工要闻2000年4月13日:13~13
    54 John Baker. Stranded gas options. Euro.Chem.News, 2004(3): 19~20
    55 Waldemar Liener, Martin Rothaemel, Jens Wagner. Creating value from stranded natural gas. Petrochemicals and gas processing PTQ, Autumn 2003: 141~147
    56 许德联.低成本的甲醇制丙烯路线.石油化工要闻,2002年1月17日:17~19
    57 冀楠.丙烯需求紧张促使丙烷脱氢发展.石油化工要闻,2004年4月22日:15~17
    58 J Cosyns, J Chodorge, D Comunereuc. Maximize propylene production. Chemical Week, 1999,161(41):61
    59 Paying for the price for propylene. Euro. Chem. News, 2000,72(1905): 20
    60 Bill Macdonald. New tech on the block. Euro. Chem. News, Chemscope, 1998, May: 14~16
    61 Propylene. Hydrocarbon processing, 1989, 68(11): 111
    62 Narasimhan Calamur, Martin Carrera. Propylene. Kirk othmer encyclopedia of chemical technology, 1996, 4th Ed, Vol 20: 249~271
    63 许德联.增产丙烯的对策(一).石油化工要闻,2002年8月15日:17~18
    64 言敏达,胡云光,白尔铮.C4烃利用现状及发展前景.见:中国化工学会石油化工专业委员会编.C4资源、利用途径及技术开发学术交流会论文集,呼和浩特.2002:1
    65 Mobil Seeks Partner for MOI Process. Euro. Chem. News, 1998,69(1808): 39
    66 M N Harandi. Fluidizer catalytic process for upgrading olefins. US 5 164 071, 1992.
    67 Peter Taffe. Take two ideas. Euro. Chem. News, Chemscope, 1998, 5: 12~14
    68 Carmen Garcia. Butadiene Imports Fall 30%, Propylene Markets Remain Balanced, Demand for Ethene Grows 6%. Euro. Chem. News, 2000, 72 (1902): 46~48
    69 H V Bolt, S Glanz. Increase propylene yields cost-effectively. Hydrocarbon processing, 2002, 12: 77~80
    70 W Liebner. Proplyur-upgrade of olefin by-product. In: 2002 Dewitt petrochemical review, Houston Texas USA: Willy & Sons press, 2002: 19~21
    71 彭琳.开发出新的丙烯源.国外石油化工快报,2002,32(8):2~3
    72 许德联.Propylur工艺提高丙烯产量.石油与化工要闻,2000年6月29日:13~13
    73 许德联.增产丙烯的对策(二).石油化工要闻,2002年8月22日:17~18
    74 宋芙蓉.可提高丙烯收率的Propylur工艺.国外石油化工快报,2000,30(7):4~4.
    75 Propylur route boosts propylene production. Euro. Chem. News. 2000,72 (1902):47
    76 The route to success. Euro. Chem. News, 2000, 79(5):1~7
    77 宋芙蓉.可提高丙烯产量的Superflex技术.国外石油化工快报,1999,29(9):3~3.
    78 Arco Chemical licenses its superflex propylene process. Chemical Engineering, 1998, 105 (7): 25
    79 石华.用催化轻汽油生产小分子烯烃的催化裂化新技术.石油化工要闻,2004年3月18日:11~13
    80 滕加伟,赵国良,谢在库,杨为民.烯烃催化裂解增产丙烯催化剂.石油化工,2004,33(2):100~103
    81 滕加伟,赵国良,谢在库,陈庆龄.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响.催化学报.2004,25(8):602~606
    82 赵金立.增产丙烯的技术及其进展.炼油技术与工程,2004(34):1~4
    83 张桂华.增产丙烯途径的技术经济比较.石油化工技术经济,2000(1):27~29
    84 瞿勇,胡云光,林衍华.丙烯增产技术开发进展及前景分析.石油化工技术经济,2004(5):46~51.
    85 孙桂大,闫富山.石油化工催化作用导论.北京:中国石化出版社,2000.
    86 M A den Hollander, M Wissink, M Makkee, J A Moulijn. Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A: General 2002, 223: 85-102
    87 J Abbot, B W Wojciechowski. The mechanism of catalytic cracking n-alkenes on ZSM-5 zeolite. Can. J. Chem. Eng. 1985, 63:462-469
    88 J Abbot, B W Wojciechowski. Kinetics of reactions of C_8 olefins on HY zeolite. J. Catal. 1987, 108: 346~355
    [1] 王殿中,刘冠华,舒兴田,何鸣元,田素贤,冯强.一种高硅ZSM-5分子筛的合成方法.CN97103679.9;王殿中,舒兴田,何鸣元,田素贤,冯强.一种高硅ZSM-5沸石的合成方法.CN98101478.X
    [2] C A Emeis. Determination of integrated molar extinction coefficients for infrared absorption bands ofpyridine adsorbed on solid acid catalysts. J. Catal. 1993 (141): 347~354
    1 朱向学,刘盛林,牛雄雷,孙新德,白杰,徐龙伢.ZSM-5分子筛催化剂上C4烯烃催化裂解制丙稀和乙烯.石油化工,2004,33(4):320-324
    2 R C Reid, J M Prausnitz, B E Poling. The properties of gased and liquids. 4th Ed. New York: Mr Graw-Hill, 1987:95
    3 朱向学,张士博,钱新华,牛雄雷,宋月芹,刘盛林,徐龙伢.水蒸气处理对ZSM-5 酸性及其催化丁烯裂解性能的影响.催化学报,2004,25(7):571-576
    1 高滋,何鸣元,戴逸云.沸石催化与分离技术.第一版.北京:中国石化出版社,1999:9~13
    2 L D Johnson, E K Nariman, A R Ware, Catalytic production of light olefins rich in propylene. US Patent 6,222,087, 2001, to Mobil Oil Corporation.
    3 T R Stiffens, P K Ladwig, Process for selectively producing light olefins. US Patent 6,455,750, 2002, to Exxonmobil Chemical Patents corporation.
    4 J.P. Dath, Jean-pierre, W. Vermeiren, Production of olefins. WO 01/00749, to Fina Oil & Chemical Corporation.
    5 徐如人,庞文琴等.分子筛与多孔材料化学.第1版.北京:科学出版社,2004:63~84
    6 P Meriaudeau, Vu A Tuan, Vu T Nghiem, F Lefevbre, Vu T Ha, Characterization and Catalytic Properties ofHydrothermally Dealuminated MCM-22. J. Catal. 1999 (185): 378~385
    7 B Marler. Silica ZSM-22: synthesis and single crystal structure refinement, Zeolites, 1987, 7: 393~397
    8 P A Wright, J.M.Thomas, G.R.Ramdas, S.A.Barri. ZSM-23: A Suggested Structure. J. Chem. Soc. Chem. Commun., 1985:1117~1119
    9 徐如人,庞文琴,屠昆岗.第1版.分子筛的结构与合成.长春,吉林大学出版社,1987:443
    10 M A den Hollander, M. Wissink, M. Makkee, J.A. Moulijn. Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A: General 2002 (223): 85~102
    11 J S Buchanan, J G Santiesteban, W O Haag. Mechanistic considerations in acid-catalyzed cracking ofolefins. J. Catal. 1996, 158 (1): 279~287
    12 J Abbot, B W Wojciechowski. The mechanism of catalytic cracking oc n-alkenes on ZSM-5 zeolite. Can. J. Chem. Eng. 1985(63): 462~469
    13 J Abbot, B W Wojcieehowski. Kinetics of reactions of C_8 olefins on HY zeolite. J. Catal. 1987(108): 346~355
    14 孙桂大,闫富山.石油化工催化作用导论.北京:中国石化出版社,2000
    15 Julius Scherzer. Octane-enhancing zeolite FCC catalysts: scientific and technical aspects. Cat. Rev. Sci. Eng. 1989 31(3):215~354
    16 V R Choudhary, S Banerjee, D Panjala, Product distribution in the aromatization of dilute ethene over H-GaAIMFI zeolite: effect of space velocity. Micropor. Mesopor. Mater. 2002 (51):203~210
    17 V R Choudhary, S Banerjee, D Panjala, Influence of Temperature on the Product Selectivity and Distribution of Aromatics and C_8 Aromatic Isomers in the Conversion of Dilute Ethene over H-Galloaluminosilicate (ZSM-5 type) Zeolite. J. Catal. 2002 (205): 398~403
    18 M Guisnet, P Magnoux. Deactivation by eoking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration. Catal. Today 1997 (36): 477~483
    19 T Behrsing, H Jaeger, J V Sanders. Coke deposits on H-ZSM-5 zeolite. Applied Catalysis, 1989,54(1):289~302
    20 G Poncelet, M LDubru. An infrared study of the surface acidity of germanic near-faujasite zeolite by pyridine adsorption. J. Catal. 1978 (52): 321~331
    21 滕加伟,赵国良,谢在库,陈庆龄.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的 影响.催化学报.2004,25(8):602~606
    1 高滋,何鸣元,戴逸云.沸石催化与分离技术.第一版.北京:中国石化出版社,1999:9-13
    2 Costas S. Triantafillidis, Athanasios G. Vlessidis, Nicholaos P. Evmiridis, Dealuminated H-Y Zeolites: Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H-Y Zeolites. Ind. Eng. Chem. Res. 39(2000): 307-319
    3 Costas S. Triantafillidis, Athanasios G. Vlessidis, Lori Nalbandian, Nicholaos P.Evmiridis, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Micropor. Mesopor. Mater. 47(2001): 369-388.
    4 Y.Q. Song, X.X. Zhu, S.J. Xie, Q.X. Wang, L.Y. Xu, The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts. Catal.Lett.97(2004):31-36.
    5 Sai P.R. Datikaneni, John D Adjaye, Raphael O. Idem, Narendra N. Bakhshi. Catalytic Conversion of Canola Oil over Potassium-Impregnated HZSM-5 Catalysts: C_2-C_4 Olefin Production and Model Reaction Studies. Ind. Eng. Chem. Res. 35(1996): 3332-3346.
    6 潘履让,汪群海,李赫咺.水蒸气处理对HZSM-5沸石结构,酸性和催化活性的影响.石油学报(石油加工),1994,10(3):97-101
    7 滕加伟,赵国良,宋庆英.见:郑小明,陆维敏,周仁贤,陈诵英,楼辉编.第十一届全国催化学术会议集.杭州:浙江大学出版社,2002:297-298
    8 V R Choudhary, C Sivadinarayana, P Devadas, S D Sansare, P Magnoux, M Guisnet. Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst: Influence of coking conditions on nature and removal of coke. Micropor. Mesopor. Mater. 1998 (21):91-101
    9 J P Dath, W Vermeiren, K Herrebout. Production ofolefins. WO 00/78894, 2000
    10 王辉,张汉军,孔德金,陈庆龄,高滋.ZSM-5催化剂水蒸汽处理对甲苯选择性歧化性能的影响.石油化工.2000,29(6):401-404
    11 朱向学,宋月芹,刘盛林,徐龙伢.丁烯催化裂解制丙烯/乙烯反应的热力学研究.催化学报,2005,26(2):111-117
    12 宋月芹.液化气中烯烃芳构化制取高辛烷值汽油的研究.中国科学院大连化学物理研究所博士论文,2005
    13 P. Courty, C. Marcilly, in: G. Poncelet, P. Grange, P. A. Jacobs (Eds.), Preparation of Catalysts Ⅲ, vol. 16, Elsevier, Amsterdam, 1982:485
    14 E Deng, Y. Du, Ch. Ye, Acid Sites and Hydration Behavior of Dealuminated Zeolite HZSM-5: A High-Resolution Solid State NMR Study. J. Phys. Chem. 99 (1995):15208-15214
    1 A Corma, C Corell, J Perez-Pariente. Synthesis and characterization of the MCM-22 zeolite. Zeolites. 15(1995): 2-8
    2 A Corma, V Martinez-Soria, E Schnoeveld. Alkylation of Benzene with Short-Chain Oiefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. J. Catal. 192(2000): 163-173
    3 D Ma, Y Shu, M Cheng, Y Xu, X Bao. On the Induction Period of Methane Aromatization over Mo-Based Catalysts. J. Catal. 194(2000): 105-114
    4 S Laforge, D Martin, J L Paillaud, M Guisnet. m-Xylene transformation over H-MCM-22 zeolite: 1. Mechanisms and location of the reactions. J. Catal. 220 (2003): 92-103
    5 M A Asensi, A Corma, A. Martinez. Skeletal Isomefization of 1-Butene on MCM-22 Zeolite Catalyst. J. Catal. 158(1996): 561-569
    6 P Wu, T Komatsu, T Yashima. Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts. Micropor. Mesopor. Mater. 22(1998): 343-356
    7 A Corma, J Martinez-Tfiguero. The Use of MCM-22 as a Cracking Zeolitic Additive for FCC. J. Catal. 165(1997): 102-120.
    8 P Meriaudeau, Vu A Tuan, Vu T Nghiem, F Lefevbre, Vu T Ha. Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22. J. Catal. 185 (1999): 378-385
    9 S Unverricht, M Hunger, S Ernst, H G Karge, J Weitkamp. Stud. Surf. Sci. Catal., 84(1994): 37
    10 Y Shu, R Ohnishi, M Ichikawa. Stable and Selective Dehydrocondensation of Methane Towards Benzene on Modified Mo/HMCM-22 Catalyst by the, Dealumination Treatment. Catal. Lett. 81(2002): 9-17
    11 G Poncelet, M L Dubru. An infrared study of the surface acidity of germanic near-faujasite zeolite by pyridine adsorption. J. Catal. 52 (1978): 321-331
    12 D Meloni, D Martin, M Guisnet. Acidic and catalytic properties of H-MCM-22 zeolites: 2. n-Heptane cracking: activity, selectivity and deactivation by coking. Appl. Catal. A: Gen. 215(2001): 67-79
    13 V R Choudhary, D Panjala, S Banerjee. Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite. Appl. Catal. A. Gen. 231 (2002): 243-251
    14 M A den Hollander, M Wissink, M Makkee, J A Moulijn. Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Appl. Catal. A 223 (2002):85-102
    
    15 Johnson, L David, Nariman, E Khushrav, Ware, A Robert. US patent 6 222 087(2001), to Mobil Oil Corporation.
    
    16 Stiffens, R. Todd, Ladwig, K. Paul, US Patent 6 455 750(2002), to Exxonmobil Chemical Patents Incorporation
    
    17 A Corma, V Gonzalez-Alfaro, A V Orchilles. The role of pore topology on the behaviour of FCC zeolite additives. Appl. Catal. A 187(1999):245-254
    
    18 I Gtlray, J Warzywoda, N Bac, A SaccoJr. Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 1999, 31:241-251
    
    19 Ana Lucia Santos Marques, José Luiz Fontes Monteiro, Heloise O. Pastore. Static crystallization of zeolites MCM-22 and MCM-49 Microporous and Mesoporous Materials, 1999,32:131-145
    
    20 Z Liu, Z Liu, Y Qi, LXu, Y He, Y Yang, Y Zhang. Effect of SiO_2/Al_2O_3 ratio on synthesis of MCM-22, UTM-1 and Kenyaite. Chin. J. Catal. 25(2004):542-546
    
    21 Z Liu, S Shen, B Tian, J Sun, B Tu, D Zhao. Static synthesis of high silica MCM-22 zeolite. Chin. Sci. Bull. 49(2004)325-330
    
    22 Costas S. Triantafillidis, Athanasios G. Vlessidis, Nicholaos P. Evmiridis, Dealuminated H-Y Zeolites: Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H-Y Zeolites. Ind. Eng. Chem. Res. 39(2000): 307-319
    
    23 Costas S. Triantafillidis, Athanasios G. Vlessidis, Lori Nalbandian, Nicholaos P.Evmiridis, Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Micropor. Mesopor. Mater. 47(2001): 369-388
    
    24 Kazu Okumura, Masashi Hashimoto, Takayuki Mimura and Miki Niwa. Acid Properties and Catalysis of MCM-22 with Different A(?) Concentrations. J. Catal. 2002, 206: 23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700