迟钝爱德华氏菌双精氨酸转运系统的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迟钝爱德华氏菌(1Edwardsiella tarda)是一种革兰氏阴性、短杆状细菌,可感染包括人在内的多种宿主。它是鱼类爱德华氏菌病的病原菌,可引起经济鱼类如鲆鲽类的系统性出血性败血症,给世界范围的水产养殖业造成了巨大的经济损失和危害。分泌系统作为一个重要的毒力因子分泌途径,在细菌的致病性方面发挥重要作用,其中双精氨酸分泌(Tat)系统广泛存在于嗜盐古菌和病原菌中,以适应极端环境和分泌毒力因子。它可运输折叠好的蛋白到达周质空间。在迟钝爱德华氏菌EIB202基因组测序工作完成的基础之上,发现它存在Tat系统。由于它具有广耐盐性,甚至可在5%NaCl中生长,其Tat系统也备受关注,目前还没有关于迟钝爱德华氏菌Tat系统功能的报道。
     E. tarda EIB202中Tat系统主要由5个组分TatA、TatB、TatC、TatD(?)口TatE组成,且tatABCD组成一个操纵子结构。实验室前期工作中从不同地区、不同物种中分离、搜集了19株迟钝爱德华氏菌和2株鲶鱼爱德华氏菌,发现tatABCD广泛存在于所研究的爱德华氏菌株中,而tatE则仅存在于强毒株中。同时利用生理生化和分子生物学的手段对21株细菌基因水平的差异性和多态性以及毒力因子的分布进行了研究。这就为研究爱德华氏菌致病性和开发针对爱德华氏菌病的疫苗具有重要的参考价值。
     构建了Tat系统组分元件的无标记框内缺失突变株△tatA、△tatB、△tatC、△totD、△tatE、△tatAE、△tatABCD(?)口回补株,分析了它们对E. tarda EIB202多种生理功能的影响。Tat缺失株对该菌生长、形态和生物被膜形成几乎无影响。除△tatD和△tatE外,缺失株△tatA、△tatB、△tatC、△tatAAtatE和(?)△tatABCD均不能产H2S。△tatABCD在软平板上的泳动性减弱,对兔红血细胞凝集能力下降,在DMEM和TSB培养基中的细菌自聚集能力受损,对羊血细胞的溶血活性下调,对包括高温、高盐、SDS、乙醇和抗生素等压力应激更敏感,对EPC细胞和MDCK细胞黏附能力减小,在J774a巨噬细胞内寄生能力下降,对鱼模型毒力稍微减弱。
     为了进一步阐明Tat系统在生理适应方面的作用机制,利用双向蛋白电泳技术结合基质辅助激光解吸附电离-飞行时间串联质谱技术对EIB202和(?)△tatABCD的全菌细胞裂解蛋白、周质空间蛋白和胞外蛋白进行了比较蛋白质组的研究。采用定性shotgun蛋白组学策略对胞外蛋白组分进行了鉴定。筛查到了与毒力或压力应激相关的蛋白EvpF、FklB、FtsZ、ClpB、GrpE、PstS、ETAE_2022、DsbA、GlmU和GapA等。实验发现,鉴定的这些蛋白大多数没有典型的Tat系统信号肽,且多与基础代谢和大分子生物合成相关,这为研究E. tarda Tat系统的分子作用机制提供了参考。
     利用平板计数法比较EIB202和(?)△tatABCD的盐度敏感性,发现后者对盐度更敏感,提示可将△tatABCD用于开发盐度敏感型海水鱼类减毒活疫苗的生物安全限制系统。在E. tarda EIB202缺失tatABCD的基础上,对其TTSS相关毒力因子和内源性大质粒pEIB202进行敲除,构建了一株减毒活疫苗候选株WYM1,此候选疫苗株用于腹腔注射大菱鲆时表现出高度的减毒效果和抵抗野生毒株EIB202感染的免疫保护作用,此候选株一旦被释放到海水环境中能被迅速地清除,提高了疫苗的环境和生物安全性。
     基于Tat系统运输折叠好的蛋白从而提高蛋白稳定性的特征,在实验室已经构建好的减毒活疫苗候选株E. tarda WED基础上,基于不同信号肽介导GFP分泌的检测结果筛选到了高效分泌表达GFP的信号肽,进一步利用这些信号肽介导鱼类病原菌嗜水气单胞菌(Aeromonas hydrophila) LSA34保护性抗原3-磷酸甘油醛脱氢酶(GapA)的分泌,Western blotting检测得到了3个可高效分泌抗原的菌株NapA-GA、Sufl-GA和DmsA-GA。对大菱鲆的相对免疫保护率结果显示,DmsA-GA。抵抗E. tarda(?)(?)A.hydrophila联合感染或单独感染时具有较佳的相对免疫保护率,为其在多效价载体活疫苗开发中的应用提供了新思路。
Edwardsiella tarda, a Gram-negative rod-shaped bacterium, infects a variety of host including human being. It is the aetiological agent of edwardsiellosis and responsible for systemic hemorrhagic septicemia in economic fish species such as turbot and flounder, leading to enormous economic losses in aquaculture worldwidely. Serection systems are competent for translocation of virulence fator and play a vital role in pathogenicity in bacteria. In addition, twin-arginine translocation (Tat) system is widely distributed in halophilic archaea and bacterial pathogens serving for extreme environments adaption and virulence factor secretion. It can translocate prefolded proteins into periplasm. Based on the completed work of E. tarda EIB202genomic sequencing, Tat system was detected on the genome of E. tarda EIB202. E. tarda Tat system gains more attention because of its adaptation to high-salt conditions (up to5%). Meanwhile, there is no report on E. tarda Tat system so far.
     Tat system was composed by TatA, TatB, TatC, TatD, and TatE in E. tarda EIB202, and tatABCD was in one operon. In previous work, our lab has isolated or collected19E. tarda isolates and2E. ictaluri isolates from different area and host species. tatABCD was found to widely distribute in these tested Edwardsiella strains, while tatE was conserved in pathogenic strains. Meanwhile, the genetic relationship, polymorphism, and distribution of virulence genes of the21Edwardsiella strains were invesgated with biochemical characterization and molecular method. This will be helpful in the investigation of pathogenicity in Edwardsiella and the development of vaccines for edwardsiellosis.
     Tat system component null in-frame deletion strains AtatA, AtatB, AtatC, AtatD, AtatE, AtatAE, AtatABCD, and complement strains were constructed, and their roles in pleiotropically physiological fitness were analyzed in EIB202. Tat mutant displayed no difference with EIB202on growth, morphology, and biofilm formation. Except for AtatD and AtatE, five mutants of AtatA, AtatB, AtatC, AtatAAtatE, and AtatABCD displayed deficient on H2S production. AtatABCD was defective in a serious of functions, including the mobility on soft agar, the haemagglutination against rabbit erythrocyte, the autoaggregation in DMEM and LB culture, the hemolytic activity against sheep erythrocyte, the stress response such as high temperature, high-salt condition, SDS, ethanol. and antibiotics, the adherence to EPC and MDCK, the intracellular survival in J774a, and the marginal in vivo virulence attenuation in fish models.
     To further elucidate the underlining molecular mechanism for Tat system on physiological fitness, comparative proteomics analysis of whole cell lysated protein, periplasmic protein, and extracellular protein were implemented using two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry to identify proteins undergoing changes in expression levels when the Tat system was mutilated. In addition, a qualitative shotgun protein sequencing method was used for extracellular protein identification. The main abundance-different proteins were virulence-and stress-associated factors such as EvpF, FklB, FtsZ, ClpB, GrpE, PstS, ETAE_2022, DsbA, GlmU, and GapA. Interestingly, most of the identified proteins held non-classical Tat signal peptide and was associated with basal metabolism and biosynthesis of macromolecules. These would shed light on new mechanisms of the Tat system in E. tarda.
     The results of plate counting confirmed that the Tat mutant was high-salt-sensitive than EIB202, indicating that Tat mutant had merits as a novel salt-sensitive biological containment system for live attenuated vaccine in marine fish vaccinology. To test this, we deleted virulence-associated TTSS genes and cured endogenous plasmid pEIB202to construct strain WYM1in the context of Tat abrogation in E. tarda. The results indicated that WYM1was highly attenuated when injected intraperitoneally and elicited significant protection against challenge of wild-type E. tarda EIB202in turbot (Scophthalmus maximus) while being rapidly eliminated in seawater. Therefore, the environmental biosafety of live attenuated vaccine was improved.
     The Tat system translocated prefolded protein which would allow stabilization and prevent aggregation. Based on the live attenuated vaccine E. tarda WED, the Tat signal peptides mediated green fluorescent protein (GFP) secretion was analyzed with Western blotting. The signal peptides with optimized GFP translocation was further linked to gapA34, encoding a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from fish pathogen Aeromonas hydrophila LSA34. Western blotting analysis illustrated that DmsA-GA, NapA-GA, and Sufl-GA displayed an optimal efficiency for translocation of GapA. The relative percent survival of the three constructive strains on turbot was assayed and DmsA-GA showed optimized relative protection rate (RPS) against E. tarda and A. hydrophila LSA34co-infection or single infection. Therefore, this study demonstrated a new approach for multivalent attenuated carrier live vaccine development.
引文
[1]Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. Lancet Infect Dis.2010,10(9):597-602.
    [2]Panigrahi A, Azad IS. Microbial intervention for better fish health in aquaculture:the Indian scenario. Fish Physiol Biochem.2007,33(4):429-440.
    [3]Abbott SL, Janda JM. The genus Edwardsiella. Prokaryotes.2006,6:72-89.
    [4]Mohanty BR, Sahoo PK. Edwardsiellosis in fish:a brief review. J Biosci.2007,32(7):1331-1344.
    [5]Du M, Chen J, Zhang X, Li A, Li Y, Wang Y. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl Environ Microbiol.2007,73(4):1349-1354.
    [6]Park SB, Aoki T, Jung TS. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res.2012,43(1):67.
    [7]Leung KY, Siame BA, Tenkink BJ, Noort RJ, Mok Y-K. Edwardsiella tarda-virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect.2012,14(1):26-34.
    [8]Srinivasa Rao PS, Lim TM, Leung KY. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun.2003,71(3):1343-1351.
    [9]Sakai T, Kanai K, Osatomi K, Yoshikoshi K. Identification of a 19.3-kDa protein in MRHA-positive Edwardsiella tarda:putative fimbrial major subunit. FEMS Microbiol Lett.2003,226(1):127-133.
    [10]Janda JM, Abbott SL. Expression of an iron-regulated hemolysin by Edwardsiella tarda. FEMS Microbiol Lett.1993,111(2-3):275-280.
    [11]Chen JD, Lai SY, Huang SL. Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol.1996(1),165:9-17.
    [12]Hirono I, Tange N, Aoki T. Iron-regulated haemolysin gene from Edwardsiella tarda. Mol Microbiol. 1997,24(4):851-856.
    [13]Zheng J, Li N, Tan YP, Sivaraman J, Mok Y-K, Mo ZL, Leung KY. EscC is a chaperone for the Edwardsiella tarda type Ⅲ secretion system putative translocon components EseB and EseD. Microbiology.2007,153(6):1953-1962.
    [14]Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. Role of type Ⅲ secretion in Edwardsiella tarda virulence. Microbiology.2005,151(7):2301-2313.
    [15]Zheng J, Tung SL, Leung KY. Regulation of a type Ⅲ and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun.2005,73(7):4127-4137.
    [16]Zheng J, Leung KY. Dissection of a type Ⅵ secretion system in Edwardsiella tarda. Mol Microbiol. 2007,66(5):1192-1206.
    [17]Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology.2003,149(9):2635-2644.
    [18]Yamada Y, Wakabayashi H. Identification of fish-pathogenic strains belonging to the genus Edwardsiella by sequence analysis of sodb, Fish Pathol.1999,34(3):145-150.
    [19]Leung KY, Siame BA, Snowball H, Mok Y-K. Type VI secretion regulation:crosstalk and intracellular communication. Curr Opin Microbiol.2011,14(1):9-15.
    [20]Wang Y, Zhang XH, Austin B. Comparative analysis of the phenotypic characteristics of high-and low-virulent strains of Edwardsiella tarda. J Fish Dis.2010,33(12):985-994.
    [21]He Y, Xu T, Han Y, Shi X, Zhang XH. Phenotypic diversity of Edwardsiella tarda isolated from different origins. Lett Appl Microbiol.2011,53(3):294-299.
    [22]Castro N, Toranzo AE, Barja JL, Nunez S, Magarinos B. Characterization of Edwardsiella tarda strains isolated from turbot, Psetta maxima (L.). J Fish Dis.2006,29(9):541-547.
    [23]Kumar G, Rathore G, Sengupta U, Singh V, Kapoor D, Lakra WS. Isolation and characterization of outer membrane proteins of Edwardsiella tarda and its application in immunoassays. Aquaculture. 2007,272(1-4):98-104.
    [24]Panangala VS, Shoemaker CA, McNulty ST, Arias CR, Klesius PH. Intra-and interspecific phenotypic characteristics of fish-pathogenic Edwardsiella ictaluri and E. tarda. Aquac Res.2006, 37(1):49-60.
    [25]Maiti NK, Mandal A, Mohanty S, Mandal RN. Phenotypic and genetic characterization of Edwardsiella tarda isolated from pond sediments. Comp Immunol Microb.2009,32(1):1-8.
    [26]Stock I, Wiedemann B. Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrob Agents Ch.2001,45(8):2245-2255.
    [27]Lan J, Zhang XH, Wang Y, Chen J, Han Y. Isolation of an unusual strain of Edwardsiella tarda from turbot and establish a PCR detection technique with the gyrB gene. J Appl Microbiol.2008,105(3): 644-651.
    [28]Castro N, Toranzo AE, Nunez S, Osorio CR, Magarinos B. Evaluation of four polymerase chain reaction primer pairs for the detection of Edwardsiella tarda in turbot. Dis Aquat Organ.2010,90(1): 55-61.
    [29]Acharya M, Maiti NK, Mohanty S, Mishra P, Samanta M. Genotyping of Edwardsiella tarda isolated from freshwater fish culture system. Comp Immunol Microb.2007,30(1):33-40.
    [30]Panangala VS, van Santen VL, Shoemaker CA, Klesius PH. Analysis of 16s-23s intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish. J Appl Microbiol.2005,99(3):657-669.
    [31]Nucci C, da Silveira WD, da Silva Correa S, Nakazato G, Bando SY, Ribeiro MA, Pestana de Castro AF. Microbiological comparative study of isolates of Edwardsiella tarda isolated in different countries from fish and humans, Vet Microbiol.2002,89(1):29-39.
    [32]Maiti NK, Mandal A, Mohanty S, Samanta M. Comparative analysis of genome of Edwardsiella tarda by BOX-PCR and PCR-ribotyping. Aquaculture.2008,280(1-4):60-63.
    [33]Mowbray EE, Buck G, Humbaugh KE, Marshall GS. Maternal colonization and neonatal sepsis caused by Edwardsiella tarda. Pediatrics.2003,111(3):e296-e298.
    [34]Castro N, Toranzo AE, Bastardo A, Barja JL, Magarinos B. Intraspecific genetic variability of Edwardsiella tarda strains from cultured turbot. Dis Aquat Org.2011,95(3):253-258.
    [35]Desvaux M, Hebraud M, Talon R, Henderson IR. Secretion and subcellular localizations of bacterial proteins:a semantic awareness issue. Trends Microbiol.2009,17(4):139-145.
    [36]Delepelaire P. Type I secretion in gram-negative bacteria. BBA-Mol Cell Res.2004,1694(1-3): 149-161.
    [37]Cianciotto NP. Type Ⅱ secretion:a protein secretion system for all seasons. Trends Microbiol.2005, 13(12):581-588.
    [38]Beeckman DS, Vanrompay DC. Bacterial secretion systems with an emphasis on the chlamydial type Ⅲ secretion system, Curr Issues Mol Biol.2010,12(1):17-41.
    [39]Worrall LJ, Lameignere E, Strynadka NCJ. Structural overview of the bacterial injectisome. Curr Opin Microbiol.2011,14(1):3-8.
    [40]Ghosh P. Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev.2004, 68(4):771-795.
    [41]Wallden K, Rivera-Calzada A, Waksman G. Type IV secretion systems:versatility and diversity in function. Cell Microbiol.2010,12(9):1203-1212.
    [42]Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev.2004,68(4):692-744.
    [43]Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A.2006,103(5):1528-1533.
    [44]Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science.2006,312(5779):1526-1530.
    [45]Bonemann G, Pietrosiuk A, Mogk A. Tubules and donuts:a type VI secretion story. Mol Microbiol. 2010,76(4):815-821.
    [46]Bernard CS, Brunet YR, Gueguen E, Cascales E. Nooks and crannies in type VI secretion regulation. J Bacteriol.2010,192(15):3850-3860.
    [47]Desvaux M, Hebraud M, Talon R, Henderson IR. Outer membrane translocation:numerical protein secretion nomenclature in question in mycobacteria. Trends Microbiol.2009,17(8):338-340.
    [48]Economou A. Bacterial preprotein translocase:mechanism and conformational dynamics of a processive enzyme. Mol Microbiol.1998,27(3):511-518.
    [49]Mori H, Ito K. The Sec protein-translocation pathway. Trends Microbiol.2001,9(10):494-500.
    [50]Chaddock AM, Mant A, Karnauchov I, Brink S, Herrmann RG, Klosgen RB, Robinson C. A new type of signal peptide:central role of a twin-arginine motif in transfer signals for the ApH-dependent thylakoidal protein translocase. EMBO J.1995,14(12):2715-2722.
    [51]Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R. Sec-independent protein translocation by the maize Hcf106 protein. Science.1997,278(5342):1467-1470.
    [52]Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell.1998, 93(1):93-101.
    [53]Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem. 1998,273(29):18003-18006.
    [54]Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J.1998, 17(13):3640-3650.
    [55]Jongbloed JDH, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl J. Two minimal Tat translocases in Bacillus. Mol Microbiol.2004,54(5):1319-1325.
    [56]Jack RL, Sargent F, Berks BC, Sawers G, Palmer T. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol.2001,183(5):1801-1804.
    [57]Berks BC, Palmer T, Sargent F. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol.2003,47:187-254.
    [58]Hicks MG, de Leeuw E, Porcelli I, Buchanan G, Berks BC, Palmer T. The Escherichia coli twin-arginine translocase:conserved residues of TatA and TatB family components involved in protein transport. FEBS Lett.2003,539(1-3):61-67.
    [59]Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, Schroder J, Berks BC, Palmer T. Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC component. J Bacteriol.2007,189(15):5482-5494.
    [60]Holzapfel E, Eisner G, Alami M, Barrett CML, Buchanan G, Luke 1, Betton JM, Robinson C, Palmer T, Moser M, MuLLER M. The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry.2007,46(10):2892-2898.
    [61]Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T. TatD is a cytoplasmic protein with DNase activity:no requirement for TatD family proteins in Sec-independent protein export. J Biol Chem.2000,275(22):16717-16722.
    [62]Rodrigue A, Chanal A, Beck K, Miiller M, Wu L-F. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J Biol Chem.1999,274(19): 13223-13228.
    [63]Hinsley AP, Stanley NR, Palmer T, Berks BC. A naturally occurring bacterial Tat signal peptide lacking one of the'invariant'arginine residues of the consensus targeting motif. FEBS Lett.2001, 497(1):45-49.
    [64]Summer E, Mori H, Settles A, Cline K. The thylakoid ApH-dependent pathway machinery facilitates RR-independent N-tail protein integration. J Biol Chem.2000,275(31):23483-23490.
    [65]Cristobal S, de Gier JW, Nielsen H, von Heijne G. Competition between Sec-and Tat-dependent protein translocation in Escherichia coli. EMBO J.1999,18(11):2982-2990.
    [66]McDevitt CA, Hicks MG, Palmer T, Berks BC. Characterisation of Tat protein transport complexes carrying inactivating mutations. Biochem Bioph Res Commun.2005,329(2):693-698.
    [67]Behrendt J, LindenstrauβU, Bruser T. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli. FEBS Lett.2007,581(21):4085-4090.
    [68]Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A.2005,102(30):10482-10486.
    [69]Berks BC, Palmer T, Sargent F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol.2005,8(2):174-181.
    [70]Sargent F. Constructing the wonders of the bacterial world:biosynthesis of complex enzymes. Microbiology.2007,153(3):633-651.
    [71]Parthasarathy S, Sastry PS, Siddavattam D. Transport of prefolded proteins in bacteria:an overview on twin arginine transport pathway and its role in pathogenesis. Curr Sci India.2011,100(9):1307-1313.
    [72]De Buck E, Lammertyn E, Anne J. The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol.2008,16(9):442-453.
    [73]Ochsner UA, Snyder A, Vasil AI, Vasil ML. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A.2002,99(12): 8312-8317.
    [74]Ize B, Stanley NR, Buchanan G, Palmer T. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol.2003,48(5):1183-1193.
    [75]Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, Yan M, Gao S, Wu L-F, Xu J, Kan B. Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol.2009,9(1):114.
    [76]Ding Z, Christie PJ, Agrobacterium tumefaciem twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol.2003,185(3): 760-771.
    [77]De Buck E, Maes L, Meyen E, van Mellaert L, Geukens N, Anne J, Lammertyn E. Legionella pneumophila philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Bioph Res Commun.2005,331(4):1413-1420.
    [78]Lavander M, Ericsson SK, Broms JE, Forsberg A. The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun.2006,74(3):1768-1776.
    [79]Pradel N, Ye C, Livrelli V, Xu J, Joly B, Wu L-F. Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli 0157:H7. Infec Immun.2003,71(9): 4908-4916.
    [80]Bolhuis A. Protein transport in the halophilic archaeon Halobacterium sp. NRC-1:a major role for the twin-arginine translocation pathway? Microbiology.2002,148(11):3335-3346.
    [81]Frolow F, Harel M, Sussman J, Mevarech M, Shoham M. Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat Struct Mol Biol.1996,3(5):452-458.
    [82]Rose RW, Bruser T, Kissinger JC, Pohlschroder M. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol.2002, 45(4):943-950.
    [83]Branston SD, Matos CFRO, Freedman RB, Robinson C, Keshavarz-Moore E. Investigation of the impact of Tat export pathway enhancement on E. coli culture, protein production and early stage recovery. Biotechnol Bioeng.2012,109(4):983-991.
    [84]Matos CFRO, Branston SD, Albiniak A, Dhanoya A, Freedman RB, Keshavarz-Moore E, Robinson C. High-yield export of a native heterologous protein to the periplasm by the Tat translocation pathway in Escherichia coli. Biotechnol Bioeng.2012,109(10):2533-2542.
    [85]Tinker JK, Erbe JL, Holmes RK. Characterization of fluorescent chimeras of cholera toxin and Escherichia coli heat-labile enterotoxins produced by use of the twin arginine translocation system. Infect Immun.2005,73(6):3627-3635.
    [86]Strauch E-M, Georgiou G. A bacterial two-hybrid system based on the twin-arginine transporter pathway of E. coli. Protein Sci.2007,16(5):1001-1008.
    [87]Waraho D, DeLisa M. Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism. Proc Natl Acad Sci U S A.2009, 106(10):3692-3697.
    [88]Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu L-F. A novel Sec-independent periplasmic protein translocation pathway in Escherichia coli. EMBO J.1998,17(1):101-112.
    [89]郑大海,麦康森.迟钝爱德华氏菌(Edwardsiella tarda)的研究概况.海洋湖沼通报.2004,(1):52-59.
    [90]Wang QY, Yang MJ, Xiao JF, Wu HZ, Wang X, Lv YZ, Xu LL, Zheng HJ, Wang SY, Zhao GP, Liu Q, Zhang YX. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS ONE.2009,4(10):e7646.
    [91]Booth NJ, Beekman JB, Thune RL. Edwardsiella ictaluri encodes an acid-activated urease that is required for intracellular replication in channel catfish (Ictalurus punctatus) macrophages. Appl Environ Microb.2009,75(21):6712-6720.
    [92]Polyak IK. Characterization of a virulence related hypothetical protein in Edwardsiella ictaluri. Master's thesis, pp. vi. Louisiana State University.2007.
    [93]Cooper RK, Shotts EB, Nolan LK. Use of a mini-transposon to study chondroitinase activity associated with Edwardsiella ictaluri. J Aquat Anim Health.1996,8(4):319-324.
    [94]Labella A, Manchado M, Alonso MC, Castro D, Romalde JL, Borrego JJ. Molecular intraspecific characterization of Photobacterium damselae ssp. damselae strains affecting cultured marine fish. J Appl Microbiol.2010,108(6):2122-2132.
    [95]Ling SH, Wang XH, Xie L, Lim TM, Leung KY. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology.2000, 146(1):7-19.
    [96]朱壮春,史相国,张淑杰,姜广健,邢朝斌,赵亚龙,李古军,吴鹏.牙鲆腹水病病原研究.水科学.2006,25(7):325-329.
    [97]Xiao JF, Wang QY, Liu Q, Wang X, Liu H, Zhang YX. Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aqua Res.2009,40(1):13-17.
    [98]白方方,兰建新,王燕,韩茵,张晓华.迟缓爱德华氏菌间接ELISA快速检测法.中国水产科学.2009,16(4):619-625.
    [99]王斌,孙岑,范薇,刘双凤,刘永波,孙彦珂.养殖大菱鲆出血性败血症病原菌致病性的研究及鉴定.大连水产学院学报.2006,21(2):100-104.
    [100]Ye SG, Li H, Qiao G, Li ZS. First case of Edwardsiella ictaluri infection in China farmed yellow catfish Pelteobagrus fulvidraco. Aquaculture.2009,292(1-2):6-10.
    [101]沈萍,范秀容,李广斌.微生物学试验(第三版).高等教育出版社.1999版.
    [102]Rohlf FJ. NTSYS-pc:Numerical Taxonomy and Multivariate Analysis System, version 2.1. Exeter Publishing, Ltd., Setauket, New York.2000.
    [103]Tusnady GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol.1998,283(2):489-506.
    [104]Sakai T, Iida T, Osatomi K, Kanai K. Detection of Type 1 fimbrial genes in fish pathogenic and non-pathogenic Edwardsiella tarda strains by PCR. Fish Pathol.2007,42(2):115-117.
    [105]Tan YP, Lin Q, Wang XH, Joshi S, Hew CL, Leung KY. Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect Immun.2002,70(11):6475-6480.
    [106]Han Y, Li X, Qi Z, Zhang XH, Bossier P. Detection of different quorum-sensing signal molecules in a virulent Edwardsiella tarda strain LTB-4. J Appl Microbiol.2010,108(1):139-147.
    [107]Li GY, Li J, Xiao P, Guo YH, Mo ZL. Detection of type Ⅲ secretion gene as an indicator for pathogenic Edwardsiella tarda. Lett Appl Microbiol.2010,52(3):213-219.
    [108]Wang YM, Wang QY, Xiao JF, Liu Q, Wu HZ, Zhang YX. Genetic relationships of Edwardsiella strains isolated in China aquaculture revealed by rep-pcr genomic fingerprinting and investigation of Edwardsiella virulence genes. J Appl Microbiol.2011,111(6):1337-1348.
    [109]Yang MJ, Lv YZ, Xiao JF, Wu HZ, Zheng HJ, Liu Q, Zhang YX, Wang QY. Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms. PLoS ONE.2012,7(5):e36987.
    [110]Wang X, Wang QY, Xiao JF, Liu Q, Wu HZ, Xu LL, Zhang YX. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol.2009,27(3):469-477.
    [111]Dennis JJ, Zylstra GJ. Plasposons:modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol.1998,64(7):2710-2715.
    [112]Liang W, Wang S, Yu F, Zhang L, Qi G, Liu Y, Gao S, Kan B. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect Immun.2003,71(10):5498-5504.
    [113]Wang SY, Lauritz J, Jass J, Milton DL. A ToxR homolog from Vibrio anguillarum serotype 01 regulates its own production, bile resistance, and biofilm formation. J Bacteriol.2002,184(6): 1630-1639.
    [114]Xiao JF, Wang QY, Liu Q, Xu LL, Wang X, Wu HZ, Zhang YX. Characterization of Edwardsiella tarda rpoS:effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl Microbiol Biotechnol.2009,83(1):151-160.
    [115]Morales VM, Ba'ckman A, Bagdasarian M. A series of wild-host-range low cope-number vectors that allow direct screening forrecombinants. Gene.1991,97(1):39-47.
    [116]Xiao Y, Liu Q, Chen H, Zhang Y. A stable plasmid system for heterologous antigen expression in attenuated Vibrio anguillarum. Vaccine.2011,29(40):6986-6993.
    [117]J.莎姆布鲁克,黄培堂译.分子克隆实验指南(上下册).科学出版社.2005.
    [118]Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G. Export pathway selectivity of Escherichia co//twin arginine translocation signal peptides. J Biol Chem.2007, 282(11):8309-8316.
    [119]Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu L-F. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem.2001,276(11):8159-8164.
    [120]Franson TR, Sheth NK, Rose HD, Sohnle PG. Scanning electron microscopy of bacteria adherent to intravascular catheters. J Clin Microbial.1984,20(3):500-505.
    [121]Schembri MA, Christiansen G, Klemm P. FimH-mediated autoaggregation of Escherichia coli. Mol Microbiol.2001,41(6):1419-1430.
    [122]Srinivasa Rao PS, Yamada Y, Tan YP, Leung KY. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol.2004,53(2): 573-586.
    [123]Wang X, Wang QY, Liu Q, Xiao JF, Wu HZ, Zhang YX. Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA-EsrB and nucleoid protein HhaEt. Fish Shellfish Immunol.2010,29(6):1082-1091.
    [124]Ize B, Stanley NR, Buchanan G, Palmer T. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol.2003,48(5):1183-1193.
    [125]Rajashekara G, Drozd M, Gangaiah D, Jeon B, Liu Z, Zhang Q. Functional characterization of the twin-arginine translocation system in Campylobacter jejuni. Foodborne Pathog Dis.2009,6(8): 935-945.
    [126]Reed LJ, Muench H. A simple method of estimating fifty percent end points. Am J Hygie.1938,27(3): 493-497.
    [127]Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol. 2002,291(8):605-614.
    [128]Bendtsen J, Nielsen H, Widdick, D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC Bioinformatics.2005,6(1):167.
    [129]Bernhardt TG, De Boer PAJ. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol.2003,48(5):1171-1182.
    [130]Jongbloed J, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax W, van Dijl J, Braun P. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem.2002,277(46):44068-44078.
    [131]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem.1975, 250(10):4007-4021.
    [132]Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Nat Biotechnol.1996, 14(1):61-65.
    [133]Wilkins MR, Williams KL. Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass:a theoretical evaluation. J Theor Biol.1997, 186(1):7-15.
    [134]Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem.2004,76(14):4193-4201.
    [135]Wang B, Mo ZL, Mao YX, ZouYX, Xiao P, Li J, Yang JY, Ye XH, Leung KY, Zhang PJ. Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC. Microbiology.2009,155(4):1260-1271.
    [136]Kumar G, Sharma P, Rathore G, Bisht D, Sengupta U. Proteomic analysis of outer membrane proteins of Edwardsiella tarda. J Appl Microbiol.2010,108(6):2214-2221.
    [137]Ames GF, Prody C, Kustu S. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol.1984,160(3):1181-1183.
    [138]Palmer T, Sargent F, Berks BC. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol.2005,13(4):175-180.
    [139]Wang Y, Wang Q, Yang W, Liu B, Zhang Y. Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol.2012, DOI:10.1007/s00253-012-4462-9.
    [140]Obi I, Nordfelth R, Francis M. Varying dependency of periplasmic peptidylprolyl cis-trans isomerases in promoting Yersinia pseudotuberculosis stress tolerance and pathogenicity. Biochem J.2011,439(2): 321-332.
    [141]Bi E, Dai K, Subbarao S, Beall B, Lutkenhaus J. Ftsz and cell division. Res Microbiol.1991,142(2-3): 249-252.
    [142]Park SB, Jang HB, Nho SW, Cha IS, Hikima J-i, Ohtani M, Aoki T, Jung TS. Outer membrane vesicles as a candidate vaccine against edwardsiellosis. PLoS ONE.2011,6(3):e17629.
    [143]Zolkiewski M. Clpb cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. J Biol Chem.1999,274(40):28083-28086.
    [144]Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol.2006,8(1):11-26.
    [145]Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JCA, Collet JF. An engineered pathway for the formation of protein disulfide bonds. Science.2004,303(5661): 1185-1189.
    [146]Shah P, Romero DG, Swiatlo E. Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb Pathogenesis.2008,45(3):167-172.
    [147]Mengin-Lecreulx D, van Heijenoort J. Identification of the glmu gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol.1993,175(19): 6150-6157.
    [148]Xiao J, Chen T, Wang Q, Liu Q, Wang X, Lv Y, Wu H, Zhang Y. Search for live attenuated vaccine candidate against edwardsiellosis by mutating virulence-related genes of fish pathogen Edwardsiella tarda. Lett Appl Microbiol.2011,53(4):430-437.
    [149]Thouand G, Daniel P, Horry H, Picart P, Durand MJ, Killham K, Knox OGG, DuBow MS, Rousseau M. Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria. Luminescence.2003,18(3):145-155.
    [150]Gerdes K, Bech FW, J(?)rgensen ST, L(?)bner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, Von Meyenburg K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J.1986,5(8):2023-2029.
    [151]Guan L, Mu W, Champeimont J, Wang Q, Wu H, Xiao J, Lubitz W, Zhang Y, Liu Q. Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun.2011,79(7):2608-2618.
    [152]Haidinger W, Mayr UB, Szostak MP, Resch S, Lubitz W. Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl Environ Microbiol.2003,69(10): 6106-6113.
    [153]Bumann D, Hueck C, Aebischer T, Meyer TF. Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol Med Microbiol.2000,27(4):357-364.
    [154]Priebe GP, Brinig MM, Hatano K, Grout M, Coleman FT, Pier GB, Goldberg JB. Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect Immun.2002,70(3):1507-1517.
    [155]Cheville NF, Olsen SC, Jensen AE, Stevens MG, Florance AM, Houng HS, Drazek ES, Warren RL, Hadfield TL, Hoover DL. Bacterial persistence and immunity in goats vaccinated with a purE deletion mutant or the parental 16M strain of Brucella melitensis. Infect Immun.1996,64(7):2431-2439.
    [156]Kotloff KL, Pasetti MF, Barry EM, Nataro JP, Wasserman SS, Sztein MB, Picking WD, Levine MM. Deletion in the Shigella enterotoxin genes further attenuates Shigella flexneri 2a bearing guanine auxotrophy in a phase 1 trial of CVD 1204 and CVD 1208. J Infect Dis.2004,190(10):1745-1754.
    [157]Morona R, Yeadon J, Considine A, Morona JK, Manning PA. Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA+ gene:application to cholera vaccine development. Gene.1991,107(1):139-144.
    [158]Santander J, Xin W, Yang Z, Curtiss R. The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology. PLoS ONE.2010,5(12):e15944.
    [159]Paschke M, Hohne W. A twin-arginine translocation (Tat)-mediated phage display system. Gene.2005, 350(1):79-88.
    [160]Gopalakannan A, Arul V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture.2006,255(1):179-187.
    [161]Zhou L, Wang X, Liu Q, Wang Q, Zhao Y, Zhang Y. A novel multivalent vaccine based on secretary antigen-delivery induces protective immunity against Vibrio anguillarum and Aeromonas hydrophila. J Biotechnol.2010,146(1-2):25-30.
    [162]Mu W, Guan L, Yan Y, Liu Q, Zhang Y. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine. Fish Shellfish Immunol.2011,31(6): 1097-1105.
    [163]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods.2001,25(4):402-408.
    [164]Li Y, Zhou Z, Lv L, Hou X, Li Y. New approach to achieve high-level secretory expression of heterologous proteins by using Tat signal peptide. Protein Peptide Lett.2009,16(6):706-710.
    [165]Robinson HL, Pertmer TM. DNA vaccines for viral infections:basic studies and applications. Adv Virus Res.2000,55:1-74.
    [166]Yang Z, Liu Q, Wang Q, Zhang Y. Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl Environ Microb.2008, 74(14):4359-4365.
    [167]Barrett CML, Ray N, Thomas JD, Robinson C, Bolhuis A. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. Biochem Bioph Res Commun. 2003,304(2):279-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700