小麦族披碱草属(Elymus L.)的分子系统发育与进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Damort.)属于禾本科(Poaceae)的禾亚科(Pooideae),包含着与人类的生活密切相关的三种重要粮食作物,如:小麦、大麦和黑麦,小麦族还包含了许多有重要经济价值的牧草种类。按照L(?)ve(1984)的系统分类法,披碱草属(Elymus L.)是小麦族中种类最多和分布最广的属,在全世界约有150多种,广泛分布于全球特别是北半球温带地区。披碱草属植物不仅包含了优异的牧草种类,而且拥有抗病、抗虫和抗环境胁迫的重要基因资源,为麦类作物和牧草品种的遗传改良提供重要的资源保障。许多披碱草属植物是草原的重要组成部分,在我国西北部草原的合理开发利用、草原生态系统平衡的维持、水土保持等方面有着不可低估的作用。除含有如此众多的重要的应用价值外,披碱草属还是研究多倍体物种形成的理想材料。披碱草属是异源多倍体属,由四倍体(2n=4x=28)和六倍体(2n=6x=42)物种组成,含5个含不同基因组,即St,H,P,W和Y,以不同的组合方式经天然杂交和染色体加倍而形成。H基因组来自大麦属(Hordeum L.),St基因组来自拟鹅观草属(Pseudoroegneria(Nevski)(?).L(?)ve)、P基因组来自冰草属(Agropyron(L.)Gaertner),W基因组则来自澳大利亚冰草属(Australopyrum(Tsvelev)(?).L(?)ve)但是含Y基因组的祖先种却一直没有发现。St基因组遍布于所有披碱草属物种中,是基础基因组(funda-mental genome)。据目前资料记载四倍体物种的披碱草属含有StH或StY基因组,六倍体披碱草属物种含有StHH、StStY、StHY、StPY和StWY等基因组。
     亚洲特别是中亚山区被认为是披碱草属植物的起源和多样性中心。这主要基于以下事实:(1)这个地区的物种数目占世界上披碱草属物种的一半;(2)披碱草属分类学上的重要形态性状都可以在这个地区物种中找到;(3)这个地区存有不同倍性的披碱草属物种,2n=4x=28,2n=6x=42,2n=8x=56;(4)披碱草属物种的大部分基因组组成都可以在亚洲找到;(5)存在于大多数亚洲物种的Y基因组,被认为起源于中亚或喜马拉雅地区。这表明亚洲披碱草属植物的系统学研究将有助于了解整个披碱草属植物的演化关系。StY基因组四倍体物种有30多个种,主要分布于亚洲,是披碱草属的重要组成部分。与StH基因组物种相比较,StY基因组四倍体物种的形态和细胞学特征说明它是研究多倍化的非常好的材料。形态上表现出明显的过渡型:体积较大和体积较小的物种群,还有处于二者中间表型的物种群。在细胞学方面,StY基因组四倍体物种表现出两个亮点:一是这些物种的亲缘关系与它们的发生地呈显著相关性,St和Y基因组都出现明显的地理分化。但这种关系还没有用分子系统学的方法验证,以及出现这种分化的机制也没有报道。二是Y基因组的来源,这是披碱草属研究中比较有挑战性的课题,是一个任重道远的课题,也是一个意义深远的课题。细胞学的种种数据表明,Y基因组与St基因组的系统学关系非常近。
     本文通过核基因ITS、Adh和Waxy基因以及叶绿体基因trnL-F和marK的序列分析了披碱草属相关二倍体种的系统发育关系和披碱草属植物的起源。本文侧重于研究StY基因组的四倍体物种的系统发育关系和Y基因组的来源。主要研究结果如下:
     1.利用叶绿体基因trnL-F、nrDNA内转录间隔区(ITS)和三个单拷贝核基因(Adh2、Adh3和Waxy基因)的同源序列,探讨了披碱草属植物的相关二倍体属的二倍体种的系统发育关系。这些多基因树都显示了一致的结果,即(1)P、W、St和H基因组都是单系的;(2)H基因组处于系统发育树的基部,显示出它与其它三个基因组较远的系统学关系;(3)P和W基因组的关系最近;(4)St基因组和P—W基因组的分支表现出比较近的系统发育关系。
     2.披碱草属植物的分子系统发育和进化研究中,选用了含St、StSt、H、P和StY、StH、StStY、StHY、StPY、StWY基因组的38个物种的54份样品,其中包括45份披碱草属的样品。这些披碱草属样品包括39份的具明显地理分布格局的StY基因组样品。这些样品的nrDNA内转录间隔区(ITS)和两个叶绿体片段(trnL-F、marK)被测序。基于简约法和邻接法的系统发育分析都说明:拟鹅观草属的二倍体祖先种参与了StY、StStY、StH、StHY、StPY和StWY等基因组的物种形成,而且提供了母本。此外,我们还揭示出StH和StHY基因组物种的另一个二倍体祖先种来自大麦属,StPY基因组物种的另一个二倍体祖先种来自冰草属,而澳大利亚冰草属的二倍体祖先种参与了StWY基因组的物种形成。这说明披碱草属植物是一个典型的属间杂种多倍体。同时,系统发育树还赋予了Y基因组的来源和StY基因组物种的起源的重要内容。在系统发育树的拓朴结构上,有明显的P、W、H和St的分支,但没有Y基因组的分支。对比StH、StHY、StPY和StWY基因组的ITS序列特征,我们推断Y和St基因组可能共起源。系统发育树还揭示出StY基因组物种经历了多次杂交,是多次起源的四倍体物种,而且在进化中经历了由中亚向东亚和西亚的快速辐射过程,是最近起源的物种,它们的系统发育关系与物种的地理分布位置呈明显的地理相关性,这进一步支持了细胞学的观点。
     3.鉴于rDNA内转录间隔区和两个叶绿体片段对Y基因组的起源和StY基因组披碱草属植物的进化的重要提示,我们决定用系统发育信息更多的单拷贝基因Adh2、Adh3和Waxy来进一步研究Y基因的来源和StY基因组披碱草属植物的系统发育关系。这三个核基因提供的系统发育信息要远远高于rDNA内转录间隔区和两个叶绿体片段的。三个基因构建的系统发育树都以高的支持率说明Y基因组来自St基因组。物种以中亚为中心向四周迁移,但迁移过程中,受到环境适应的选择,在西亚保留了的相对较少的基因型的中亚物种并进化发展成西亚物种,东亚几乎保留了所有单倍型的中亚物种并发展成东亚物种。树的拓朴结构说明杂交、迁移和分化是StY基因组披碱草属植物的进化主动力。
     通过目前的研究,我们得出四个主要结论:(1)披碱草属多倍体植物是典型的属间和种间杂交的结果。分子系统学的研究结果表明大麦属(Hordeum L.,H基因组)、拟鹅观草属(Pseudoroegneria(Nevski)(?).L(?)ve,St基因组)、冰草属(Agropyron(L.)Gaertner,P基因组)和澳大利亚冰草属(Australopyrum(Tsvelev)(?).L(?)ve,W基因组)的二倍体种是该属植物的祖先。(2)StY基因组之间没有明显的分化,因此推断Y和St可能有共同的起源,即StSt基因组的同源四倍体物种经历了基因组的一系列的分化,如基因突变的积累,染色体片段的倒位和易位和基因组间的变化等。随着这种变化的逐渐积累,以致于形成了现在的StY基因组。由此,我们提出多倍体进化的一种新机制:同源多倍体的基因组在同一物种内的不断分化以及这种分化的逐渐积累形成了今天的一些异源多倍体物种。(3)分子证据表明在StY基因组的物种之间有明显的地理分化,中亚可能是StY基因组披碱草属植物的分化中心,并在此基础上,StY基因组的披碱草属植物向东亚和西亚进行了快速的辐射,形成了现代StY基因组物种的分布格局;多次杂交、迁移和分化是StY基因组的披碱草属植物进化的主要动力。(4)拟鹅观草属物种可能是所有披碱草属植物的母本供体。
The wheat tribe Triticeae Damort., in the subfamily Pooideae, Poaceae, includes three of the most important cereal crops, i.e., wheat, barley, and rye, as well as many economically valuable forage grasses. The genus Elymus L. is the largest genus in the Triticeae Damort., following the circumscription of Love and Dewey, encompassing approximately 150 taxa, and occurring from the Arcic and temperate to subtropical regions. As an exclusively allopolyploid genus, Elymus has its origin in other groups, and thus it has close relationships with other genera in Triticeae. Cytological studies suggest that five basic genomes, namely, the St, Y, H, P, and W in various combinations constitute Elymus species, i.e. the StH and StY genomes in tetraploids, and the StStY, StHY, StPY, and StWY in hexaploids. The St genome is a fundamental genome that exists in all Elymus species and was donated by the genus Pseudoroegneria (Nevski) A.Love. The H, P, and W genomes are derived from the genera Hordeum L., Agropyron (L.) Gaertner, and Australopyrum (Tsvelev) A. Love of Triticeae, respectively. However, the donor of the Y genome that is present in the majority of the Asiatic Elymus species has not yet been identified, although extensive investigations have been carried out.
    Asia, particularly the central Asiatic mountain region, is an important center for the origin and diversity of Elymus L., which is reflected by the following facts: (1) more than half of the world number of Elymus species occurs in this area; (2) many different morphological forms, which are used as key characters in the taxonomy, are found in this region; (3) the different polyploid levels have been reported from Asia; (4) most genomic combinations known in this genus are found in Asia; (5) the "Y"genome, which is present in the majority of Asiatic Elymus species, is thought to have its origin in Central Asia or the Himalayan region. The StY-genome Elymus species, being one of the most important genomic combinations, are restricted to Asia with one exception of E. panormitanus (Parl.) Tzvelev, which is also found in South East part of Europe.
    Data from extensive morphological and cytogenetic analyses have been used to illustrate systematic relationships of the genus and to clarify the ancestry of polyploid species. Compared with StH-genome species, StY-genome species show unique systematic relationships. There had three distinct morphological groups. The cytogenetic analyses showed the StY-genome Elymus species from the same geographic regions, e.g. within eastern or western Asia, have a relatively close
    genomic relationship, whereas those from different regions have a more distant relationship, and the St and Y genomes have close affinities. In this work, we used the sequences of nuclear genes (ITS, Adh2, Adh3 and Waxy) and cpDNA (trnL-F and matK) to explore the origin of Elymus species and the Y genome, and to reveal the mechanism of the geographical differentiation of the StY-genome Elymus species. The main results are summarized as follows:
    1. Based on multiple-gene sequence data, including one chloroplst trnL-F gene, one ITS fragments of nuclear rDNA, and three single copy nuclear gene Adh2, Adh3, and Waxy, the phylogenetic relationships of the four related genera diploids of Elymus were inferred. The phylogenic trees indicated that: (i) each genome group is monophyletic; (ii) H genome is basal; (iii) P genome shows a closer affinity to W genome; (iv) St genome has a close affinity to P-W genome clade.
    2. To explore the origin of Elymus species and the mechanism of the geographical differentiation of StY-genome Elymus species, we selected 54 taxa with St, H, P, StSt, StY, StH, StStY, StHY, StPY and StWY genome constitutions, including 45 Elymus taxa. In the present study, the ITS, trnL-F and matK were sequenced. The ITS sequences revealed a distinct phylogenetic relationship of the polyploid Elymus and their diploid donor genera, although the St and Y genomes did not show any separation. The ITS tree indicated a certain degree of geographic differentiation of the StY-genome species. The trnL-F and matK sequences revealed an especially close relationship of Pseudoroegneria to all Elymus species included. All these trees indicated multiple origins and recurrent hybridization of Elymus species.
    3. In the ITS sequence analysis, the phylogenetic tree indicated the correlation between geographic distribution and species relationships exists, and the Y and St genomes may have the same origin. Considered the weak support in the ITS tree, we selected single copy genes (Adh2, Adh3, and Waxy) to give further research about these scientific questions. The three single copy genes had higher phylogenetic information sites and gave good support for these two questions. In phylogenetic trees, there had distinct genomic clades clustered the diploid genomic species and the polyploids with one of genomes similar to the corresponding diploid genome. In other words, the StH- and StHY-genome polyploid species were grouped with St- and H-genome diploids, respectively; the StPY-genome polyploid species clustered with St- and P-genome diploids, respectively; the StY-genome
    polyploid species grouped with St- and StSt- genome species. Still, there had no Y genome clade. Based on the ample data about these three genes, combined with the ITS sequences, and cytological data and C values, we thought the Y genome may be the differentiated St genome after St genome polyploidization. So, the StY-genome allotetraploids may be the StSt-genome autotetraploids or segmental autotetraploids.
    The phylogenetic trees showed the species distributed in western Asia all grouped with the central Asiatic species and formed the basal clade in the Adh gene trees, and some central Asiatic species grouped with eastern Asiatic species. These indicated the genetic diversity is the highest in the central Asiatic species, and the Central Asia may be the original center.
    In summary, this study suggests that: (i) Elymus L. has its origin through a typical intergeneric/interspecific hybridization, and the diploids of Pseudoroegneria (Nevski) A.Love, Hordeum L., Agropyron (L.) Gaertner, and Australopyrum (Tsvelev) A. Love of Triticeae are its ancestors; (ii) Pseudoroegneria (Nevski) A.Love was the maternal donor of the polyploid Elymus; (iii) the "Y" genome existed in the StY-genome Elymus may be differentiated from the St genome, i.e., the autopolyploid StSt-genome species probably experienced genomic differentiation within a species after autopolyploidy, leading to the significant genomic change and resulting the StY-genome allotetraploids; (iv) the StY genome species distributed in the Central Asia with a high level of genetic diversity radiated to the Western and Eastern Asia, under the environmental selection and other factors, and only a few species spread to the western Asia and most species have remained in the Central and eastern Asia.
引文
[1] 卢永莲,孙永华,刘尚武,杨永昌,吴珍兰,郭本兆,杨锡麟,王朝品,崔乃然.中国植物志,第九卷,第三分册[M].北京:科学出版社,1987.
    [2] 赵寿元,乔守怡.现代遗传学[M].北京:高等教育出版社,2001.
    [3] Adams KL, Wendel JF. Exploring the genomic mysteries of polyploidy in cotton [J]. Biological Journal of the Linnean Society, 2004, 82(4): 573-581.
    [4] Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize ge nomes [J]. Proceeding of the National Academy of Sciences. USA, 1993, 90(17): 7980-7984.
    [5] Allendorf FW, Thorgaard GH. Tetraploidy and the evolution of salmonid fishes [M]. In Turner BJ, ed. Evolutionary genetics of fishes. Plenum, New York, 1984: 1-53.
    [6] Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference [J]. Molcular Phylogenetics and Evolution, 2003, 29(3): 417-434.
    [7] Anderson E. Introgressive hybridization [M]. New York: John Wiley and Sons,1949.
    [8] Arnold ML. Natural hybridization and evolution [M]. New York, USA: Oxford University Press, 1997.
    [9] Assadi M. Meiotic configuration and chromosome number in some Iranian species of Elymus L. and Agropyron Gaerter (Poaceae: Triticeae) [J]. Botany Journal of Lirmean Society, 1995, 117(2): 159-168.
    [10] Assadi M, Runemark H. Hybridization, genomic constitution and generic delimitation in Elymus s.l.(Poaceae, Triticeae) [J]. Plant Systematics and Evolution, 1995, 194(3): 189-205.
    [11] Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny [J]. Annals of the Missouri Botanical Garden, 1995, 82(2): 247-277
    [12] Bailey GS, Poulter RT, Stockwell PA. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci [J]. Proceeding of the National Academy of Sciences, USA, 1978, 75(11): 5575-5579.
    [13] Barkworth ME, Dewey DR. Genomically based genera in the perennial Triticeae of North America: identification and membership [J]. American Journal of Botany, 1985, 72(6): 767-776.
    [14] Barrier M, Robichaux RH, Purugganan MD. Accelerated regulatory gene evolution in an adaptive radiation [J]. Proceeding of the National Academy of Sciences. USA, 2001, 98(18): 10208-10213.
    [15] Basolo AL. The dynamics of Fisherian sex-ratio evolution: theoretical and experimental investigations [J]. American Naturalist, 1994,144(4): 473-90.
    [16] Bayer RJ, Purdy BG, Lebedyx DG Niche differentiation among sexual species of Antennaria gaertneri (Asteraceae: Inuleae) and A. rosea, their allopolyploid derivative [J]. Evolutionary Trends in Plants, 1991, 5(1): 109-123.
    [17] Beaton MJ, Hebert PDN. Geographic parthenogenesis and polyploidy in Daphnia pulex Leydig [J]. American Naturalist, 1988,132(6): 837-845.
    [18] Belling J. The origin of chromosomal mutations in Uvulania [J]. Journal of Genetics, 1925,15(1): 245-266.
    [19] Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms [J]. Philosophical Transactions of the Royal Society of London, 1976, 274: 221-21 A.
    [20] Bennett MD, Smith JB. Nuclear DNA amounts in angiosperm [J]. Philosophical Transactions of the Royal Society of London B, 1991, 334: 309-345.
    [21] Bennett MD, Leitch JJ. Nuclear DNA amounts in angiosperm. Annals of Botany [J], 1995, 76(1): 113-176.
    [22] Bennetzen JL. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica, 2002,115(1): 29-36.
    [23] Bentham G Notes on Gramineae [M]. Journal of the Linnean Society. Botany. London, 1881(1): 14-134.
    [24] Blanc G Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J]. The Plant Cell, 2004, 16(7): 1667-1678.
    [25] Blattner FR. Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences [J]. Molecular Phylogenetics and Evolution ,2004, 33(2): 289-299.
    [26] Bothmer R von, Flink J, Landstrom T. Meiosis in interspecific Hordeum hybrids I diploid combinations [J]. Canadian Journal of Genetics and Cytology, 1986, 28(3): 525-535.
    [27] Bothmer R von, Flink J, Landstrom T. Meiosis in interspecific Hordeum hybrids I triploid combinations [J]. Evolutionary Trends in Plants,1987,1(1): 41-51.
    [28] Bothmer R von, Flink J, Landstrom T. Meiosis in interspecific Hordeum hybrids I tetraploid (2x X 6x) combinations [J]. Hereditas, 1988a, 108(1): 141-148.
    [29] Bothmer R von, Flink J, Landstrom T. Meiosis in interspecific Hordeum hybrids I tetraploid (4x X 4x) combinations [J]. Genome, 1988b, 30(3): 479-485.
    [30] Bothmer R von, Lu BR, Linde-Laursen I. Intergeneric hybridization and C-banding patterns in Hordelymus (Triticeae, Poaceae) [J]. Plant Systematics and Evolution ,1994a, 189(2): 259-266.
    [31] Bretagnolle F, Lumaret R. Bilateral polyploidization in Dactylis glomerata L. subsp. Lusitanica: occurrence, morphological and genetic characteristics of first polyploids [J]. Euphytica, 1995, 84(1): 197-207.
    [32] Brigg D, Walters SM. Plant Variation and Evolution [M]. Cambridge: Cambridge University Press,3rd ed, 1997.
    [33] Brochmann C. Reproductive strategies of diploid and polyploid populations of arctic Draba (Brassicaceae) [J]. Plant Systematic Evolution, 1993,185(l):55-83.
    [34] Buckler ESIV, Ippolito A, Holtsford TP. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications [J]. Genetics, 1997, 145(3): 821-832.
    [35] Butterfass T. Cell volume ratios of natural and induced tetraploid and diploid flowering plants [J]. Cytologia, 1987, 52(2): 309-316.
    [36] Carputo D, Frusciante L, Peloquin SJ. The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums [J]. Genetics, 2003,163(1): 287-294.
    [37] Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solutin of the DNA C-value paradox [J]. Journal of Cell Science, 1978, 34(2): 247-278.
    [38] Chen Q, Armstrong K. Genomic in situ hybridization in Avena sativa. Genome, 1994, 37(4): 607-612.
    [39] Clegg MT, Gaut BS, Learn GH, Mortan BR. Rates and patterns of chloroplast DNA evolution. Proceeding of the National Academy of Sciences. USA, 1994, 91(12): 6795-6801.
    [40] Clevinger JA, Panero JL. Phylogenetic analysis of Silphium and subtribe Engelmanniinae (Asteraceae: Heliantheae) based on ITS and ETS sequence data [J]. American Journal of Botany, 2000, 87(4): 565-572.
    [41] Coleman L. Nuclear conditions in normal stem tissue of Vicia faba [J]. Canadian Journal of Research, 1950, 28(2): 382-391.
    
    [42] Cronn R, Wendel JF. Cryptic trysts, genomic mergers, and plant speciation [J]. New Phytologist, 2003,161(1): 133-142.
    [43] Cronn RC, small RL, Wendel JR. Duplicated genes evolve independently after polyploid formation in cotton [J]. Proceeding of the National Academy of Sciences/USA, 1999, 96(25): 14406-14411.
    [44] Cummings MP, Clegg MT. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare spp. spontaneum): An evaluation of the background selection hypothesis [J]. Proceeding of the National Academy of Sciences. USA, 1998, 95(10): 5637-5642.
    [45] Darlington CD. Chromosome Botany and the Origins of Cultivated Plants [M]. New York: Hafner. 2nd ed, 1963.
    [46] Darlington CD. Recent Advances in Cytology [M]. 1st ed. Churchill. London, 1932.
    [47] Darlington CD. Recent Advances in Cytology [M]. 2nd ed. Churchill. London, 1937.
    [48] Ehrendorfer F. Polyploidy and distribution [M]. In: Lewis WH, ed. Polyploidy: biological relevance. New York, USA: Plenum Press, 1980.
    [49] Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In Gene Manipulation in Plant Improvement [M]. Edited by Gustafsen JP. Plenum Press, New Y ork. 1984: 209-279.
    [50] Dewey DR. Cytogenetics of Agropyron drobovii and five of its interspecific hybrids [J]. Botanical Garz, 1980,141(2): 469-478.
    [51] Dewey DR. The origin of Agropyron leptorum [J]. American Journal of Botany, 1972,59(6): 839-842.
    [52] Doyle GG Preferential pairing in structural heterozygotes of Zea mays [J] . Genetics, 1963, 48(3): 1011-1027.
    [53] Doyle JJ, Doyle JJ, Rauscher JT, Brown AH. Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans {Glycine subgenus Glycine) [J]. New Phytologist, 2003,161(1): 121-132.
    [54] Doyle JJ, Doyle JL. Isolate of plant DNA from fresh tissue [J]. Focus, 1990, 12(1): 13-15.
    [55] Dubcovsky J, Dvorak J. Ribosomal RNA multigene loci: nomads of the Triticeae genomes [J]. Genetics, 1995,140(4): 1367-1377.
    [56] Durbin ML, McCaig B, Clegg MT. Molecular evolution of the chalcone synthase multigene family in the morning glory genome [J]. Plant Molecular Biology, 2000, .42(1): 79-92.
    [57] Dvorak J, di Terlizzi P, Zhang HB, Resta, P. The evolution of polyploid wheat: identification of the A genome donor species [J]. Genome, 1993, 36(1): 21-31.
    [58] Dufresne F, Hebert PDN. Temperature-related differences in lifehistory characteristics between diploid and polyploid clones of the Daphnia pulex complex [J]. Ecoscience, 1998, 5(3): 433-437.
    [59] Elstrand NC, Lee JM, Foster KW. Alcohol dehydrogenase isozymes in grain sorghum (Sorghum bicolor): evidence for a gene duplication [J]. Gene, 1983, 21(1): 147-154.
    [60] Felber F. Establishment of a tetraploid cytotype in a diploid population effect of relative fitness of the cytotypes [J]. Journal of Evolutionary Biology, 1991, 4(1): 195-207.
    [61] Ferguson D, Sang T. Speciation through homoploid hybridization between allotetaploids in peonies (Paeonia) [J]. Proceeding of the National Academy of Sciences, USA, 2001, 27(7): 3915-3919.
    [62] Felsenstein J. Phylip: phylgoeny inference package, ver 3.57c [M]. University of Washington Press, Seattle, 1995.
    [63] Ferris SD, Whitt GS. Evolution of the differential regulation of duplicate genes after polyploidization [J]. Journal of Molecular Ecology, 1979,12(2): 267-317.
    [64] Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology [J]. Systematic Zoology. 1971. 20(2): 406-416.
    [65] Frank AC, Amiri H, Andersson SG Genome deterioration: loss of repeated sequences and accumulation of junk DNA [J]. Genetica, 2002,115(1): 1-12.
    [66] Frederiksen S. Taxonomic studies in Eremopyrum (Poaceae) [J]. Nordic Journal of Botany, 1991,11(2): 271-285.
    [67] Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations [J]. Genetics, 1999, 151(4): 1531-1545.
    [68] Fowler NL, Levin DA. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor [J]. American Naturalist, 1984,124(6): 703-711.
    [69] Gaut BS, Doebley JF. DNAsequence evidence for the segmental allotetraploid origin of maize [J]. Proceeding of the National Academy of Sciences, USA, 1997, 94(12): 6809-6814.
    [70] Gaut BS, d'Ennequin ML, Peek AS, Sawkins MC. Maize as a model for the evolution of plant nuclear genomes [J]. Proceeding of the National Academy of Sciences, USA, 2000, 97(13): 7008-7015.
    [71] Gaut BS, Peek AS, Morton BR, Clegg MT. Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae) [J]. Molecular Biology and Evolution, 1999,16(8): 1086-1097.
    [72] Gaut BS. Evolutionary dynamics of grass genomes [J]. New Phytologist, 2002, 154(1): 15-28.
    [73] Gaut BS, Morton BR, McCaig BC, Clegg MT. Substitution rate comparisons between grasses and plams: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastif gene rbcL [J]. Proceeding of the National Academy of Sciences, USA, 1996, 93(18): 10274-10279.
    [74] Ge S, Sang T, Lu BR, Hong DY. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceeding of the National Academy of Sciences [J]. USA, 1999,96(26): 14400-14405.
    [75] Gerbi SA. Evolution of ribosomal DNA [M]. In: Macintyre RJ. ed. Molecular Evolution Genetics. New York: Plenum. 1985: 419-517.
    [76] Gibson TJ, Spring J. Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins [J]. Trends Genetics, 1998, 14(1): 46-49.
    [77] Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma, DP. Evolution of a noncoding region of the chloroplast genome [J]. Molecualr Phylogenetics and Evolution, 1993, 2(1): 52-64.
    [78] Gottlieb LD, Ford VS. A recently silenced duplicate PgiC locus in Clarkia [J]. Molecular Biology and Evolution, 1997,14(1): 125-132.
    [79] Grant V. Cytogenetics of the hybrid Gilia millefoliata x achilleaefolia. I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions [J]. Chromosoma, 1952,5(5): 372-390.
    [80] Grant V. The origin of adaptations [M]. New York, USA: Columbia University Press, 1963.
    [81] Goldblatt P. Polyploidy in angiosperms: monocotyledons [M]. In: Lewis WH, ed. Polyploidy: biological relevance. New York: Plenum Press, 1980: 219-239.
    [82] GPWG Phylogeny and subfamilial classification of the grasses (Poaceae) [J]. Annals of Missouri Botanical Garden, 2001, 88(2): 373-457.
    [83] Hagerup O. The spontaneous formation of haploid, polyploid and aneuploid embryos in some orchids [J]. Kongel Danshe Videnskab Selskab Biological Meddeleser, 1947, 20(1): 1-22.
    [84] Hamby RK, Zimmer EA. Ribosomal RNA as a phylogenetic tool in plant systematics [M]. In: Soltis PS, Soltis DE, Doyle JJ. eds. Molecular Systematics Plants. New York: Chapman and Hall,1992: 50-101.
    [85] Hancock JF, Bringhurst RS. Evolution of California populations of diploid and octoploid Fragaria (Rosaceae): a comparison[J]. American Journal of Botany, 1981, 68(1):1-5.
    [86] Hancock JM. Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects [J]. Genetica 2002,115(1): 93-103.
    [87] Harlan JR, de Wet JMJ. On O. Winge and a prayer: the origins of polyploidy [J]. Botanical Review, 1975, 41(2): 361-390.
    [88] Harrison RG Pattern and process in a narrow hybrid zone [J]. Heredity, 1986. 56(2): 337-349.
    [89] Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, McKnight TD, Stelly DM, Price HJ. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) [J]. American Journal of Botany, 1998, 85(10): 1364-1368.
    [90] Helfgott, DM, Mason-Gamer RJ. The evolution of North American Elymus (Triticeae, Poaceae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences [J]. Systematic Botany, 2004, 29(4): 850-861.
    [91] Hershkovitz MA, Zimmer EA, Hahn WJ. Ribosomal DNA sequences and angiosperm systematics [M]. In: Hollingworth PM, Baterman RM, Gornall RJ. eds. Molecular Systematics and plant evolution. London: Taylor & Francis, 1999: 268-326.
    [92] Hilu KW, Liang H. The matK gene: sequence variation and application in plant systematics [J]. American Journal of Botany, 1997, 84(6): 830-839.
    [93] Hillis DM. Approaches for accessing phylogenetic accuracy [J]. Systematics Biology, 1995, 44(1): 3-16.
    [94] Hitchcock, AS. Mannual of grasses of the united states [M]. 2nd, revised by Chase A, Washington DC:U. S. Government Printing Office. 1951.
    [95] Hong DY. Cytotaxonomy of plants. Beijing: Science Press, 1990.
    
    [96] Howard DJ. A zone of overlap and hybricization between two ground cricket species [J]. Evolution, 1986, 40(1):34-43.
    [97] Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacefr region in nuclear ribosomal DNA in monocots [J]. Genome, 1994, 37(1): 112-120
    [98] Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences [J]. Genome, 1995, 38(1): 221-223.
    [99] Hughes MK, Hughes AL. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis [J]. Molecular Biology and Evolution, 1993,10(6): 1360-1369.
    [100] Hughes AL. The evolution of functionally novel proteins after gene duplication [J]. Proceedings of the Royal Society of London B, 1994, 256(1): 119-124.
    [101] Hughes AL, Green JA, Garbayo JM, Roberts RM. Adaptive diversification within a large family of recently duplicated, placentally expressed genes [J]. Proceeding of the National Academy of Sciences. USA, 2000, 97(7): 3319-3323.
    [102] Husband BC. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations [J]. Biological Journal of the Linnean Society, 2004, 82(4): 537-546.
    [103] Husband BC. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle [J]. Proceedings of the Royal Society of London B, 2000, 267(1): 217-223.
    [104] Husband BC. Schemske DW, Burton TL, Goodwillie C. Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium [J]. Proceedings of the Royal Society of London B, 2002, 269(1509): 2565-2571.
    [105] Jakob SS, Meister A, Blattner FR. The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates [J]. Molecular Biology and Evolution, 2004, 21 (4): 860-869.
    [106] Jelenkovic G, Hough LF. Chromosome associations in the first meiotic division in three tetraploid clones of Vactinium corymbosum L. [J]. Canadian Journal of Genetics and Cytology, 1970,12(2): 316-324.
    [107] Jelenkovic G, Harringon E. Non-random chromosome associations at diplotene and diakinesis in a tetraploid clone of Vaccinium australe Small [J]. Canadian Journal of Genetics and Cytology, 1971,13(2): 270-276.
    [108] Jellen EN, Gill BS, Cox TS. Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena) [J]. Genome, 1994, 37(4): 613-618.
    [109] Jensen KB, Wang R R-C. Cytogenetics of Elymus caucasicus (Koch) Tzvelev and E. longearistatus (Boiss) Tzvelev (Poaceae: Triticeae) [J]. Genome, 1991, 34(5): 860-867.
    [110] Jensen KB. Cytology and Taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus and E. batalinii (Triticeae: Poaceae) [J]. Genome, 1990, 33(3): 563-570.
    [111] Jensen KB, Curto M, Asay KH. Cytogenetics of Eurasian bluebunch wheatgrass and their relationship to North American bluebunch and thickspike wheatgrasses [J]. Crop Science, 1995, 35(4):1157-1162.
    [112] Jones GH. Meiosis in autopolyploid Crepis capillaries. III. Comparison of triploids and tetraploids: evidence for non independence of autonomous pairing sites [J]. Heredity, 1994, 73(1): 215-219.
    [113] Johson LA, Soltis DE. Phylogenetic inference in Saxifragaceae sensusrricto and Gilia (Polemoniaceae)using matK sequences [J]. Annals of Missouri Botanical Garden, 1995, 82(1): 149-175.
    [114] Johnson LA, Soltis DE. Assessing congruence: Epirical examples from molecular data [M]. In: Soltis DE, Soltis PS, Doyle JJ. Eds. Molecualr Systematics Plants. Boston: Kluwer Aademy Publication, 1998:1-42.
    [115] Keeling PJ, Palmer JD. Lateral transfer at the gene and subgenic levels in the ebolution of eukaryotic enolase [J]. Proceeding of the National Academy of Sciences, USA, 2001, 98(20): 10745-10750.
    [116] Kellogg EA, Appels R, Mason-Gamer RJ. When genes tell different stories: the diploid genera of Triticeae(Gramineae) [J]. Systematic Botany, 1996, 21(1): 321 -347.
    [117] Kellogg EA, Bennetzen JL. The evolution of nuclear genome structure in seed plants [J]. American Journal of Botany, 2004, 91(12): 1709-1725.
    [118] Kellogg EA. The grass: a case study in macroevolution [J]. Annual Review of Ecology and Systematics , 2000, 31(1): 217-238.
    [119] Kihara H, Nishiyama I. Genome analyse between Triticum and Aegilops. Genome affinitaten in tri-, tetra- and pentaploiden weizenbastarden [J]. Cytologia, 1923,1(2): 263-284.
    [120] Kihara H. Interspecific relationship in Triticum and Aegilops [J]. Seiken Ziho, 1975,15(1): 1-12.
    [121] Kimber G Genome analysis in the genus Triticum [M].. In: Sakamoto S. ed. Proceedings of the 6~(th) International Wheat Genetic Symposium. Japan. Kyoto University Press, Kyoto, 1983: 23-28.
    [122] Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences [J]. Journal of Molecular Evolution, 1980,16(1): 111-120.
    [123] Kirik A, Salomon S, Puchta H. Species-specific double-strand break repair and genome evolution in plants [J]. EMBO Journal, 2000,19(20): 5562-5566.
    [124] Kimber G, Tsunewaki K. Genome symbols and plasma types in the wheat group [C]. In: Miller TE, Koebner RMD, ed. Proceedings of the 7nd International Triticeae Symposium. Cambridge 1987:1209-1211.
    [125] Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea [J]. Journal of Molecular Evolution, 1989, 29(1): 170-179.
    [126] Koch MA, Dobes C, Thomas MO. 2003. Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in north American Arabis divaricarpa (Brassicaceae) [J]. Molecular Biology and Evolution, 2003,20(3): 338-350.
    [127] Koch MA, Al-Shehbaz IA. Molecular systematics of the Chinese Yinshania (Brassicaceae): evidence from plastid trnL and nuclear ITS DNA sequence data [J]. Annals of Missouri Botanical Garden, 2000, 87(2): 246-272.
    [128] Kostoff D. Studies on polyploid plants. XXI. Cytogenetic behaviour of the allopolyploid hybrids Nicotiana glauca Grah.x Nicotiana langsdorffii Weinm. and their evolutionary significance [J]. Journal of Genetics, 1938, 37(1): 129-209.
    [129] Krebs SL, Hancock JF. Tetrasomic inheritance of isoenzyme markers in the highbush blueberry Vaccinium corymbosum L. [J]. Heredity, 1989, 63(1): 11-18.
    [130] Kumar S, Tamura K, Nei M. Mega: molecular evolutionary genetics analysis. Version 3.01 [M]. Pennsylvania State University, University Park, PA, 1993.
    [131] Lagercrantz U, Lydiate DJ. Comparative genome mapping in Brassica [J], Genetics, 1996,144(4): 1903-1910.
    [132] Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent recombinations [J]. Genetics, 1998,150(3): 1217-1228.
    [133] Larson SR Jone TA, Jensen KB. Population structure in Pseudoroegneria spciata (Poaceae: Triticeae) modeled by Bayesian clustering or AFLP genotypes [J]. American Journal of Botany, 2004, 91(12): 1789-1801.
    [134] Lee HS, Chen ZJ. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids [J]. Proceeding of the National Academy of Sciences, USA, 2001, 98(12): 6753-6758.
    [135] Leitch IJ, Bennett MD. Genome downsizing in polyploid plants [J]. Biological Journal of the Linnean Society, 2004, 82(4): 651-663.
    [136] Levy AA, Feldman M. The impact of polyploidy on grass genome evolution [J]. Plant Physiology, 2002, 30(4): 1587-1593.
    [137] Lewis WH. Temporal adaptation correlated with ploidy in Claytonia virginica [J]. Systematic Botany, 1976,1(1): 340-347.
    [138] Lewis WH, Suda Y. Diploids and polyploids from a single population: temporal variation [J]. Journal of Heredity, 1976, 67(2): 391-393.
    [139] Li WH. Accelerated evolution following gene duplication and its implications for the neutralist-selectionist controversy [M]. In: Ohta I, Aoki K, ed. Population genetics and molecular evolution. Berlin: Springer-Verlag, 1985, 333-353.
    [140] Lin JZ, Brown AH, Clegg MT. Heterogeneous geographic patterns of nucleotide sequence diversity and two alcohol dehydrogenase genes in wild barley (Hordeum vulgare ssp. spontaneum) [J]. Proceeding of the National Academy of Sciences, USA, 2001, 98(2): 531-536.
    [141] Lin JZ, Morrell PT, Clegg MT. The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley {Hordeum vulgare ssp. spontaneum) [J]. Genetics, 2001, 162(4): 2007-2015.
    [142] Liu B, Wendel JF. Non-Mendelian phenomena in allopolyploid genome evolution [J]. Current Genomics 2002, 3(6): 489-505.
    [143] Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF. Polyploid formation in cotton is not accompanied by rapid genomic changes [J]. Genome, 2001, 44(2): 321-330.
    [144] Liu ZW, Wang R R-C. Genome analysis of Thinopyrum caespitosum [J]. Genome, 1989, 32(1): 141-145.
    [145] Liu ZW, Wang R R-C. Genome analysis of Thinopyrum junceiforme and T. sartorii [J]. Genome, 1992, 35(4): 758-764.
    [146] Liu ZW, Wang R R-C. Genome constitution of Thinopyrum curvifolium, T. scirpeum, T. distichum, and T. junceum (Triticeae:Poaceae) [J]. Genome, 1993a. 36(4): 641-651.
    [147] Liu ZW, Wang R R-C. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica and Thinopyrum intemedium [J]. Genome, 1993b, 36(1): 102-111.
    [148] Ioive A. Generic evolution of the wheatgrasses Biologisches Zentralblatt, 1982, 101(1): 199-212.
    [149] Love A. Conspectus of the Triticeae [C]. Feddes Repert, 1984, 95(7-8): 425-521.
    [150] Lu BR. Diversity and conservation of the Triticeae genetic resources [J]. Chinese Biodiversity, 1995a, 3(1): 63-68.
    [151] Lu BR. The genus Elymus L. in Asia. Taxonomy and biosystematics with special reference to genomic relationships [C]. In: Wang RRC, Jensen KB, Jaussi C (eds). Proceedings of the 2nd International Triticeae Symposium, Logan, UT. 1994a: 219-233.
    [152] Lu BR, Salomon B. Differentiation of the StY genomes in Elymus species as referred by meiotic pairing in interspecific and its evolutionary significance [J]. Biodiversity Science, 2004, 12(2): 213-226.
    [153] Lu BR, Bothemer R. Genomic constitution of Elymus parviglumis and E. pseudonutans: Triticeae(Poaceae) [J]. Hereditas, 1990a, 113(1): 109-119.
    [154] Lu BR, Bothemer R. Intergenefric hybridization between Hordeum and Asiatic Elymus [J]. Hereditas, 1990b, 112(1): 109-116.
    [155] Lu BR, Salomon B. Differentiation of the StY genomes in Asiatic EIymus [J]. Hereditas, 1992, 116(1): 121-126.
    [156] Lu BR, Bothemer R. Meiotic analysis of Elymus caucasicus, E. longearistatus, and their interspecific hybrids with twenty-three Elymus species: Triticeae (Poaceae) [J]. Plant Systematics and Evolution, 1993a, 185(1): 35-53.
    [157] Lu BR, Bothemer R. Genomic constitutions of four Chinese endemic Elymus species: E. brevipes, E. yangii, E. anthosachoides, and E. altissimus Triticeae (Poaceae) [J]. Genome, 1993b, 36(5): 863-876.
    [158] Lu BR, Salomon B. Genomic constitution among the Elymus parviglumis, E. s emicostatus, and E.tibeticus groups Triticeae(Poaceae) [J]. Genetica, 1993c, 909(1): 47-60.
    [159] Lu BR. Meiotic analysis of the intergeneric hybrids between Pseudoroegneria and tetraploid Elymus [J]. Cathaya, 1994b, 6(1): 1-14.
    [160] Lu BR. Biosystematic investigations of Asiatic wheatgrasss-Elymus L. Triticeae(Poaceae). Ph. D. dissertation [D]. The Swedish University of Agricultural Sciences, Alnarp, Sweden, 1993d.
    [161] Lu BR. Genome, systematics and evolution of the perennial Triticeae Dumort. [D]. Beijing: Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 1995b.
    [162] Lu BR, Bothmer R. Cytological studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis x Triticum aestivum [J]. Hereditas, 1989,111(2): 231-238.
    [163] Lu BR, Bothemer R. Intergeneric hybridization between Hordeum and Asiatic Elymus [J]. Hereditas, 1990c, 112(1): 109-116.
    [164] Lumaret R. The role of polyploidy in the adaptive significance of polymorphism at the Got-1 locus in the Dactylis glomerata complex [J]. Heredity, 1984, 52(1):153-169.
    [165] Lynch M, Conery JS. The evolutionary fate of duplicate genes [J]. Science, 2000, 290(5494): 1151-1154.
    [166] Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization [J]. Genetics, 2000,154(2): 459-473.
    
    [167] Madlung A, Doerge RW, Colot V, Martienssen RA. Understanding mechanisms of novel gene expression in polyploids [J]. Trends in Genetics, 2003, 19(1): 141-147.
    [168] Mahy G, Bruederle LP, Connors B, Hofwegen MV, Vorsa N. Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry Vaccinium oxycoccos (Ericaceae) [J]. American Journal of Botany, 2000, 87(12): 1882-1889.
    [169] Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets [J]. Genome, 2002, 45(1): 91-102.
    [170] Mason-Gamer RJ. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences [J]. Systmatic Botany, 2001, 26(4): 757-768.
    [171] Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass [J]. Systematic Biology, 2004, 53(1): 25-37.
    [172] Mason-Gamer RJ, Weil CF, Kellogg EA. Granule-bound starch synthase: structure, function, and phylogenetic utility [J]. Molecular Biology and Evolution, 1998,15(12): 1658-1673.
    [173] Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms [J]. Science, 1994, 264(5157): 421-424.
    [174] Melderis A, Humphries CJ, Tutin TG, Heathcote SA. Tribe Triticeae Dumort.[M]. In Tutin TG et al. eds. Flora Europaea, 1980(5): 190-206.
    [175] McCarthy EM, Asmussen MA, Anderson WW. A theoretical assessment of recombinational speciation [J]. Heredity, 1995, 74(3):502-509.
    [176] McHal NA. Environmental induction of high frequency 2n pollen formation in diploid potatoes [J]. Canadian Journal of Genetics and Cytology, 1983, 17(2): 217-225.
    [177] McMillan E, Sun GL. Genetic relationships of tetraploid Elymus species and their genomic donor species inferrend from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions [J]. Theoretical and Applied Genetics, 2004,108(3): 535-542.
    [178] McNeil D, Lagudah ES, Hohmann U, Appels R. Amplification of DNA sequences in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences [J]. Genome, 1994, 37(2): 320-327.
    [179] Mes THM, Hart HT. Sedum surculosum and S.laccardianum (Crassulaceae) share a unique 70 bp deletion in the chloroplast DNA trnL(UAA)-trnF(GAA) intergenic spacer [J]. Plant Systematics and Evolution, 1994,193(1): 213-221.
    [180] Miller JS, Venable DL. Polyploidy and the evolution of gender dimorphism in plants [J]. Science, 2000, 289(5488): 2335-2338.
    [181] Mitchell LE, Dennis ES, Peacock WJ. Molecular analysis of an alcohol dehydrogenase (Adh) gene from chromosome 1 of wheat [J]. Genome, 1989, 32 (3): 349-358.
    [182] Moore WS. An evaluation of narrow hybrid zones in vertebrates [J]. Quarterly Review of Biology, 1977, 52(2): 263-277.
    [183] Morrell PL, Lundy KE, Clegg MT. Distinct geographic patterns of genetic diversity are maintained in wild barley {Hordeum vulgare subspecies spontaneum) despite migration [J]. Proceeding of the National Academy of Sciences, USA, 2003,100(19): 10812-10817.
    [184] Morton BR, Clegg MT. A chloroplast DNA mutational hot-spot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae) [J]. Current Genetics, 1993, 24(4): 357-365.
    [185] Murai J, Taira T, Ohta D. Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat [J]. Gene, 1999, 234(1): 71-79.
    [186] Muntzing A. The evolutionary significance of autopolyploidy [J]. Hereditas, 1936, 21(2): 263-378.
    [187] Miintzing A. Outlines to a genetic monograph of the genus Galeopsis [J]. Hereditas, 1930,13:185-341.
    [188] Nevski SA. Agrostological studies. IV. On the tribe Hordeae Benth [M]. Akademia Nauk SSR Botany Institute Taudy, 1933,1(1): 9-32.
    [189] Nevski SA. Hordeae Benth [M]. In: Komarov VL, Roshevits RY, Shishkin BK (eds). Flora URSS II. Leningrad, 1934.
    [190] Newton WCF, Pellew C. Primula kewensis and its derivatives [J]. Journal of Genetics, 1929, 20(3): 405-467.
    [191] Ohno S. Evolution by gene duplication [M]. New York, USA: Springer-Verlag, 1970.
    [192] Olmstead RG, Palmer JD. Chroloplast DNA systematics: A review of methods and data analysis [J]. American Journal of Botany, 1994, 81(9): 1205-1224.
    [193] O'Krane SL, Jr-Schaal BA, Al-Shehbaz I. The origin of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences [J]. Systematic Botany, 1996, 21(2): 559-566.
    [194] Osterman JC, Dennis ES. Molecular analysis of the Adh1-Cm allele of maize [J]. Plant Molecular Biology, 1989,13(2): 203-212.
    [195] Otto SP, Whitton J. Polyploid incidence and evolution [J]. Annual Review of Genetics, 2000,34(1): 401-437.
    [196] Ownbey M. Natural hybridization and amphiploidy in the genus Tragopogon [J]. American journal of Botany, 1950, 37(4): 487-499.
    [197] Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. The Plant Cell, 2001. 13(8): 1735-1747.
    [198] Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics [J]. Proceeding of the National Academy of Sciences, USA, 2004, 101(26): 9903-9908.
    [199] Petrov DV. Evolution of genome size: new approaches to an old problem [J]. Trends in Genetics, 2001,17(1): 23-28.
    [200] Petrov DV. DNA loss and evolution of genome size in Drosophila [J]. Genetica, 2002,115(1): 81-91.
    [201] Popp M, Oxelman B. Inferring the history of the polyploidy Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences [J]. Molecular Phylogenetics and Evolution, 2001, 20(3): 474-481.
    [202] Qu LP, Hancock JF, Whallon JH. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meosis: genomic similarity of diploid Vaccium darrowi and autotetraploid V. corymbosum (Ericaceae) [J]. American Journal of Botany, 1998, 85(4): 698-703.
    [203] Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants [J]. Annual Review of Ecology and Systematics, 1998, 29(1): 467-501.
    [204] Ramsey J, Schemske DW. Neopolyploidy in flowering plants [J]. Annual Review of Ecology and Systematics, 2002, 29(1): 467-501.
    [205] Rauscher JT, Doyle JJ, Brown AH. Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex [J]. Genetics, 2004,166(2): 987-998.
    [206] Redinbaugh MG, Jones TA, Zhang Y. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids [J]. Genome, 2000, 43(5): 846-852.
    [207] Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH. A detailed RFLP map of cotton, Gossypium hirsutum-G. barbadense: chromosome organization and evolution in a disomic polyploid genome [J].Genetics, 1994, 138(3): 829-847.
    [208] Rieseberg LH, Carney S. Plant hybridization [J]. New Phytologist, 1998,140(2): 599-624.
    [209] Rieseberg LH. Homoploid reticulate evolution in Helianthus: evidence from ribosomal genes [J]. American Journal of Botany, 1991, 78(12): 1218-1237.
    [210] Rieseberg LH, Sinervo B, Linder CR, Ungerer M, Arias DM. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids [J]. Science, 1996, 272(5262): 741-45.
    [211] Rieseberg, LH. Hybrid origins of plant species [J]. Annual Reviews of Ecology and Systematics, 1997, 28(1): 359-89.
    [212] Rieseberg LH, Baird SJE, Gardner KA. Hybridization, introgression, and linkage evolution [J]. Plant Molecular Biology, 2000, 42(1): 205-224
    [213] Rodriguez DJ. A model for the establishment of polyploidy in plants [J]. American Naturalist, 1996,147(1): 33-46.
    [214] Salomon B. Taxonomy and morphology of the Elymus semicostatus group (Poaceae) [J]. Nordic Journal of Botany, 1993,14(1): 7-14.
    [215] Salomon B, Lu BR. Interspecific hybridizations among species of the E. semicostatus and E. tibeticus groups [J]. Plant Systematics and Evolution, 1993, 189(1): 1-13.
    
    [216] Saitou N, Nei M. The neighbor-joining method: a new method for reconstruction phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [217] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual [M]. Cold Spring Harbor Laboratory Press, 1989.
    [218] Samuel R, Pinsker W, Ehrendorfer F. Allozyme polymorphism in diploid and polyploid populations of Galium [J]. Heredity, 1990, 65(3): 369-378.
    [219] Sang T, Crawford DJ, Stuessy TF. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution [J]. Proceeding of the National Academy of Sciences, USA, 1995, 92(15): 6813-6817.
    [220] Sang T, Crawford DJ, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) [J]. American Journal of Botany, 1997, 84(8): 1120-1136.
    [221] Sang T. Utility of low-copy nuclear gene sequences in plant phylogeneties [J]. Critical Reviews of Biochemistry and Molecular Biology, 2002,37(3): 121-147.
    [222] Sang T, Zhang DM. Reconstruction hybrid speciation using sequences of low copy nuclear genes: Hybrid origins of five Paeonia species based on Adh gene phylogenies [J]. Systematic Botany, 1999, 24(1): 148-163.
    [223] Sato T, Maciera M, Lumaret R, Jacquard R Flowering characteristics and fertility of interploidy progeny from normal and 2n gametes in Dactylis glomerata L. [J]. New Phytologist, 1993,124(1): 309-319.
    [224] Sears ER. Transfer of alien genetic material to wheat [M]. In: Evans LT, Peacook WJ. ed. Wheat Science Today and Tomorrow. Cambridge University Press, 1981: 75-89.
    [225] Seberg O, Frederiksen S, Baden C, Linde-Laursen. Peridictyon, a new genus from the Balkan peninsula, and its relationships with Festucopsis (Poaceae) [J]. Willdenowia, 1991, 21(1): 87-104.
    [226] Segraves KA, Thompson JN. Plant polyploidy and pollination: Floral traits and insect visits to diploid and tetraploid Heuchera gossularifolia [J]. Evolution, 1999, 53(4): 1114-1127.
    [227] Seoighe C, Wolfe KH. Yeast genome evolution in the post-genome era [J]. Current Opinion Microbiology, 1999, 2(5): 548-554.
    [228] Sharma HC, Gill BS. Current status of wide hybridization in wheat [J]. Euphytica, 1983, 32(1): 17-31.
    [229] Shi L, Zhu T, Keim P. Ribosomal RNA genes in soybean and common bean: chromosomal organization, expression, and evolution [J]. Theoretical and Applied Genetics, 1996, 93(1): 136-141.
    [230] Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR. Genome duplication in soybean (Glycine subgenus soja) [J]. Genetics, 1996, 144(1): 329-338.
    [231] Simonsen O. Cytogenetic investigations in diploid and autotetraploid populations of Lolium perenne L. [J]. Hereditas, 1973, 75(1): 157-188.
    [232] Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. The tortoise and the hare. Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group [J]. American Journal of Botany, 1998, 85(9): 1301-1315.
    [233] Small RL, Ryburn JA, Wendel JF. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.) [J]. Molecular Biology and Evolution, 1999,16(4): 491-501.
    [234] Small RL, Wendel JF. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium) [J]. Genetics, 2000, 155(4): 1913-1926.
    [235] Small RL, Wendel JF. 2002. Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium) [J]. Molecular Biology and Evolution, 2002,19(5): 597-607.
    [236] Snowdon RJ, Kohler W, Kohler A. Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes [J]. Genome, 1997, 40(3): 582-587.
    [237] Soltis PS, Soltis DE. Molecular data and the dynamic nature of polyploidy [J]. Critical Reviews in Plant Sciences, 1993,12(3): 243-273.
    [238] Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution [J]. Trends in Ecology and Evolution, 1999,14(9): 348-352.
    [239] Soltis PS, Soltis DE. The role of genetics and genomic attributes in the success of polyploids [J]. Proceeding of the National Academy of Sciences, USA, 2000, 97(13): 7051-7057.
    [240] Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since Plant speciation [J]. New Phytologist, 2003,161(1): 173-191.
    [241] Soltis DE, Rieseberg LH. Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis [J]. American Journal of Botany, 1986, 73(3): 310-318.
    [242] Soltis DE, Soltis PS. Choosing an approach and an appropriate gene for phylogenetic analysis [M]. In: Soltis DE, Soltis PS, Doyle JJ. eds. Molecular Systematics Plants. II. DNA Sequencing. Boston: Kluwer Academy Publications, 1998:1-42.
    [243] Sybenga J. Allopolyploidization of autopolyploids. I. Possibilities and limitations [J]. Euphytica, 1969,18(3): 355-371.
    [244] Stebbins GL. Types of polyploidy: their classification and significance [J]. Advances in Genetics, 1947,1: 403-429.
    [245] Stebbins GL.Variation and evolution in plants [M]. New York, USA: Columbia University Press, 1950.
    [246] Stebbins GL. Chromosomal Evolution in Higher Plants [M]. London: Addison-Wesley, 1971.
    [247] Stebbins GL. The role of hybridization in evolution [J]. Proceedings American Philosophical Society, 1959,103(2): 231-251.
    [248] Stebbins GL. The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia Supplement, 1957, 36: 336-340.
    [249] Swofford DL. Paup. Phylogenetic analysis using parsimony (and other methods) [M]. Sinauer Associates, Sunderland, Massachusetts, USA, 1998.
    
    [250] Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA [J]. Plant Molecular Biology, 1991, 17(5): 1105-1109.
    [251] Taylor JS, Van de Peer Y, Meyer A. Genome duplication, divergent resolution and speciation [J]. Trends in Genetics, 2001,17(6): 299-301.
    [252] Templeton AR. Mechanisms of speciation—a population genetic approach [J]. Annual Review of Ecology and Systematics, 1981,12(1): 23-48.
    [253] Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs [J]. Nucleic Acids Research, 1999, 27(13): 2682-2690.
    [254] Thompson JD, Lumaret R. The evolutionary dynamics of polyploid plants: origins, establishment and persistence [J]. Trends in Ecology and Evolution, 1992, 7(9): 302-307.
    [255] Thomas HM. Harper JA, Meredith MR, Morgan WG, King IP. Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization [J]. Genome, 1997, 40(4): 406-410.
    [256] Torabinejad J, Mueller RJ. Genome analysis of intergeneric hybrids of apomictic and sexual Australian Elymus species with wheat, barley and rye: implications for the transfer of apomixes to cereals [J]. Theoretical and Applied Genetics, 1993, 86(2): 288-294.
    [257] Trick M, Dennis ES, Enwards KJR, Peacock WJ. Molecular analysis of the alcohol dehydrogenase gene family of barley [J]. Plant Molecular Biology, 1988,11(1): 147-160.
    [258] Tyler B, Borrill M, Chorlton K. Studies in Festuca. X. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var. alpennina in relation to their altitudinal distribution [J]. Journal of Applied Ecology, 1978,15(2): 219-226.
    [259] Tzvelev NN. Tribe 3. Triticeae Dumort [M]. In: Fedorov AA.eds: Poaceae URSS. Leningrad, Navka Publishing house, 1976.
    [260] Upcott M. The cytology of triploid and tetraploid Lycopersicum esulentum [J]. Journal of Genetics, 1935, 31(1):1-19.
    [261] Vershinin A, Svitashev S, Gummesson PQ, Salomon B, Bothmer R von, Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in the Triticeae [J]. Theoretical and Applied Genetics, 1994, 86(2): 288-294.
    [262] Vicient CM, Suoniemi A, Anamtamat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum [J]. Plant Cell, 1999,11(9): 1769-1784.
    [263] Vigfusson E. On polyspermy in the sunflower [J]. Hereditas, 1970, 64(1): 1-52.
    [264] Vision TJ, Brown DG, Tanksley SD. The origins of genomic duplications in Arabidopsis [J]. Science, 2000, 290(5499): 2114-2117.
    [265] Vogel KP, Arumuganathan K, Jensen KB. Nuclear DNA content of perennial grasses of the Triticeae [J]. Crop Science, 1999, 39(3): 661-667
    [266] Volkov RA, Borisiuk NV, Panchuk II, Schweizer D, Hemlben V. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum [J]. Molecular Biology and Evolution, 1999,16(3): 311-320.
    [267] Wagner A, Blackstone N, Cartwright P, Misof B, Snow P, Wanger PG, Bartels J, Murtha M, Pendleton J. Surveys of gene families using polymerasw chain reaction: PCR selection and PCR drift [J]. Systematical Biology, 1994, 43(1): 250-261.
    [268] Wang RR-C, Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M. Genome symbols in the Triticeae(Poaceae) [C]. In: Wang RRC, Jensen KB, Jaussi C (eds). Proceedings of the 2nd International Triticeae Symposium, Logan, UT, 1994: 29-33.
    [269] Wang R R-C, Dewey DR, Hsiao C. Genome analysis of the tetraploid Pseduorogeneria tauri [J]. Crop Science, 1986, 26(3): 723-727.
    [270 ] Wang R R-C. Genome analysis of Thinopyrum bessarabicum and T. elongatum [J]. Canadian Journal Genetics and Cytology, 1985, 27: 722-728.
    [271] Wang R R-C, Jensen KB. Absence of the J genome in Leymus species (Poaceae: Triticeae): evidence from DNA hybridization and meiotic pairing [J]. Genome, 1994, 37(2): 231-235.
    [272] Weiss RL, Kukora JR, Adams J. The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae [J]. Proceeding of the National Academy of Sciences, USA, 1975, 72(2): 794-798.
    [273] von Well E, Fossey A. A comparative investigation of seed germination, metabolism and seedling growth between two polyploid Triticum species [J]. Euphytica, 1998,101(1): 83-89.
    [274] Wedderburn FM, Richards AJ. Secondary homostyly in Primula L.: evidencefor the model of the "S" supergene [J]. New Phytologist, 1992,121(2): 649-655.
    [275] Wendel JF. Genome evolution in polyploids [J]. Plant Molecular Biology, 2000, 42(1): 225-249.
    [276] Wendel JF, Schnabel A, Seelanan T. Bi-directional interlocus concerted evolution following allopolyploid speciation in contton (Gossypium) [J]. Proceeding of the National Academy of Sciences, USA, 1995, 92(1): 280-284.
    [277] Wendel JF, Doyle JJ. Phylogenetic incongruence: window into genomes history and molecular evolution [M]. In: Soltis DE, Soltis PS, Doyle JJ. Eds. Molecular Systematics Plants II. Boston: Kluwer Academy Publications, 1998: 265-296.
    [278] Werth CR, Windham MD. A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression [J]. American Naturalist, 1991,137(4): 515-526.
    [279] deWet JMJ. Origins of polyploids [M]. In: Lewis WH, ed. Polyploidy: biological relevance. New York, USA: Plenum Press, 1980: 3-15.
    [280] Whitkus R, Doebley J, Lee M. Comparative genome mapping of sorghum and maize [J]. Genetics, 1992,132(3): 1119-1130.
    [281] Wolffe AP, Matzke MA. Eipenetics: regulation through repression [J]. Science 1999, 286(5439): 481-486.
    [282] Wolfe KH. Yesterday's polyploidization and mystery of diploidization [J]. Nature Review: Genetics, 2001, 2(5): 333-341.
    [283] Wolfe KH, Li W-H, Sharp M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNA [J]. Proceeding of the National Academy of Sciences, USA, 1987, 84(16): 9054-9058.
    [284] Wissemann V. Genetic constitution of Rosa section Caninae (R. canina, R. jundzillii) and secttion Gallicanae (R. gallica) [J]. Journal of Applied Botany, 1999, 73(1): 191-196.
    [285] Wissemann V. Hybridization and the evolution of the nrlTS spacer region [M]. In: Sharma AK, Sharma A. (eds.): Plant Genome, Biodiversity and Evolution Vol.1. Part A. Enfield, New Hampshire, Science Publishers, 2003: 57-71.
    [286] Yamauchi A, Hosokawa A, Nagata H, Shimoda M. Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy [J]. American Naturalist, 2004,164(1): 101-112.
    [287] Yang J. The formation and evolution of polyploid genomes in plants [J]. Acta Phytotaxonomica Sinica, 2001, 39(4): 357-371.
    [288] Yen Y, Kimber G Genomic relationships of N-gneome Triticum species [J]. Genome, 1992, 35(6): 962-966.
    [289] Yen C, Yang JL. Kengyilia gobicola , a new taxon from west China [J]. Canadian Journal of Botany, 1990, 68(12): 1894-1897.
    [290] Zhang HB, Dvorak J. The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences [J]. American Journal of Botany, 1991, 78(6): 871-884.
    [291] Zhang HB, Dvorak J. The genome origin and evolution of hexaploid Triticum crassum and Triticum syriacum determined from variation in repeated nucleotide sequences [J]. Genome, 1992, 35(4): 806-814.
    [292] Zhang HB, Dvorak J, Waines JG Diploid ancestry and evolution of Triticum koschyi and T. peregrinum examined using variation in repeated nucleotide sequences [J]. Genome, 1992, 35(1): 182-191.
    [293] Zhang W, Qu LJ, Gu H, Gao W, Liu M, Chen J, Chen Z. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA [J]. Theoretical and Applied Genetics, 2002,104(6-7): 1099-1106.
    [294] Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AH. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton [J]. Genome Research, 1998, 8(5): 479-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700