MEMS微热敏器件中多孔硅绝热性能研究及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着微电子机械系统(MEMS)的发展,多孔硅优良的机械性能和热学性能逐渐为人们所关注。本文主要针对多孔硅材料在MEMS微热传感器中作为绝热层的应用进行了研究及模拟。
     本论文以多孔硅基热电偶式MEMS微热传感器为研究对象,研究了传热学、薄膜传热、有限元以及热电偶等基础理论知识;实验测量了在不同多孔硅基底上沉积金属薄膜电阻条的功率—温度曲线,进而对比验证多孔硅的绝热性能,为微传感器制作做好准备;用ANSYS软件进行建模来模拟多孔硅绝热性能验证实验,模拟中采用实验和数值计算结合的方法对有限元分析的载荷进行确定,结果表明所建立的有限元模型以及参数(特别是热生成率载荷大小)取值比较合理,模拟结果与实验相符合。
     实验提出热电偶式微热传感器模型,按照一定的工艺步骤完成传感器雏形,并通过给热端电阻条通电流加热的方式代替温度场,对热电偶的冷热端温差进行测量说明了传感器的可行性;利用ANSYS软件建立有限元模型,采用平面、三维直接、拉伸法以及壳单元等方法尝试建模,分别模拟电阻自加热和热端施加恒定温度场两种情况下热电偶式微热传感器的温度分布,特别是冷热端温度分布进行模拟,与实验值对比接近;最后以增加温差为目的,对多孔硅基热电偶式微热传感器进行了热学设计,得出扩大温差的要素和最终设计方案。模拟出最终设计的方案冷热端温差效果,给热端施加恒定100℃温度场,热电偶冷热端温差可达12℃左右,而瞬态分析结果在最初的12秒内温差可达30℃。
Recently, with the development of Micro-Electro-Mechanical System (MEMS) technology, porous silicon (PS) has got more and more attention due to its excellent mechanical and thermal isolation properties. In this paper, the application of PS as thermal isolation layer in MEMS micro thermal sensor is studied and simulated.
     A PS-based thermocouple micro thermal sensor was present in this paper. Theories about heat transfer, thermal conduct of film, finite element and thermocouple were studied first. An experiment was designed to testify thermal insulation property of PS that to deposit metal film like Pt on PS layer and get its power consume-temperature curves. The experiment which made a good preparation for micro sensor was simulated by ANSYS finite element analysis (FEA) software. The Loads of FEA were gotten by experiments and numerical calculation. The results of the simulations were close to the experiment because of the right FEA model and appropriate value of parameters (especially heat generation rate).
     A thermocouple micro thermal sensor was advanced, and the rudiment sensor was finished according to a certain experiment steps. Then the temperature of hot and cold ends was measured to test the feasibility of the sensor, and the heat of the hot end was gotten by electrified metal resistance instead of exposing to heat filed. The FEA models were built by using the method of plane, 3-dimension, volume offset and shell elements. Temperature distribution of the thermocouple micro thermal sensor was simulated by those methods. Heat generation and constant temperature field were respectively loaded on the hot end of the sensor in the simulation and the temperature of the cold end was close to the experiment data. Finally, the work of thermal design for PS-based thermocouple micro temperature sensor was carried out with the purpose of increasing the difference in temperature between hot and cold ends. The difference in temperature of final project was simulated by FEA static thermal analysis. 12℃temperature difference between hot and cold ends could be gotten when a constant temperature field of 100℃was loaded on hot end, while 30℃temperature difference in the first 12 seconds by using transient analysis.
引文
[1]李炳乾,朱长纯,刘君华,微电子机械系统的研究进展,国外电子元器件,2001,1,4~7
    [2]石庚辰,郝一龙,微机电系统技术基础,北京:中国电力出版社,2006,1~3
    [3]王立鼎,微机电系统的发展势态规划与建议,机械工程科学前沿及优先领域研讨会论文集,广州:华南理工大学,1999,45~47
    [4]杨岳,微型热致动泵,半导体技术,1999,24 (6) :37~41
    [5]蒋庄德,任泰安等,微型齿轮、涡轮等微型机械零件的研制,西安交通大学学报,1996,30(7):8~11
    [6]赵长根,德国微系统技术的发展,科技大视野,2004,4,61~63
    [7]李旭辉,MEMS发展应用现状,传感器与微系统,2006,25(5):7~9
    [8]Nagel D J, MEMS: micro technology, Circuits & Device, 2001, 17(2): 14-25
    [9]Janusz B, Impact of MEMS technology on society, Sensors and Actuators,1996,56:15-23
    [10]亢春梅,曹金名,刘光辉,国外MEMS技术的现状及其在军事领域中的应用,传感器技术,2002,21(6):4~7
    [11]邢婉丽,程京,生物芯片技术,北京:清华大学出版社,2004,2~12
    [12]Schmalzing D, Microchip electrophoresis: a method for high speed SNP detection, Nucleic Acids Res, 2000, 28(9):43
    [13]Canham L T, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 1990, 57(3): 1046~1048
    [14] G. Kaltsas and A. G. Nassiopoulos, Bulk silicon micromachining using porous silicon sacrificial layers, Microelectronic Engineering, 1997, 35(1-4): 397~400
    [15]马家志,胡明,张之圣等,多孔硅及其在MEMS中的应用.固体电子学研究与进展,2003,23(1):107~111
    [16]董亚明,钟菊花,谢湘华,多孔硅—导电聚酯材料复合发光器的光学特性研究,化学物理学报,2001,14 (4): 433~438
    [17]宗扬,MEMS中多孔硅的原电池法制备及绝热性能模拟,硕士学位论文,天津大学,2006
    [18]Alexandra Splinter, Jorg Sturmann, Wolfgang Benecke, New porous silicon formation technology using internal current generation with galvanic elements, Sensors and Actuators, 2001, 92(1):394~399
    [19]Lehmann V, Gaselo U, Porous silicon formation: A quantum wire effect, Appl Phys Lett, 1991, 58:856~858
    [20]张庆全,竺士炀,黄宜平,改进的多孔硅生长模型和计算机模拟,复旦学报(自然科学版),2003,42(1):70~73
    [21]王清涛,李清山等.多孔硅的形成与理论分析,曲阜师范大学学报,2002,28(3):57~58
    [22]L.N.Alesandrov, P.L.Novikov, Mechanisms of formation and topological analysis of porous silicon-computational modeling, Computational Materials Science, 1998, 10(1):406~410
    [23]胡明,张绪瑞,张伟等,多孔硅形成过程及孔隙率的计算机模拟,天津大学学报,2007,40(4):473~478
    [24]张维新,朱秀文等,半导体传感器,天津大学出版社,天津,1992,105~112
    [25]Saeed Moaveni,有限元分析——ANSYS理论与应用(欧阳宇),北京:电子工业出版社,2003,1~4
    [26]李皓月,ANSYS工程计算应用教程,北京:中国铁道出版社,2002,1~7
    [27]张奕,传热学,南京:东南大学出版社,2004,1~10
    [28]戴锅生,传热学,北京:高等教育出版社,1999,2~9
    [29]林瑞泰,热传导理论与方法,天津:天津大学出版社,1992,104~105
    [30]章熙民,任泽霈,梅飞鸣等,传热学,北京:中国建筑工业出版社,1985,113~128
    [31]陆瑞松,林发森,张瑞编著,内燃机的传热与热负荷,北京:国防工业出版社,1985,69~101
    [32]刘静,微米/纳米尺度传热学,北京:科学出版社,2001,160~186
    [33]王世忠,孟庆元,高维成,结构力学与有限元法,哈尔滨工业大学出版社,2003,217~220
    [34]张朝晖等,ANSYS8.0热分析教程与实例解析,北京:中国铁道出版社2005,8~10
    [35]小飒工作室编,最新经典ANSYS及Workbench教程,北京:电子工业出版社,2004,479~483
    [36]曾辉,塞贝克效应及其应用,嘉应学院学报(自然科学),2004 ,22(3):52~53
    [37]刘兴明,韩琳,刘理天,具有聚酰亚胺绝热层的新型非制冷红外探测器,传感技术学报,2006,19(5):1725~1727
    [38]G. Kaltsas, A.G. Nassiopoulos, Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation, Sensors and Actuators, 1999, 76:133~138
    [39]W. Lang, P. Steiner and H. Sandmaier, Porous silicon: a novel material for Microsystems, Sensors and Actuators, 1995, 51(1): 31~36
    [40]黄庆安,硅微机械加工技术,北京:科学出版社,1994,1~49
    [41]田斌,胡明,用电化学方法制备多孔硅,天津大学学报,2004,37(9):823~826
    [42]马家志,胡明,张之圣等,多孔硅及其在MEMS中的应用,固体电子学研究与进展,2003,23(1):107~111
    [43]Perichon S, Lysenko V, Roussel Ph, et al, Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect Microsystems, Sensors and Actuators,2000,85:235~239
    [44]窦雁巍,MEMS中多孔硅基本性能及绝热性能的研究,博士学位论文,天津大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700