一株水稻Ds插入半矮秆突变体(sdwrky)的表型和分子鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)既是世界上最重要的粮食作物之一,也被公认为禾本科植物的分子生物学研究的模式植物。近年来,随着水稻基因组测序工作的基本完成,水稻基因组学研究由结构基因组学时代进入功能基因组学时代。开展水稻重要农艺性状相关基因的定位、克隆和功能分析等方面的研究,对于水稻和其它禾本科植物都具有十分重要的理论意义和应用价值。株高是水稻等禾本科作物的重要农艺性状之一。目前,有关水稻株高分子机制的研究成果,多数是通过对水稻矮秆和半矮秆突变体的基因克隆实现的。
     在筛选水稻Ds插入突变体的过程中,我们发现一株半矮秆突变体(sdwrky)。与野生型水稻相比,sdwrky突变体表现为种子萌发迟缓约1天、抽穗期提前约5天、叶色深绿、叶角张大、腋芽生长旺盛并形成有效分蘖、株高约为野生型的81%、对赤霉素敏感。突变体与野生型株高的差异来源于节间长度和穗长两个方面的不同。
     我们采用TAIL-PCR技术,从sdwrky突变体扩增并分离到Ds侧翼序列。以Ds侧翼序列为待查询序列进行NCBI-BLAST在线分析,发现Ds插入于sdwrky突变体4号染色体Os04g0597300(sdwrky)基因,导致sdwrky基因突变。以Os04g0597300(sdwrky)基因编码的氨基酸序列为查询序列,通过在线检索分析Pfam (http://pfam.sanger. ac.uk/); GRAMENE (http://gramene. agrinome.org/), RAP-DB (http://rapdb.dna.affrc.go.jp/), Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/)等数据库,表明sdwrky基因编码一种包含WRKY结构域的蛋白质(SDWRKY),推测SDWRKY可能存在两种机调控水稻种子萌发、幼苗生长以及节间伸长:(1)SDWRKY可能抑制其它WRKY转录因子(如OsWRKY71和OsWRKY51)的功能活性;(2)SDWRKY可能是水稻糊粉层细胞内ABA和GA信号传导途径中共同的抑制因子。
     在对sdwrky突变体的鉴定过程中,我们发现一个有趣的现象,sdwrky突变体的后代发生遗传分离,即:在467株T2代分离群体中,分离出现145株致死性黄化幼苗突变体(lysrcc1)。遗传分析表明,lysrcc1突变体受一对隐性核基因控制。
     采用TAIL-PCR技术,分离得到Ds插入位点的侧翼序列。以Ds侧翼序列为待查询序列进行NCBI-BLAST在线分析,发现Ds插入于sdwrky突变体3号染色体Os03g0599600(lysrcc1)基因,导致lysrcc1基因突变。以Os03g0599600(lysrcc1)基因编码的氨基酸序列为查询序列,通过在线检索分析Pfam (http://pfam.sanger. ac.uk/); GRAMENE (http://gramene. agrinome.org/), RAP-DB (http://rapdb.dna.affrc.go.jp/), Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/)等数据库,表明lysrcc1基因编码一个包含RCC1结构域的蛋白质(LYSRCC1)。推测LYSRCC1可能是一种Ran GEF,参与调控和质运输,从而影响叶绿体发育的某一环节。
Rice (Oryza sativa L.) is one of the most important food crops for the people in the world, and it has also developed into a model species for molecular biology study within the monocotyledonous grasses. In recent years, with the completion of rice genome sequencing, the current trend in rice genome biology research has evolved from structural genomics to functional genomics. It is extremely meaningful in theoretical and practical respects to carry out mapping, cloning and functional analysis of genes associated with important agronomic traits in rice. Plant height is an important agronomic trait for morphogenesis and grain yield formation in rice and other crops in grass family. Currently, most understanding of molecular mechanism of plant height in rice attributes to the gene cloning from dwarf or semi-dwarf mutants.
     In this study, a rice semi-dwarf mutant (sdwrky) was isolated from a collection of Ds-inserted mutant lines. sdwrky mutant showed slow seed germination and growth, early heading, semi-dwarfism, black-green leaf color, large angle of leaf to stem, and its axillary buds showed faster growth and some of them were able to develop into tillers. Most significantly, the mutant was found to be susceptible to gibberellin treatment, and its plant height is about 81% of wild-type plant. Further analysis showed that the differences in plant height between the mutant and wild-type plants derived from both the intermodal length and ear length.
     The Ds-flanking sequences were cloned from the sdwrky mutant by using TAIL-PCR amplification technique. Analysis of the Ds-flanking sequences indicated that Ds element was inserted into the Os04g0597300 gene (sdwrky) of rice chromosome 4 in the sdwrky mutant. Other databases, such as Pfam (http://pfam.sanger. ac.uk/), GRAMENE (http://gramene. agrinome.org/), RAP-DB (http://rapdb.dna.affrc.go.jp/), and Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/) searched online to find more molecular information, it was showed that the 04g0597300 (sdwrky) gene encoded a WRKY domain-containing SDWRKY protein. There are two possible mechanisms for SDWRKY to regulate seed germination, seedling growth and elongation: (1) SDWRKY may inhibit the functional activities of other WRKY transcription factors (such as OsWRKY71 and OsWRKY51); (2) SDWRKY may have the similar function of OsWRKY24, which is a negative regulator encoded by a rice WRKY gene represses both ABA and GA signaling in aleurone cells.
     Interestingly, among the 467 lines examined in the T2 generation, 145 lines showed a lethal yellow seeding mutant (lysrcc1) that segregated as a single recessive locus.
     The Ds-flanking sequences were cloned from the lysrcc1 mutant by using TAIL-PCR amplification technique. Analysis of the Ds-flanking sequences indicated that Ds element was inserted into the Os03g0599600 gene (lysrcc1) of rice chromosome 3 in the lysrcc1 mutant. Other databases, such as Pfam (http://pfam.sanger. ac.uk/), GRAMENE (http://gramene. agrinome.org/), RAP-DB (http://rapdb.dna.affrc.go.jp/), and Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/) searched online to find more molecular information, it was showed that the Os03g0599600 (lysrcc1) gene encoded a RCC1 domain-containing LYSRCC1 protein. LYSRCC1 may be a Ran GEF, involving in regulation of nucleocytoplasmic transport, which regulates chloroplast development.
引文
[1]谷福林,翟虎渠,万建民,等.水稻矮秆性状研究及矮源育种利用.江苏农业学报,2003,19(1):48-54.
    [2]于永红,斯华敏.水稻矮化相关基因的研究进展.植物遗传资源学报,2005,6(3):344-347.
    [3] Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9(1): 11-17.
    [4] Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416 (6882): 701-702.
    [5] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1),"green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99(13): 9043-9048.
    [6] Itoh H, Tatsumi T, Sakamoto T, et al. A rice semi-dwarf gene, Tan-Ginbozu(D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54(4): 533-547.
    [7] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature, 2005, 437(7059): 693-698.
    [8] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, et al. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13(5): 999-1010.
    [9] Sasaki A, Itoh H, Gomi K, et al. Accumulation of the phosphorylated repressor for GA signaling in an F-box mutant. Science, 2003, 299(5614): 1896-1898.
    [10] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32(4): 495-508.
    [11] Mori M, Nomura T, Ooka H, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130(3):1152-1161.
    [12] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17(8): 2243-2254.
    [13] Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17(3): 776-90.
    [14] Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12(9): 1591-1605.
    [15] Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46(1): 79-86.
    [16] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5): 199-206.
    [17] Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49(6): 827-842.
    [18] Maeo K, Hayashi S, Kojima-Suzuki H, et al. Role of conserved residues of the WRKY domain in the DNA binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem, 2001, 65(11): 2428-2436.
    [19] Zhang Y J, Wang L J. The WRKY transcription factor superfamily: it s origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005, 5(1): 1-12.
    [20] Maleck K, Levine A, Eulgem T, et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26(4): 403-410.
    [21] Rushton P J, Reinstadler A, Lipka V, et al. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen and wound-induced signaling. Plant Cell, 2002, 14(4): 749-762.
    [22] Cheong Y H, Chang H S, Gupta R. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol, 2002,129(2): 661-677.
    [23] Hara K, Yagi M, Kusano T, et al. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet, 2000, 263(1): 30-37.
    [24] Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, et al. A survey of genes differentially expressed during long-term heat induced chilling tolerance in citrus fruit. Planta, 2003, 218(1): 65-70.
    [25] Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002, 130(3): 1143-1151.
    [26] Qiu Y, Jing S, Fu J, et al. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull, 2004, 49(20): 2159-2168.
    [27] Alexandrova K S, Conger B V. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci, 2002, 162(2): 301-307.
    [28] Lagace M, Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 2004, 219(1): 185-189.
    [29] Luo M, Dennis E S, Berger F, et al. MINISEED3(MINI3), a WRKY family gene, and HAIKU2(IKU2), a leucine-rich repeat(LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102(48): 17531-17536.
    [30] Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14(6): 1359-1375.
    [31] Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143(4): 1789-1801.
    [32] de Pater S, Greco V, Pham K, et al. Characterization of a zinc-dependent transcriptiona activator from Arabidopsis. Nucleic Acids Res, 1996, 24(23): 4624-4631.
    [33] Birnbaum K, Shasha DE, Wang JY, et al. A gene expression map of the Arabidopsis root. Science, 2003, 302 (5652): 1956-1960.
    [34] Rushton PJ, Macdonald H, Huttly AK, et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol, 1995, 29(4): 691-702.
    [35] Zhang Z L, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134(4): 1500-1513.
    [36] Xie Z, Zhang Z L, Zou X, et al. Interactions of two abscisicacid induced WRKYgenes in repressing gibberellin signaling in aleurone cells. Plant J, 2006, 46(2): 231-242.
    [37] Zhang Z L, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134(4): 1500-1513.
    [38] Ayumi T, Ryouichi T. Chlorophyll metabolism. Current Opinion in Plant Biology, 2006, 9: 248-255.
    [39] Lee S, Kim J H, Yoo E S, et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57(6): 805-818.
    [40] Zhang H, Li J, Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62(3): 325-337.
    [41] Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44(5): 463-472.
    [42] Kusaba M, Ito H, Morita R, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19(4): 1362-1375.
    [43] Liu W, Fu Y, Hu G, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice(Oryza sativa L.). Planta, 2007, 226(3): 785-795.
    [44] Park S Y, Yu J W, Park J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19(5): 1649-1664.
    [45] Wu Z, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145(1): 29-40.
    [46] Chen X, Zhong L, Zuo Q. Dynamics of water retaining capacity and chlorophyll content of two-line hybrid rice during heading-grain filling stage and their relations with grain yield. Ying Yong Sheng Tai Xue Bao, 2005, 16(8): 1459-1464.
    [47] Aldridge C, Maple J, Moller S G. The molecular biology of plastid division in higher plants. J Exp Bot, 2005, 414: 1061-1077.
    [48] Schultes N P, Sawers R H, Brutnell T P, et al. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J, 2000, 21(4): 317-327.
    [49] Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem, 1996, 237: 323-343.
    [50] Babiychuk E, Müller F, Eubel H, et al. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J, 2003, 33(5): 899-909.
    [51] Sugimoto H, Kusumi K, Noguchi K, et al. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52(3): 512-527.
    [52] Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143-152.
    [53] Terry M J. Phytochrome chromophore-deficient mutants. Plant Cell Environ, 1997, 20: 740-745.
    [54] Weiss M R. Floral color change: a widespread functional convergence. American Journal of Botany, 1995, 82: 167-185.
    [93] Lepiniec L, Debeaujon, Routaboul J M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 2006, 57: 405-430.
    [55] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10: 236-242.
    [56] Lesnick M L, Chandler V L. Activation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters. Plant Physiol, 1998, 117: 437-445.
    [57] Cone K C, Cocciolone S M, Burr B. Maize anthocyanin regulatory gene pl is aduplicate of the c1 that functions in the plant. Plant Cell, 1993, 5: 1795-1805.
    [58] Reddy V S, Scheffler B E, Wienand U, et al. Cloning and characterization of the rice homologue of the anthocyanin regultory gene. Plant Mol Biol, 1998, 36: 497-498.
    [59] Sakamoto W, Ohmori T , Kageyama K, et al. The Purple leaf (Pl) locus of rice: the Pl (w) allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol, 2001, 42(9): 982-991.
    [60] Hable W E, Oishi K K, Schumaker K S. Viviparous-5 encodes phytoene desaturase,an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol.Genet.Genomics, 1998, 257:167–176.
    [61] Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol, 2004, 45(4): 490-495.
    [62] Conti A, Pancaldi S, Fambrini M, et al. A deficiency at the gene coding for zeta-carotene desaturase characterizes the sunflower non dormant-1 mutant. Plant Cell Physiol, 2004, 45(4): 445-455.
    [63] Matthews P D, Luo R, Wurtzel E T. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 2003, 54(391): 2215-2230.
    [64] Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of betacarotene and xanthophylls in plants. Plant Cell, 2002, 14: 333-342.
    [65] Fang J, Chai C, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. The Plant J, 2008, 54: 177–189.
    [66] Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14: S15–S45.
    [67] Razem F A, Baron K, Hill R D. Turning on gibberellin and ABA signalling. CurrOpin Plant Biol, 2006, 9(5): 454–459.
    [68] Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-of-function mutations of the rice GAMYB Gene impairα-amylase expression in aleurone and flower development. Plant Cell. 2004, 16(1): 33-44.
    [69] LEISTER D. Chloroplast research in the genomic age. Trends in Genetics, 2003, 19(1): 47-56.
    [70] KEEGSTRA K, CLINE K. Protein import and routing systems of chloroplasts. Plant Cell, 1999, 11(4): 557-570.
    [71] HETZER M, GRUSS O J, MATTAJ I W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biology, 2002, 4(7): 177-184.
    [72] ARNAOUTOV A, DASSO M. The Ran GTPase regulates kinetochore function. Developmental Cell, 2003, 5(1): 99-111.
    [73] QUIMBY B B, DASSO M. The small GTPase Ran: interpreting the signs. Current Opinion in Cell Biology, 2003, 15(3): 338-344.
    [74] XU X M, MEULIA T, MEIER I. Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Current Biololy, 2007, 17(13): 1157-1163.
    [75] SEKI T, HAYASHI N, NISHIMOTO T. RCC1 in the Ran pathway. Journal of Biochemistry, 1996, 120(2): 207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700