低信噪比下OFDM系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(OFDM)等多载波数字调制技术采用多路并行的正交子载波来发送/接收高速数据信号。该技术具有高频谱效率、优良的抗频率选择性衰落能力、能根据信道条件灵活地决定子载波调制方式与信号功率、具有天然的与多输入多输出(MIMO)系统相结合的能力,因而在无线通信领域引起了广泛关注。目前,OFDM通信技术的研究主要集中在高信噪比、高速传输速率的应用,而基于OFDM的拓展距离UWB通信、军事自适应速率隐蔽通信以及移动通信系统的小区边缘数据传输则更关注OFDM技术在低信噪比下的通信能力。
     本文开展了针对低信噪比下OFDM相关关键通信技术的研究,主要的研究内容和创新点如下:
     1.提出了一种具有良好自相关性能的OFDM前导码的设计方法。该前导码的主要特征是,频域序列具有相等的幅度,时域序列具有良好的相关性能且表现为类似高斯白噪声的统计特性,本文中称该种前导码为“频域恒包络前导码”。频域恒包络前导码产生方法简单,且当频域前导码为实序列时,由其生成的前导训练序列具有中心共轭对称性,这种性质可用于OFDM的自相关同步方法中。
     2.提出了两种级联方式的OFDM符号定时与载波频偏联合同步方法:差分互相关联合同步方法与自相关联合同步方法。两种联合同步方法的载波频率同步原理相同,主要区别在符号定时同步上。差分互相关定时同步是在互相关同步的基础上引入差分运算,用以消除大的载波频偏对前导码相关性能的影响;自相关联合同步方法充分利用实频域恒包络前导训练序列的中心共轭对称性质,来设计具有尖锐相关特性的自相关定时度量判决函数以实现高精度定时同步。仿真结果表明两种联合同步方法的都具有良好的抗噪声和抗频偏性能,优于当前几种经典联合同步方法。
     3.提出了基于频域恒包络前导码的OFDM时频二维符号定时与整数倍载波频偏联合同步方法,并且给出了两种实现方法。OFDM时频二维联合同步方法具有定时同步精度高、整数倍载波频偏估计范围大、抗噪声性能好、收敛速度快等优点。如果采用直接实现的方式需要耗费很大的硬件资源,在深入研究OFDM时频二维联合同步方法的基础上,本文提出了两种高效的实现算法:基于并行FFT的时频二维联合同步算法和基于并行Chirp-Z的时频二维联合同步算法。两种并行算法在保证OFDM时频二维联合同步算法优良性能的基础上,大大降低了资源消耗,具有很强的实际应用价值。
     4.基于频域恒包络前导码的循环相关性,结合频域恒包络前导码的同步阶段获得的多径时延分布信息,提出了基于多径时延信息的OFDM时域信道估计方法。该方法具有以下优点:首先,信道估计所用导频信号与同步阶段所用导频同为一个频域恒包络前导码,因此系统较小;其次,与现有的几种经典OFDM信道估计方法相比,该信道估计方法在低信噪比条件下具有良好的性能;然后,该信道估计方法计算复杂度低,意味着硬件资源的节省和处理时间的缩短。理论分析与仿真结果均表明该基于多径时延信息的OFDM时域信道估计方法是一种低复杂度、高性能的OFDM信道估计方法,适用于很多OFDM系统。
Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique, which uses several parallel orthogonal sub-carriers to transmit/receive a high data rate signal. OFDM shows many advantages over single-carrier transmissions, such as high frequency efficiency; robustness against frequency-selective fading in a multipath channel; flexibility to determine modulation manner and power of sub-carriers; natural ability to cooperate with Multiple Input Multiple Output (MIMO). At present, the researches on OFDM mainly focuses on the applications of high Signal-to-Noise Ratio(SNR) and high speed. Meanwhile, it shows an increasingly demand of OFDM transmissions under low SNR conditions, such as extending distence Ultra-Wide Band(UWB) systems, low detectable probability adaptive speed military communication systems and data transmissions between the brim and the base station in mobile communications.
     It is significant to develop the OFDM techniques under low SNR conditions. The major work and contribution of this dissertation are focus on the key techniques of low SNR OFDM systems, it summarized as follows:
     1. A new OFDM preamble design method is presented. It has been testified that if the OFDM frequency domain preamble has constant amplitude at all sub-carriers, the time domain preamble (IDFT form of frequency domain preamble) shows an ideal correlation performance, this kind of special OFDM preamble is named“Constant Amplitude Frequency Domain Preamble”in this dissertation. It is easy to generate the CAFDP sequence, and for real CAFDP sequence, the time domain form is central conjugate symmetrical.
     2. Two joint symbol timing and frequency offset synchronization methods are proposed: the differential cross-correlation synchronization method and the auto-correlation synchronization method. They are both multi-stage processes, the only difference between them is at the symbol timing stage. The former introduces differential operation to cross-correlation to eliminate the influence of large frequency offsets, the latter utilizes the conjugate symmetrical structure of CAFDP to get sharp auto-correlation peak. Computer simulations in the AWGN(additive white Gaussian noise) channels and the Rayleigh fading channels show that the proposed synchronization methods achieves superior performance to the existing methods.
     3. Aimed at obtaining better performance and fast synchronization convergence, a time and frequency two dimension joint synchronization method is present. It has excellent performance: high timing precision, large integer frequency estimation range, fast convergency speed etc. At the same time, the realization of the method needs great hardware resources. Based on the analysis of the mathematic expressions, two promoted algorithms are proposed which can realize the method with the same performance but saving much hardware resources, they are the parallel FFT synchronization algorithm and the parallel Chirp-Z synchronization method.
     4. Utilzing the cyclic correlation character of the CAFDP and the multipath delay distribution information achived at the timing synchronization stage, a time domain channel estimation method is proposed. This method shows several advantages over the existing channel estimation method: first, it uses the same preamble with the synchronization method, that means less systems consumed cost; second, it shows superior perfomace over existing methods; last, it is a low computing complexity algorithm that leads small hardware resources cost and fast processing speed.
引文
[1]Yang L, Giannakis G B. Ultra-Wideband Communications: an Idea Whose Time Has Come. IEEE Signal Processing Magzine, 2004, 26-54.
    [2]Win M Z, Scholtz R A. Impulse radio: How It Works [J]. IEEE Communications Letters, 1998, 2.36-38.
    [3]Multi-band OFDM Physical Layer Proposal, IEEE 802.15-03/267r6[DB/OL], 2003, http:// www.ieee802.org/15/pub/TG3a.html
    [4]DS-UWB Physical Layer Submission to 802.15 Task Group 3a, IEEE P802.15.3a Working Group, P802.15-04/0137r3, July 2004.
    [5]Springer A, Huemer M, Reindl L, et al. A Robust Ultra-Broad-Band Wireless Communication System Using SAW Chirped Delay Lines[J]. IEEE Transactions on Microwave Theory and Technologies, 1998, 46(12): 2213-2219.
    [6]Multiband OFDM Alliance SIG, Multiband OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a. http://www.multibandofdm.org.
    [7]Fontana R J. Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2087-2104.
    [8]Han J, Nguyen C. On the Development of a Compact Sub-nanosecond Tunable Monocycle Pulse Transmitter for UWB Applications. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 285-293.
    [9]Lee J S, Nguyen C, Scullion T. New Uniplanar Subnanosecond Monocycle Pulse Generator and Transformer for Time-Domain Microwave Applications. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(6): 1126-1129.
    [10]Wang Y, Dong X d , Wittke P H, et al. Cyclic Prefixed Single Carrier Transmission in Ultra-Wideband Communications. IEEE Tansactions on Wireless Communications, 2006. 5(8): 2017-2021.
    [11]Takizawa K, Yamamoto Y, Li K, et al. A Detect-and-Avoid Method for Single-Carrier UWB Systems. The 4th International Symposium on Wireless Communication Systems, 2007, 691-695.
    [12]Han B, Liu M, Ge N. A 3–5GHz UWB CMOS Receiver with Digital Control Technique. IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2010, 157-160.
    [13]Yong B P, Chol S K, Kyung K C, et al. Performance of UWB DS-CDMA/OFDM/MC- CDMA system. IEEE 47th International Midwest Symposium on Circuits and Systems. 2004, 1: 37-40.
    [14]Hohkawa K, Kaneshiro C, Koh K. Ultra Wide Bandwidth SAW Matched Filter with Chirp Signal Chips. IEEE Ultrasonics Symposium, 2004, 3: 1922-1925.
    [15]Brocato R, Heller E, Wendt J, et al. Ultra-Wideband Communication Using a SAW Correlators Zero-IF Architecture. IEEE Topical Conference on Wireless CommunicationTechnology, 2003, 443-444.
    [16]Zhang P, Liu H. An Ultra-Wide Band System with Chirp Spread Spectrum Transmission Technique. The 6th International Conference on ITS Telecommunications Proceeding, 2006, 294-297.
    [17]Liu H. Multicode Ultra-Wideband Scheme Using Chirp Waveforms[J]. IEEE Journal on Selected Areas in Communication, 2006, 24(4): 885-891.
    [18]贺鹏飞,吕英华,张洪欣,王野秋.基于Chirp-BOK调制的超宽带无线通信系统研究[J].南京邮电大学学报, 2006, 26(2): 21-25.
    [19]Sun X, Liu W, Xu F, et al. Frequency-Band Coded Orthogonal UWB Pulse Design Based on Chirp Signals for Cognitive NBI Suppression. IFIP International Conference on Wireless and Optical Communications Networks, 2007, 1-5.
    [20]Zhang P, Liu H. An Improved Autocorrelation Demodulation Detector for a Chirp UWB System. International Conference on Communications, Circuits and Systems. 2009, 227-230.
    [21]Zhang W, Xia X, Ching P C. Achieving High-Diversity in MB-OFDM Systems. International Conference on Wireless Networks, Communications and Mobile Computing, 2005, 2: 1343-1347
    [22]Nasri A, Schober R, Lampe L. Analysis of Narrowband Communication Systems Impaired by MB-OFDM UWB Interference. IEEE Transactions On Wireless Communications, 2007, 6(11): 4090-4100.
    [23]Castello R, Lauenti N, Manstretta D. A Reconfigurable Narrow-Band MB-OFDM UWB Receiver Architecture. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(4): 324-328.
    [24]Zheng H, Luong H C. A 1.5V 3.1GHz-8GHz CMOS Synthesizer for 9-Band MB-OFDM UWB Transceivers. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1250-1260.
    [25]Ranjan M, Larson L E. A Low Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems. IEEE Journal of Solid-State Circuits, 2007, 42(3): 592-601.
    [26]Leung K N, Chan C F, Choy C S, et al. A Fully Differential Band-Selective Low-Noise Amplifier for MB-OFDM UWB Receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(7): 653-657.
    [27]J.A.C.Bingham, Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 1990, 28(5):5-14.
    [28]R.W.Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Technical Journal, December 1996, 45:1775-1796.
    [29]S.B.Weinstein and P.M.Ebert, Data transmissions by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications Technology, October 1971, 19:628-634.
    [30]A.Peled and A.Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. in Proc. IEEE Int. Conf. Acoust., and Speech Signal Processing,ICASSP/80, April 1980, 5:964-967.
    [31]B.Hirosaki, An orthogonality multiplexed QAM systems using the discrete Fourier transform. IEEE Transactions on Communications, July 1981, 29:982-989.
    [32]L.J.Cimini. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, July 1985, 33:666-675.
    [33]尤肖虎. FuTURE B3G研究开发及关键技术进展.移动通信, 2006, 30(6):18-22.
    [34]辛艳,粟欣.我国及全球B3G/4G研究及标准化进展.移动通信, 2006, 30(10):13-17.
    [35]S.Buvkley. 3G Wireless: Mobility Scales New Heights. Telecommunications Magazines, Nov. 2000.
    [36]E.G.Tiedemann. CDMA 2000-1X: New Capacitis for CDMA Networks. IEEE Vehicular Technology Society Newsletter, Nov 2001, 48(4).
    [37]TD-SCDMA Forum, www.tdscdma-forum.org
    [38]Chaudhury Prodip, Mohr Werner, Onoe Seizo. 3GPP proposal for IMT-2000[J]. IEEE Communications Magazine, Dec 1999, 37(12):72-81.
    [39]Justin Chuang, Nelson Sollenberger. Beyond 3G:wideband wireless data access based on OFDM and dynamic packet assignment[J], IEEE Communications Magazine, Jul 2000, 38(7):78-87.
    [40]B G Evans, K Baughan, Visions of 4G[J]. Electronics&Communication Engineering Journal, Dec 2000,12(6):293-303.
    [41]Sampath H, Talwar S, Tellado J, Erceg V, Paulraj A. A fourth-generation MIMO-OFDM broadband wireless system:design, performance, and field trial results[J]. IEEE Communications Magazine, September 2002, 40(9):143-149.
    [42]Qaddour J, Leonard D, Matalgah M M, Guizani M, Beyond 3G:uplink capacity estimation for wireless spread-spectrum orthogonal frequency division multiplexing(SS-OFDM)[A]. IEEE GLOBECOM’03[C], San Francisco, CA, USA, 2003, 7:4139-4141.
    [43]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社, 2003.
    [44]ETSI, Radio broadcasting systems,‘Digital audio broadcasting to mobile, portable and fixed receivers, European Telecommunication Standard’, February.1995, ETS 300-401.
    [45]Digital Video Broadcasting: Frame Structure, Channel Coding, and Modulation for Digital Terrestrial Television, European Telecommunications Standards Institute, August 1997, EN 300-744,
    [46]Supplement to IEEE Standard for Information Technology and Telecommunications and Information Exchange between Systems-PartⅡ: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications: High-speed Physical Layer in the 5 GHz Band, IEEE Std 802.11a-1999, September 1999.
    [47]Broadband Radio Access Networks: HIPERLAN Type 2: Physical(PHY) Layer, ETSI TS 101 475 Technical Specification, April 2000.
    [48]IEEE 802.16a Standard and WiMAX: Igniting Broadband Wireless Access, Worldwide Interoperability for Microwave Access Forum White Paper, 2003.
    [49]IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for FixedBroadband Wireless Access Systems, IEEE Std 802.16-2004, June 2004.
    [50]G.A.Jeffrey, G.Arunabha, and M.Rias. Fundamental of WiMAX. Prentice Hall 2007.
    [51]T.Pollet, M.Van Bladel, and M.Moeneclaey. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise., IEEE Trans. on Communications. Feb.-Apr. 1995, 43(234):191-193.
    [52]T.Pollet, and M.Moeneclaey. Synchronizability of OFDM signals., IEEE Globecom’1995, Nov. 1995, 3:2054-2058.
    [53]J.J.Van De Beek, M.Sandell, M.Isaksson and P.O.Borjesson. Low-Complex Frame Synchronization in OFDM systems. Universal Personal Communications 1995 Record, Fourth IEEE International Conference On, 1995, 982-986.
    [54]J.J Van De Beek, etc, ML estimation of time and frequency offset in OFDM systems. IEEE Trans. on Signal Processing, July 1997, 45(7):1800-1804.
    [55]Der-Zheng Liu, et al. An extension of Guard-interval based symbol and frequency synchronization technique for wireless OFDM transmission. IEEE Conference, 2001.
    [56]M.H.Hsieh and C.H.Wei. A Low-Complexity Frame Synchronization and Frequency Offset Compensation Scheme for OFDM Systems over Fading Channels. IEEE Trans. on Vehicular Technology, Sep.1999, 48(5):1596-1609.
    [57]M.Speth, S.Fechtel, G.Fock and H.Meyr. Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM-Part 11:A Case Study,IEEE Trans.Commun. April 2001, 49(4):571-579.
    [58]K.Takahashi, and T.Saba. A novel symbol synchronization algorithm with reduced influence of ISI for OFDM systems. IEEE Globecom’2001, 2001, 1:524-528.
    [59]K.Ramasubramanian, and K.Baum. An OFDM timing recovery scheme with inherent delay-spread estimation. IEEE Globecom’2001, 2001, 5:3111-3115.
    [60]周恩,陈茅茅,王文博,“多径衰落信道下OFDM定时同步算法的研究,”北京邮电大学学报, 2005, 28(3):62-64.
    [61]李伟华,章蓓蕾,吴伟陵,“OFDM系统定时与频率偏移估计,”北京邮电大学学报, 2004, 27(1):36-39.
    [62]V.Krishnamurthy, C.R.N.Athaudage, and Dawei Huang. Adaptive OFDM synchronization algorithms based on discrete stochastic approximation. IEEE Trans. on Signal Processing, Apr.2005, 53(4):1561-1574.
    [63]D.Landstrom, S.K.Wilson, Jan-Jaap van de Beek, et al. Symbol time offset estimation in coherent OFDM systems. ICC’1999, 1999, 1:500-505.
    [64]M.Speth, F.Classen, and H.Meyr. Frame synchronization of OFDM systems in frequency selective fading channels. IEEE VCT’1997, May 1997, 3:1807-1811.
    [65]P.H.Moose, A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun. Oct. 1994, 42:2908-2914.
    [66]M.Luise, and R.Reggiannini, Carrier frequency acquisition and tracking for OFDM systems. IEEE Transactions. on Communications. vol.44, 1996, 11:1590-1598.
    [67]M.Morelli, and U.Mengali. An improved frequency offset estimation for OFDM applications.IEEE Communications Letters, 1999, 3(3):75-77.
    [68]T.M.Schmidl and D.C.Cox. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., Dec. 1997, 45(12):1623-1621.
    [69]H.Minn, M.Zeng, and V.K.Bhargava. On timing offset estimation for OFDM systems. IEEE Communications Letters, July 2000, 4(7):242-244.
    [70]Byungjoon Park, Hyunsoo Cheon, Changeon Kang, and Daesik Hong. A novel timing estimation method for OFDM systems. IEEE Globecom’2002, 2002, 1:17-21.
    [71]G. Ren, Y. Chang, H. Zhang, and H. Zhang.“Synchronization methods based on a new constant envelope preamble for OFDM systems,”IEEE Trans. Broadcast., Mar.2005, 51(1):139-143.
    [72]F.Tufvesson, O.Edfors, and M.Faulkner. Time and frequency synchronization for OFDM using PN-sequence preambles. IEEE VTC’1999, Sep. 1999, 4:2203-2207.
    [73]严春林,李少谦,唐友喜等.利用CAZAC序列的OFDM频率同步方法.电子与信息学报, 2006, 28(l):139-142.
    [74]D.C.Chu, Polyphase codes with good periodic correlation properties. IEEE Trans. on Information Theory, Jul.1972, 18(4):531-532.
    [75]U.Lambrette, M.Speth, and H.Meyr. OFDM burst frequency synchronization by single carrier training data. IEEE Communications Letters, Mar.1997, 1(2):46-48.
    [76]Steinga B.A, etc. Frame synchronization using superimposed sequence. Proc. IEEE ISIT'97, ULM, Germany, 1997, 1:489-495.
    [77]Yun Hee Kim, Young Kwon Hahm, etc. An efficient frequency offset estimator for timing and frequency synchronization in OFDM systems. IEEE Conference.1999.
    [78]Fredrik Tufvesson, Mike Faulkner, Peter Hoeher and Ove Edfors. OFDM time and frequency synchronization by spread spectrum pilot technique. IEEE Conference, 1999.
    [79]Ma Zhangyong, Zhao Chunming, You Xiaohu. A novel OFDM time and frequency synchronization algorithm. ICCT2003. 2003, 1:1114-1118.
    [80]Hlaing Minn,Vijay K.Bhargava,and Khaled Ben Letaief,A robust timing and frequency synchronization for OFDM systems., IEEE Trans.on wireless communications, July 2003, 2(4):822-838.
    [81]Tiejun Lv and Be Chen. ML estimation of timing and frequency offset using multiple OFDM symbols in OFDM systems. IEEE GLOBECOM 2003, 2003, 1:2282-2284.
    [82]孙雪俊,焦影,曾虹虹,周祖成.一种新的MC-CDMA系统同步算法[J].电子学报. 2001, 29(12): 1904-1907.
    [83]C. Kasparis and B.G. Evans, A cross-correlation approach for improved timing estimation in OFDM broadcasting systems. 24th AIAA Intl. Commun. Satell.Sys.Conf. (ICSSC), 2006, 1:1039-1048.
    [84]汪涛,孙鹏,李鸥.一种新的OFDM定时与频偏联合同步算法[J].计算机应用研究, 2008, 25(12):3780-3781.
    [85]严春林,房家奕,唐友喜,李少谦.一种利用PN序列的OFDM频率同步.电子科技大学学报, 2003, 32(5):495-498.
    [86]H.Bolcskei. Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems. IEEE Trans. on Commun., Jun. 2001, 49(6):988-999.
    [87]Chen Biao, and Wang Hao, Blind estimation of OFDM carrier frequency offset via oversampling. IEEE Trans. on Signal Processing, July 2004, 52(7):2047-2057.
    [88]H.Liu, and U.Tureli. A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters, Apr. 1998, 2(4):104-106.
    [89]Ma Xiaoli, C.Tepedelenlioglu, G.B.Giannakis, and S.Barbarossa. Non-data-aided carrier offset estimators for OFDM with nullsubcarriers: identifiability, algorithms, and performance. IEEE Journal on Selected Areas in Communications, Dec. 2001, 19(12):2504-2515.
    [90]M.Luise, M.Marselli, and R.Reggiannini. Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels. IEEE Trans. on Commun., Jul. 2002, 50(7):1182-1188.
    [91]J.G.Proakis. Digital Communications, Fourth Edition. McGraw-Hill Inc., 2001.
    [92]T.S.Rappaport. Wireless Digital communications. Pearson Education Inc., 1996.
    [93]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社, 2003.
    [94]谭泽富,聂祥飞,王海宝. OFDM的关键技术及应用[M].西南交通大学出版社, 2005.
    [95]Liu H, Xu G, Tong L, et al. Recent developments in blind equalizations: from cyclostationarity to subspaces[J]. Signal Processing, 1996,50:83-99.
    [96]Tong L.;Perreau A.S.Multichannel blind identification:from subspace to maximum likelihood methods[J]. Proceedings of the IEEE, 1998, 86(10):1951-1968.
    [97]T.Cui, C.Tellambura. Semiblind Channel Estimation and Data Detection for OFDM Systems with Optimal Pilot Design., IEEE Transactions on Communications., 2007, 55(5):1053-1062.
    [98]B.Muquet, M.D.Courvile and P.Duhame. Subspace-Based Blind and Semi-Blind Channel Estimation for OFDM systems. IEEE Transactions on Signal Processing, 2002, 50(7):1699-1712.
    [99]R.W.Heath, G.B.Giannakis. Exploiting Input Cyclostationarity for Blind Channel Identification in OFDM System. IEEE Transactions on Signal Processing, 1999, 147(3):848-856.
    [100]S.L.Zhou, G.B.Giannakis. Finite-Alphabet Based Channel Estimation for OFDM and Related Muticarrier Systems., IEEE Transactions on Communications, 2001, 49(8):1402-1414.
    [101]G.B.Giannakis, S.D.Halford. Blind Fractionally Spaced Equalization of Noisy FIR Channels: Direct and Adaptive Solutions., IEEE Transactions on Signal Processing, 1997, 45(9):2277-2292.
    [102]Meng-Han Hsieh;Che-Ho Wei.Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels[J]. IEEE Transactions on Consumer Electronics, 1998, 44(1):217-225.
    [103]Coleri S, Ergen M, Puri A, and Bahai A. Channel estimation techniques based on pilotarrangement in OFDM systems[J]. IEEE Trans.Broadcasting, 2002, 48(3):223-229.
    [104]Li Y. Pilot-symbol-aided channel estimation for OFDM in wireless systems[J]. IEEE Trans.Vehicular Technology, 2003, 49(7):1207-1215.
    [105]张继东,郑宝玉.基于导频的OFDM信道估计及其研究进展[J].通信学报, 2003, 24(11):116-124.
    [106]J.J.van de Beek, O.Edfors, M.Sandell. On Chancel Estimation in OFDM Systems. IEEE 45th Vehicular Technology Conference. Chicago, IL, 1995:815~819.
    [107]J.C.Lin. LS Channel Estimation for Mobile OFDM Communications on Time-Varying Frequency-Selective Fading Channels. IEEE International Conference on Communications, Glasgow, Scotland, 2007:3016-3023.
    [108]R.Negi, J.Ciofi. Pilot Tone Selection for Channel Estimation in A Mobile OFDM System. IEEE Transactions on Consumer Electronics, 1998, 44(8):1122-1128,.
    [109]M.Moreli, U.Mengali. A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems. IEEE Transactions on Signal Processing, 2001, 9(11):3065-3073.
    [110]B.G.Yang, K.B.Letaief, R.S.Cheng and Z.Cao. Channel Estimation for OFDM Transmission in Multipath Fading Channel Based on Parametric Channel Modeling. IEEE Transactions on Communications. 2001, 49(3):467-478.
    [111]C.R.N.Athaudage, A.D.S.Jayalath. Enhanced MMSE Channel Estimation Using Timing Error Statistics for Wireless OFDM Systems. IEEE Transactions on Broadcasting. 2004, 50(4): 369-376.
    [112]S.Ohno, G..B.Giannakis. Capacity Maximizing MMSE-Optimal Pilots for Wireless OFDM over Frequency-Selective Block. IEEE Transactions on Information Theory. 2004, 50(9): 2138-2145.
    [113]M.Speth, S.Fechtel, O.Fock and H.Meyr. Broadband Transmission Using OFDM: System Performance and Receiver Complexity. Zurich Seminar on Broadband Communicstions, Zurich, Switzerland, 1998:99-104.
    [114]Y.Li, L.J.Cimini, Jr.Sollenberger and N.R. Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels. IEEE Transactions on Communication. 1998, 46(7):902-915.
    [115]J.K.Moon, S.Cjop. Performance of Channel Estimation Methods for OFDM Systems in Multipath Fading Channels. IEEE Transactions on Consumer Electronics. 2000, 46(2):161-170.
    [116]D.Van.Nguyen, C.Hansen. Channel Estimation with the Aid of Robust Pilot Symbols for A Coherent OFDM System. 5th International OFDM-Workshop, Hamburg, Germany, 2000:321-324.
    [117]R.Haeb-Umbach, M.Bevermeier. OFDM Channel Estimation Based on Combined Estimation in Time and Frequency Domain. IEEE International Conference on Acoustics Speech and Signal Processing, Hawaii, USA, 2007, 3:277-280.
    [118]F.Sanzi. An Sdaptive Two-Dimensional Channel Estimation for Wire1ess OFDM with Application to Mobi1e DVB-T. IEEE Transactions on Broadcasting. 2000, 46(5):128-133.
    [119]K.C.James.An Analysis of Pilots Symbol Assisted Modulation for Rayleigh Fading Channels. IEEE Transactions on Vehicular Technology.1991, 40(12):686-693.
    [120]R.Negi,J.Cioffi.Pilot Tone Selection for Channel Estimation in a Mobile OFDM System.IEEE Transactions on Electronics.1998,46(9):122-128.
    [121]W.C.Wu, J.W.Dai.Timing Estimation of CDMA Communication Based on MVDR Beam Forming Technique. IEICE Transactions Fundamentals. 2000, 8(3):2147-2151.
    [122]de Carvalho,E., Slock, D.T.M.Blind,“semi-blind FIR multichannel estimation (Global)idnetifiability conditions,”IEEE Transactions on Signal Processing, 2004, 52(4):1053-1064.
    [123]侯伟昆,叶梧,冯穗力.叠加训练序列OFDM系统的迭代最大似然信道估计[J].华南理工大学学报, 2007, 35(9):16-19.
    [124]汪裕民. OFDM关键技术与应用[M].北京:机械工业出版社, 2007.
    [125]Van de Beek J-J, Edfors o, Sandell M. On channel estimation in OFDM systems[A]. In Proc.IEEE Vehicular Technology Conference[C]. Chicago, IEEE, 1995:815-819.
    [126]P.Hoeher, S.Kaiser,and P.Robertson. Two-dimensional pilot-symbol aided channel estimation by Wiener filtering[A]. IEEE International conference on Acoustics, Speech, and Signal Processing[C]. Munich:IEEE, 1997:1845-1848.
    [127]朱琦,陆浩. 2×1-D_OFDM信道估计算法及其在IEEE_802.16e系统中的应用[J].南京邮电学院学报, 2005, 25(6):7-11.
    [128]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京邮电大学出版社, 2003.
    [129]Z.J.Tang, G.Leus. Pilot Schemes for Time-Varying Channel Estimation in OFDM Systems. IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Hawii, USA, 2007:1-5.
    [130]周明宇,李立华,张平等.利用时域相关的MIMO-OFDM信道估计算法[J].系统仿真学报, 2008, 20(23):6343-6352.
    [131]王晗,汪晋宽. MIMO-OFDM时域信道估计中的最优导频设计算法研究[J].系统仿真学报. 2009, 21(2):514-533.
    [132]O.Edfors, M.Sandel, J.J.van de Beek and S.K.Wilson, Analysis of DFT-Based on Channel Estimators for OFDM. Wireless Personal Communications. 2000, 12(11):55-70.
    [133]H.Minn, V.K.Bhargava. An Investigation into Time-Domain Approach for OFDM Channel Estimation. IEEE Transactions on Broadcasting. 2000, 46(4): 240-248
    [134]X.Hou, Y.Xu,B.Zheng, H.Lou. A Time-Domain Approach for Channel Estimation in MIMO-OFDM-based Wireless Networks. IEICE Transactions on Communocation. 2005, E8-B(1):3-9.
    [135]H.Minn, N.AL-Dhahir. Optimal Training Signals for MIMO-OFDM Channel Estimation. IEEE Transactions on Wireless Communications. 2006, S1536-1284(5):1158~1168.
    [136]X.B.Wang, Y.Y.Wu, B.Caron, B.Ledoux and S.Lafleche. A Channel Characterization Technique Using Frequency Domain Pilot Time Domain Correlation Method for DVB-T Systems. IEEE Transactions on Consumer Electronics. 2003, 49(4):949~957.
    [137]M.Li, J.Tan and W.Zhang. A Channel Estimation Method Based on Frequency-Domain Pilots and Time-Domain Processing for OFDM Systems.IEEE Transactions on Consumer Electronics. 2004, 50(4):1049-1057.
    [138]C.L.Wang, H.C.Wang. A Low-Complexity Joint Time Synchronization and Channel Estimation Scheme for Orthogonal Frequency Division Multiplexing Systems. IEEE International Conference on Communications, Istanbul, Turkey, 2006, 12:5670-5675.
    [139]J.G.Proakis, Digital Communication[M]. 3th ed, McGrau-Hill Inc., 1995.
    [140]张贤达,保铮.通信信号处理[M].北京国防工业出版社, 2000.
    [141]郭梯云,杨家玮,李建东.数字移动通信[M].北京人民邮电出版社, 2001.
    [142]吴伟陵,牛凯.移动通信原理[M].北京二电子工业出版社, 2005.
    [143]P.A.Bello,Characterization of randomly time variant linear channels, IEEE Trans. Commun., 1963, CS-11(12): 300-393.
    [144]J.Sykora,Tapped delay line model of linear randomly time-variant WSSUS channel, IEEE lec.Lett.2000, 36(19):1656-1657.
    [145]E.Biglieri, J.Proakis and S.Shamai, Fading channels: information-theoretic and communications aspects, IEEE Trans. Inform. Theory, 1998, 44(6):2619-2692.
    [146]James Cavers, Mobile channel characteristics, Kluwer Academic Publishers, 2000: 61-83.
    [147]II-Gu Lee, Jungbo Son, Eunyoung Choi and Sok-Kyu Lee. Fast automatic gain control employing two compensation loop for high throughput MIMO-OFDM Receivers[A]. ISCAS 2006 proceedings[C]. The island of Kos, Greece, 2006:5459-5462.
    [148]Chi-Fang Li, Racy J.-H. Cheng. A two-stage digital AGC scheme with diversity selection for frame-based OFDM systems[A]. ISCAS2006 Proceedings[C]. The island of Kos, Greece, 2006: 3530-3533.
    [149]Víctor P Gil Jiménez, M Julia Fernández-Getino García, Fran-cisco J González Serrano and Ana García Arnada. Design and implementation of synchronization and AGC for OFDM-based WLAN receivers [J]. IEEE Transaction on Consumer Electronics, 2004, 50(4):1016-1025.
    [150]H Shokrollah Timorabadi, E Chen, F P Dawson. A peak detector for multi-rate phase locked loop and sequence detector combination for utility AC power Applications[A]. CCECE-CCGEI 2006 Proceedings[C]. ttawa,Canada.2006:2199-2202.
    [151]G N Tavares, M S Piedade. High performance algorithms for digital signal processing AGC [J]. IEEE Transactions on Circuit and Systems, 1990, 2:1529-1532.
    [152]T Kistner, J Bausch, M Babic, K Dostert. Advanced automatic gain control with noise recognition for power line applications[A]. IEEE International Symposium on Power Line Communications and Its Applications[C]. 2006,4:33-38.
    [153]Cheon-in Oh, Seung-hyun Choi, Dae-ig Jang, Duk-kil Oh. Enhanced automatic gain control using the hybrid Gamma parameter in the DVB-S2 system[A]. ICACT2006 Proceedings[C]. Gangwon-Do, Korea, 2006:1167-1171.
    [154]汪涛,刘江,刘洛琨.针对大多普勒频率频移的PN码快速捕获与解调.微计算机信息2005, 21(10):105-107.
    [155]谭杰,汪涛,王映民,刘洛琨大频偏卫星扩频信号的基带处理算法的FPGA实现.电视技术, 2005, 29(5):180-185.
    [156]F.H.Raab, P.Asbeck, S.Cripps. Power amplifier and transmitters for RF and microwave. IEEE Trans. Microwave Theory Tech. March 2002, 50:814-826.
    [157]B.Come, et al, Impact of front-end nonidealities on bit error rate performance of WLAN-OFDM transceivers. Proc. RAWCON, Denver, CO USA, 2000: 91-94.
    [158]II-Gu Lee, Jungbo Son, Eunyoung Choi and Sok-Kyu Lee. Fast automatic gain control employing two compensation loop for high throughput MIMO-OFDM Receivers[A]. ISCAS 2006 proceedings[C]. The island of Kos, Greece, 2006: 5459-5462.
    [159]Chi-Fang Li, Racy J.-H. Cheng. A two-stage digital AGC scheme with diversity selection for frame-based OFDM systems[A]. ISCAS2006 Proceedings[C]. The island of Kos, Greece, 2006:3530-3533.
    [160]Víctor P Gil Jiménez, M Julia Fernández-Getino García, Fran-cisco J González Serrano and Ana García Arnada. Design and implementation of synchronization and AGC for OFDM-based WLAN receivers [J]. IEEE Transaction on Consumer Electronics, 2004, 50(4):1016-1025.
    [161]H Shokrollah Timorabadi, E Chen, F P Dawson. A peak detector for multi-rate phase locked loop and sequence detector combination for utility AC power Applications[A]. CCECE-CCGEI 2006 Proceedings[C]. ttawa, Canada, 2006:2199-2202.
    [162]G N Tavares, M S Piedade. High performance algorithms for digital signal processing AGC [J]. IEEE Transactions on Circuit and Systems, 1990, 2:1529-1532.
    [163]T Kistner, J Bausch, M Babic, K Dostert. Advanced automatic gain control with noise recognition for power line applications[A]. IEEE International Symposium on Power Line Communications and Its Applications[C]. 2006, 4:33-38.
    [164]Cheon-in Oh, Seung-hyun Choi, Dae-ig Jang, Duk-kil Oh. Enhanced automatic gain control using the hybrid Gamma parameter in the DVB-S2 system[A]. ICACT2006 Proceedings[C]. Gangwon-Do, Korea, 2006:1167-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700