对虾白斑综合征病毒(WSSV)灭活制剂及多糖对克氏原螯虾抗WSSV作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对虾白斑综合征病毒(WSSV)是对全球对虾养殖业危害最大,传播最广的病毒之一,尤其是对中国对虾养殖业带来了毁灭性的打击,至今已经造成了数十亿美元的损失。但目前尚无行之有效的防治手段,因此寻找预防和控制该病毒病一直是近年来的研究热点。许多研究结果表明WSSV囊膜蛋白可以诱导甲壳动物产生对WSSV的抵抗力,从而大幅提高WSSV攻毒后的成活率。多糖(如葡聚糖、壳聚糖、甲壳素)也被认为能提高甲壳动物的免疫力,并被广泛用于提高甲壳动物抗细菌性和病毒性疾病的研究。
     本研究从制作WSSV灭活制剂着手,经口服途径免疫克氏原螯虾,进行主动免疫保护克氏原螯虾抗WSSV感染的效果试验,并初步研究WSSV灭活制剂的保护作用机理。同时在螯虾饲料中添加不同比例(5mg/g、10mg/g、15mg/g)的三种多糖(壳聚糖、甲壳素、葡聚糖),研究多糖对克氏原螯虾抗WSSV感染的影响。主要研究内容和结果如下:
     1 BEI灭活WSSV制剂(BIW)的研制
     应用双乙烯亚胺(Binary Ethyleneimine, BEI)灭活WSSV,经螯虾肌肉注射试验证实白斑综合征病毒(WSSV)在2mM BEI,37℃下处理24h可以被完全灭活,注射试验表明死亡率为零,同时PCR检测也表明受试螯虾没有感染WSSV,结果表明BEI灭活WSSV制剂(BIW)对于螯虾是安全的。
     对BEI灭活WSSV的PCR检测证明了BEI的作用是破坏病毒的DNA分子,虽然扫描电镜观察发现WSSV粒子的囊膜表面有轻微的变化,但是SDS-PAGE分析说明结构蛋白的基本组成几乎没有改变,在灭活后WSSV的主要囊膜蛋白VP19. VP28. VP281、VP38A、VP51B和VP110等条带均清晰可辨,说明BEI的灭活作用对WSSV的囊膜蛋白基本无损坏影响,从而保持了其诱导甲壳动物抗白斑综合征的能力。
     2口服BIW诱导螯虾抗白斑综合征效果的研究
     结果表明口服BIW能显著提高克氏原螯虾攻毒后的相对存活率。不同次数口服免疫试验表明,随着口服BIW次数的增多,螯虾对WSSV的抵抗力也相应增强,但随着口服次数增多差异也越小,结果显示口服三次BIW就可以诱导螯虾对WSSV产生较强的抵抗力。口服三次BIW后,螯虾在第7、14、21、28天攻毒的相对存活率RPS分别为70%、53%、38%和20%,均显著高于对照组(P<0.05)。但是口服BIW螯虾的死亡率随着攻毒时间的推后也持续的升高,存活率随之下降,在14天之内口服BIW的螯虾可以保持50%以上的存活率。
     口服BIW的螯虾在口服结束后第一天血清酚氧化酶活力、超氧化物歧化酶活力和溶菌酶活力均有一定程度的提高,但差异不显著(P>0.05);口服BIW结束后第七天四种酶活力水平有显著的提高(P<0.05),后逐步下降,至第4周基本与对照组无明显差异。PCR检测结果发现,病死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏六种组织的PCR结果均为WSSV阳性,而口服BIW螯虾的各组织检测结果均为阴性。光镜和电镜观察也证实了这一点,病死螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏等组织均发生了不同程度的病变,而口服BIW螯虾的组织结构形态与健康螯虾无明显差异。
     3 BIW诱导螯虾抗白斑综合征机理的研究
     口服BIW的螯虾,在口服结束后第7天和第21天后攻毒存活率均显著高于对照组(P<0.05),相对存活率分别为60%和42%,而口服热灭活WSSV的相对存活率仅为10%和5%。注射BIW的螯虾在免疫结束第7天和21天后攻毒存活率均显著高于对照组,相对存活率分别为75%和60%。而注射热灭活WSSV的相对存活率仅为10%和5%。另外,电镜观察发现在BEI灭活WSSV的囊膜表面仅有轻微的变化,而热灭活WSSV的囊膜则几乎从核衣壳上脱落,说明BEI灭活对WSSV囊膜的影响要比热灭活小的多。SDS-PAGE也证明了这一点,BEI灭活WSSV可见VP19、VP28、VP281等囊膜蛋白条带都十分清晰,而热灭活WSSV则未见清晰的条带。对照攻毒试验说明WSSV灭活制剂所提供的保护作用是与灭活WSSV囊膜蛋白密切相关的。
     4多糖添加剂对克氏原螯虾抗WSSV影响的研究
     在虾饲料中添加不同比例(5mg/g、10mg/g、15 mg/g)的三种多糖(壳聚糖、甲壳素、葡聚糖),连续投喂20天以后口服攻毒。结果发现,与阳性对照相比,壳聚糖组5 mg/g、10 mg/g和15]mg/g三个浓度的相对存活率分别为25%、40%和25%;甲壳素组三个浓度的相对存活率分别为5%、15%和15%;葡聚糖组三个浓度的相对存活率分别为20%、25%和30%。其中以10mg/g壳聚糖组的保护作用最好,15mg/g葡聚糖组次之,相对存活率均显著高于对照组(P<0.05)。但同种多糖添加剂不同浓度的相对存活率之间却无显著差异(P>0.05)。酶活力测定发现,壳聚糖、甲壳素、葡聚糖对螯虾酶活力的提高作用以葡聚糖最好,壳聚糖次之,甲壳素则较差。而10 mg/g壳聚糖组的酶活力水平相对较高,与该组较高的存活率相一致。结果表明,上述四种酶活力水平可能与螯虾抗WSSV的能力有一定的相关性。
     研究发现,2mM双乙烯亚胺(BEI)对WSSV有确切的灭活效果,BEI灭活的WSSV经PCR检测和SDS-PAGE分析表明,BEI破坏了病毒的DNA,而对WSSV的囊膜蛋白无损坏影响,保持了其诱导甲壳动物抗白斑综合征的能力。三次可使螯虾对WSSV产生较强的抵抗力,在14天之内攻毒可以保持50%以上的存活率,且螯虾血清酚氧化酶活力、超氧化物歧化酶活力、溶菌酶活力均显著提高。通过光镜和电镜观察发现,口服BEI灭活WSSV攻毒后存活螯虾的肝胰腺、中肠、肌肉、鳃、性腺、心脏六种组织均未感染WSSV,且PCR结果均为WSSV阴性。对照攻毒试验表明,WSSV灭活制剂所诱导的对白斑综合征的抵抗力是与灭活WSSV囊膜蛋白密切相关的。
White spot syndrome virus (WSSV), which cause high mortality in many economic shrimp Aquaculture, and is widespread over the world, make the large economic losses to the shrimp farming industry in China. But no very effective treatment against WSSV was found, so more and more study focused on the adaptive immunity of crustacean. Polysaccharides like glucan, chitosan and chitin have been successfully used to enhance resistance of crustacean against bacterial and viral infections (Sung et al.1994; Itami et al.1998; Chang et al.1999; Chang et al.2003; Chotigeat et al.2004).
     This study was carried out to explore the possibility of protecting Procambarus clarkii from WSSV by oral vaccination with BEI-inactivated WSSV. And different concerntration of chitosan, chitin, glucan (5 mg/g、10 mg/g、15 mg/g) was tested to enhace the relative percent of survival in crayfish when they were challenged with WSSV.
     1 WSSV inactivation by BEI
     IM injection experiment showed that WSSV had been inactivated by 2mM BEI completely and the solution was safety for oral vaccination. The cumulative mortalities in the 37℃heated WSSV group indicated WSSV could keep the infectivity even exposed to 37℃over 24h. PCR detection and SDS-PAGE revealed that BEI only destroy the nucleic acid but not destroy envelope proteins in the process of inactivation. Intramuscular injection (IM) experiment showed that WSSV had been inactivated completely and the solution was safety for feeding.
     2 Protective effects of BEI-inactivated WSSV (BIW) in crayfish by oral delivery
     The potentiality of oral vaccination against white spot syndrome virus (WSSV) in crayfish Procambarus clarkii was investigated. Efficacy of BEI-inactivated WSSV was tested by oral vaccination followed by oral challenge of crayfish with WSSV. The crayfish fed with the food pelletes coated with BIW showed a resistance to WSSV on the 7th day post-vaccination (dpv). Calculated RPS values were 60%,70%and 75% for the vaccinated once, twice and thrice with BIW. Crayfish vaccinated thrice showed significantly higher RPS values compared to the control groups (P<0.05), the RPS values of 70%、53%、38%and 20%for crayfish challenged at 7,14,21 and 28 days after cessation of oral vaccination. The immunological parameters analyzed revealed that crayfish vaccinated with inactivated WSSV showed significantly higher level of prophenoloxidase (proPO), superoxide dismutase (SOD) and lysozyme (LZM) compared to the control groups at 7 days post vaccination (dpv). But all of four enzyme activity decreased at 14,21 and 28 dpv. The result indicated that the resistance induced BEI-inactivated WSSV could persist for 20 days. Crayfish that survived from oral challenges were positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. This find provide a feasible way to control the prevalence of WSSV in prawn breeding through oral administration and perhaps has good effect to control other envelope virus.
     3 A pilot study on mechanism of protective effects conducted by BIW
     Efficacy of BIW was tested by vaccination trials followed by challenge of crayfish with WSSV. The crayfish fed with BIW showed a better survival (P< 0.05) to WSSV on the 7th and 21st day post-vaccination (dpv) compared with the control. Calculated relative percent survival (RPS) values were 60%and 42%on the 7th and 21st dpv for BIW. The crayfish injected with BEI-inactivated WSSV showed a better survival (P< 0.05) to WSSV on the 7th and 21st day post-vaccination (dpv) compared with the control. Calculated relative percent survival (RPS) values were 75%and 60% on the 7th and 21st dpv for BIW. However, heat-inactivated WSSV did not provide protection from WSSV even on 7th dpv. In the inactivation process WSSV especially their envelope proteins maybe changed as happened to heat-inactivated WSSV particles. These results indicate the protective efficacy of BEI-inactivated WSSV lies on the integrity of envelope proteins of WSSV and the possibility of BEI-inactivated WSSV to protect crsyfish from WSSV.
     4 Protective effects of Polysaccharide (chitosan, chitin andβ-glucan) in crayfish
     Crayfish, Procambarus clarkii, were fed with chitosan, chitin or p-glucan at 5,10 and 15mg/g for four weeks, and oral challenged with WSSV. The cumulative mortalities in the groups fed with chitosan at 10mg/g was significantly lower than the control (P<0.05) but the other groups was not. The RPS showed that 10mg/g chitosan and 15mg/gβ-glucan provided significantly better protection against WSSV compared to the control (P<0.05). PCR analysis demonstrated that the surviving crayfish were WSSV-negative. The immunological parameters analyzed revealed that the crayfish fed with chitosan and glucan showed significantly higher level of prophenoloxidase (proPO), superoxide dismutase (SOD), peroxidase (POD)and lysozyme (LZM) compared to the control groups. The high levels of prophenoloxidase, superoxide dismutase, peroxidase and lysozyme may be responsible for enhancing resistance against WSSV in crayfish fed with chitosan or glucan.
     IM injection experiment had showed that WSSV had been inactivated by 2mM BEI completely and the solution was safety for oral vaccination. PCR detection and SDS-PAGE revealed that BEI only destroy the nucleic acid but not destroy envelope proteins in the process of inactivation. The immunological parameters analyzed revealed that crayfish vaccinated with inactivated WSSV showed significantly higher level of prophenoloxidase (proPO), superoxide dismutase (SOD), and lysozyme (LZM) compared to the control groups at 7 days post vaccination (dpv). Crayfish that survived from oral challenges were positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. This study indicate the protective efficacy of BEI-inactivated WSSV lies on the integrity of envelope proteins of WSSV and the possibility of BEI-inactivated WSSV to protect crsyfish from WSSV.
引文
Arthia D, Raoa KA, Robinsonb R, et al. Validation of binary ethyleneimine (BEI) used as an inactivant for foot and mouth disease tissue culture Vaccine. Biologicals, 2004,32:153-156.
    Ai Q, Mai K, Zhang L, et al. Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol, 2007,22:394-402.
    Albores FV, Plascencia YG. Beta gulcan binding protein and its role in shrimp immune response. Aquaculture,2000,191:13-21.
    Amend DF. Potency testing of fish vaccine. Dev Biol Standard,1981,49:447-255.
    Amirante GA, Basso V. Analytical study of lectins in Squilla mantis L. (crustea, stomatopoda) using monoclonal antibodies. Dev Comp Immunol,1984,8: 721-726.
    Anil TM, Shankar KM, Mohan CV. Monoclonal antibodies developed for sensitive detection and comparison of white spot syndrome virus isolates in India. Dis Aquat Org,2002,51:67-75.
    Arts JAJ, Taverne Thiele AJ, et al. Hemocyte reactions in WSSV immersion infected Penaeus monodon. Fish Shellfish Immunol,2007,23:164-170.
    Ashida M. Purification and characterization of pre-phenoloxidase from hemolymph of the silkworm Bombyx mori. Arch Biochem Biophys,1971,144:749-62.
    Ashida M, Soderhall K. The prophenoloxidase activating system in crayfish(Astacus astacus). Comp Biochem Physiol,1984,77:21-6.
    Ashida M, Kinoshita K, Brey PT. Studies on prophenoloxidase activation in the mosquito Aedes aegypti L. Eur J Biochem,1990,188:507-515.
    Anderson DP. Immunostimulants, adjuvants, and vaccine carries in fish:applications to aquaculture. Annu Rev Fish Dis,1992,2:281-307.
    Azad IS, Panigrahi A, Gopala C, et al. Routes of immunostimulation vis-a-vis survival and growth of Penaeus monodon postlarvae. Aquaculture,2005,248:227-234.
    Bahnemann HG. Binary ethylenimine as an inactivant for foot and mouth disease virus and its application for vaccine production. Arch Virol,1975,47:47-56.
    Bahnemann HG. Inactivation of viruses in serum with binary ethyleneimine. J Clin Microbiol,1976,2:209-210.
    Balakrishnan P, Malathi S, Iddya K, et al. Characterization of variable genomic regions of Indian white spot syndrome virus. Virology,2008,376:24-30.
    Balasubramanian G, Sarathi M, Rajesh Kumar S, et al. Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture,2007,263:15-19.
    Balasubramanian G, Sarathi M, Venkatesan C, et al. Studies on the immuno modulatory effect of extract of Cyanodon dactylon in shrimp, Penaeus monodon and its efficacy to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol,2008,9:002-031.
    Balasubramanian G, Sarathi M, Venkatesan C, et al. Oral administration of antiviral plant extract of Cynodon dactylon on a large scale production against White spot syndrome virus (WSSV) in Penaeus monodon. Aquaculture,2008,279:2-5.
    Balasubramanian G, Sudhakaran R, Syed Musthaq, et al. Studies on the inactivation of white spot syndrome virus (WSSV) of shrimp by physical and chemical treatment, and antiviral seaweeds tested in marine and freshwater animal models. J Fish Dis,2006,29:569-572.
    Beauchamp C, Fridovich I. Superoxide dismutase:Improved assay and an assay applicable to acrylamide gels. Anal Biochem,1971,44:276-287.
    Bell TA, Lightner DV. A handbook of normal penaeid shrimp histolody. Baton Rouge, Louisiana, USA:World Aquaculture Society,1988.
    Bell KL, Smith VJ. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas. Dev Comp Immunol,1993,17:211-219.
    Bright Singh IS, Manjusha M, Somnath Pai S, et al. Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis Aquat Org,2005,66:265-270.
    Bulet P. Les peptides antimicrobiens de la drosophile. Medecine science,1999,15: 23-29.
    Chang CF, Chen HY, Su MS, et al. Immunomodulation by dietaryβ-1,3-glucan in the brooders of the black tiger shrimp Panaeus monodon. Fish Shellfish Immunol, 2000,10:505-514.
    Chang CF, Su MS, Chen HY, et al. Effect of dietary β-1,3-glucan on resistance to white spot syndrome virus (WSSV) in postlarval and juvenile Penaeus monodon. Dis Aquat Org,1999,36:163-168.
    Chang CF, Su MS, Chen HY, et al. Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol,2003,15:297-310.
    Chang PS, Chen HC, Wand YC. Detection of white spot syndrome associated baculovirus WSBV in experimentally infected wild shrimps, crabs and lobsters by in situ hybridization. Aquaculture,1998,164:23-43.
    Chang PS, Chen LG, Wang YC. The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. Aquaculture,1998,166:1-17.
    Chang PS, Lo CF, Wang YC, et al. Identification of white spot syndrome virus associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Dis Aquat Org,1996,27:131-139.
    Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol Biol Rev,2003,67:226-237.
    Cheng W, Liu CH, Tsai CH, et al. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol, 2005,18:297-310.
    Chen X, Chen P, Wu D. Study on a new bacilliform virus in cultured shrimps. Sci China Ser,1997, C27:415-420.
    Chirkov SN. The antiviral activity of chitosan. Appl Biochem Microbiol,2002,38:18.
    Chou HY, Huang CY, Wang CH, et al. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Org,1995,23:165-173.
    Chou HY, Huang CY, Lo CF, et al. Studies on transmission of white spot syndrome associated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterborne contact and oral ingestion. Aquaculture,1998,164:263-276.
    Christopher MAC, Noel V, Ei Lin O, et al. Enhanced survival of shrimp, Penaeus (Marsupenaeus) japonicus from white spot syndrome disease after oral administration of recombinant VP28 expressed in Brevibacillus brevis. Fish Shellfish Immunol,2008,25,1-6.
    Citarasu T, Sivaram V, Immanuel G, et al. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol,2006,21: 372-384.
    Corbel V, Zuprisal Z, Shi Z, et al. Experimental infection of European crustaceans with white spot syndrome virus (WSSV). J Fish Dis,2001,24:377-382.
    Cooper EL, Rinkevich B, Uhlenbruck G, et al. Invertebrate immunity:another viewpoint. Scand J Immunol,1992,35:247-266.
    Destoumieux D, Bulet P, Loew D, et al. Penaeidins:a new family of antimicrobial peptides in the shrimp, Penaeus vannamei (Decapoda). J Biol Chem,1997,272: 28398-28406.
    Destoumieux D, Bulet P, Strub JM, et al. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem,1999,266:335-346.
    Destoumieux D, Munoz M, Bulet P, et al. Penaeidins, a family of antimicrobial peptide from the penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci,2000a,57: 1260-1271.
    Destoumieux, D, Munoz, M, Cosseau, C, et al. Penaeidins, antimicrobial peptides chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci,2000b,113:461-496.
    Di Leonardo VA, Bonnichon V, Roch P, et al. Comparative WSSV infection routes in the shrimp genera Marsupenaeus and Palaemon. J Fish Dis,2005,28:565-569.
    Du HH, Xu ZR, Wu XF, et al. Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus. Aquaculture,2006,260:39-43.
    Durand S, Lightner DV, Nunan LM, et al. Application of gene probes as diagnostic tools for white spot baculovirus (WSBV) of penaeid shrimp. Dis Aquat Org, 1996,27:59-66.
    Durand S, Lightner DV, Redman RM, et al. Ultrastructure and morphogenesis of white spot syndrome baculovirus. Dis Aquat Org,1997,29:205-211.
    Durand SV, Tang KFJ, Lightner DV. Frozen commodity shrimp:potential avenue for introduction of white spot syndrome virus and yellow head virus. J Aqua Anim Health,2000,12:128-135.
    Edgerton BF. Susceptibility of the Australian freshwater crayfish Cherax destructoralbidus to white spot syndrome virus (WSSV). Dis Aquat Org,2004, 59:187-193.
    Escobedo-Bonilla CM, Alday Sanz V, Wille M, et al. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis,2008,31,1-18.
    Escobedo-Bonilla CM, Wille M, Alday Sanz V, et al. In vivo titration of white spot syndrome virus (WSSV) in SPF Litopenaeus vannamei by intramuscular and oral routes. Dis Aquat Org,2005,66:163-170.
    Escobedo-Bonilla CM, Wille M, Alday Sanz V, et al. Standardized white spot syndrome virus (WSSV) inoculation procedures for intramuscular or oral routes. Dis Aquat Org,2006,68:181-188.
    Escobedo Bonilla CM, Wille M, Alday Sanz V, et al. Pathogenesis of a Thai strain of white spot syndrome virus (WSSV) in SPF Litopenaeus vannamei. Dis Aquat Org,2007,74:85-94.
    Esteban MA, Mulero V, Cuesta A, et al. Effects of injecting chitin particles on the innate immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol,2000,10:543-554.
    Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    Flegel TW. Update on viral accommodation, a model for hostviral interaction in shrimp and other arthropods. Dev Comp Immunol,2007,31:217-231.
    Fu LL, Li WF, Du HH, et al. Oral vaccination with envelope protein VP28 against white spot syndrome virus in Procambarus clarkii using Bacillus subtilis as delivery vehicles. Lett Appl Microbiol,2008,46:581-586.
    Groseil C, Guerin P, Adamowicz P. Evaluation by polymerase chain reaction on the effect of betapropiolactone and binary ethyleneimine on DNA. Biologicals,1995, 23:213-220.
    Gross PS, Clow LA, Shih CS, et al. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenet,2000,51:1034-1044.
    Gross PS, Bartlett TC, Browdy CL, et al. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol,2001,25:565-577.
    Guo ZY, Jiao CZ, Xiang JH. Heat-shock protein 70 expression in shrimp Fenneropenaeus chinensis during thermal and immune-challenged stress. Chinese Journal of Oceanology and Limnology,2008,22:386-391.
    Habib M, Hussain I, Irshad H, et al. Immunogenicity of formaldehyde and binary ethylenimine inactivated infectious bursal disease virus in broiler chicks. JZUS B, 2006,7:660-664.
    Hall JL, Rowlands DT. Heterogencity of lobster agglutinins-Ⅱ.Specifity of agglutininerythocyte binding. Biochem,1974,13:828-832.
    Hannon G J. RNA interference. Nature,2002,418:244-251.
    Hernandez Lopez J, Gollas Galvan T, Vargas Albores F.1996. Activation of the prophenoloxidase system of the brown shrimp(Penaeus californiensis Holmes). Comparative Biochemistry Physiology C 113:61-66.
    Huang CC, Song YL. Maternal transmission of immunity to white spot syndrome associated virus (WSSV) in shrimp (Panaeus monodon). Dev Comp Immunol, 1999,23:545-52.
    Huang CH, Zhang LR, Zhang JH, et al. Purification and characterization of white spot syndrome virus (WSSV) produced in an alternate host:crayfish, Cambarus clarkii. Virus Res,2001,76:115-125.
    Huang C, Zhang X, Lin Q, et al. Characterization of a novel envelope protein (VP281) of shrimp white spot syndrome virus by mass spectrometry. J Gen Virol,2002,83: 2385-2392.
    Huang MTF, Eblle AF, Hammen CS. Immuno response of the prawn, Macrobracium resenbergli, to bacterial infection. J Invertbr Pathol,1981,38:213-219.
    Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity:Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem,1980,106:7-16.
    Imai T, Goto R, Kittaka J, et al. Lectins in the rock lobster Jasus novaehollandiae hemolymph. Cruataceana,1994,67:121-130.
    Inouye K, Miwa S, Oseko N, et al. Mass mortalities of cultured kuruma shrimp Penaeus Japonicus in Japan in 1993:electron misroscopic evidence of the causarive virus. Fish Pathol,1994,29:149-158.
    Itami T, Kondo M, Uozu M, et al. Enhancement of resistance against Enterococcus seriolicida infection in yellowtail, Seriola quinqueradiata (Temminck and Schlegel), by oral administration of peptidoglucan derived from Bifidobacterium thermophilum. J Fish Dis,1996,18:307-315.
    James C, Thomas G, Marcela S, et al. Breeding for Disease Resistance of Penaeid Shrimps. Aquaculture,2008,9:11-64.
    Jha RK, Xu ZR, Shen J, et al. The efficacy of recombinant Vaccine,s against white spot syndrome virus in Procambarus clarkii. Immunol Lett,2006,105:68-76.
    Jha RK, Xu ZR, Bai SJ, et al. Protection of Procambarus clarkii against white spot syndrome virus using recombinant oral Vaccine, expressed in Pichia pastoris. Fish Shellfish Immunol,2006,22:295-307.
    Jiang GJ, Yu RC, Zhou MJ. Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndromevirus. Aquaculture, 2004,241:61-75.
    Jiravanichpaisal P, Bangyeekhun E, Soderhall K, et al. Experimental infection of white spot syndrome virus in freshwater crayfish Pacifastacus leniusculus. Dis Aquat Org,2001,47:151-157.
    Johanson MW, Keyser P, Sritunyalucksana K, et al. Crustacean hemocytes and haematopoiesis. Aquaculture,2000,191:45-52.
    Johansson MW, Soderhall K. Cellular immunity in crustaceans and the proPO system. Parasitol Today,1989,5:171-176.
    Karlo Dante TN, Maiko H, Michiaki T, et al. White spot syndrome virus (WSSV) inactivation in Penaeus japonicus using purified monoclonal antibody targeting viral envelope protein. Aquaculture,2007,269:54-62.
    Kanchanaphum P, Wongteerasupaya C, Sitidilokratana N, et al. Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp Penaeus monodon. Dis Aquat Org,1998,34:1-7.
    Karyn N, Johnsona, Marielle CW, et al. "Vaccination" of shrimp against viral pathogens:Phenomenology and underlying mechanisms. Vaccine,2008,26: 4885-4892.
    Kasornchandra J, Boonyaratpalin S, Itami T. Detection of white spot syndrome in cultured penaeid shrimp in Asia:microscopic observation and polymerase chain reaction. Aquaculture,1998,164:243-251.
    Khoo L, Robinette DW, Noga E J. Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Marine Biotechnol,1999,1:44-51.
    Kim CS, Kosuke Z, Nam YK, et al. Protection of shrimp(Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol,2007,23:242-246.
    Kim DK, Jang IK, Seo HC, et al. Shrimp protected from WSSV disease by treatment with egg yolk antibodies (IgY) against a truncated fusion protein derived from WSSV. Aquaculture,2004,237:21-30.
    Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet,2001,2(4):256-267.
    Kurtz J, Franz K. Innate defence:evidence for memory in invertebrate immunity. Nature,2003b,425:37-38.
    Lackie AN. Invertebrate immunity. Parasitol,1980,80:393-412.
    Leu JH, Tsai JM, Wang HC, et al. The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. J Virol,2005,79:140-149.
    Li L, Xie X, Yang F. Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31. Virology,2005a, 340:125-132.
    Li L, Lin S, Yang F. Functional identification of the non-specific nuclease from white spot syndrome virus. Virology,2005b,337:399-406.
    Li HX. Meng XL, Xu JP, et al. Protection of crayfish, Cambarus clarkii, from white spotsyndrome virus by polyclonal antibodies against a viral envelope fusion protein. J Fish Dis,2005c,28:285-291.
    Li H, Zhu Y, Xie X, et al. Identification of a novel envelope protein (VP187) gene from shrimp white spot syndrome virus. Virus Res,2006a,115:76-84.
    Li LJ, Yuan JF, Cai CA, et al. Multiple envelope proteins are involved in white spot syndrome virus (WSSV) infection in crayfish. Arch Virol,2006b,151: 1309-1317.
    Liao IC, Su MS, Chang CF, et al. Enhancement of the resistance of grass prawn Penaeus monodon against Vibrio damsela infection by β-1,3-glucan. J Fish Soc Taiwan,1996,23:109-116.
    Lightner DV. A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. World Aquaculture, Society 1996, Baton Rouge, Louisiana, USA.
    Lightner DV. Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Rev Sci Tech,1996,15:579-601.
    Lightner DV. The penaeid shrimp viruses TSV, IHHNV, WSSV, and YHV:current status in the Americas, available diagnostic methods and management strategies. J Appl Aquacult,1999,9:27-52.
    Lightner DV, Hasson KW, White BL, et al. Experimental infection of western hemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow head virus. J Aqua Anim Health,1998,10:271-281.
    Lightner DV, Redman RM. A baculovirus-caused disease of the penaeid shrimp, Penaeus monodon. J Inverteb Pathol,1981,38:299-302.
    Lightner DV, Redman RM. Strategies for the control of viral diseases of shrimp in the Americas. Fish Pathol,1998,33:165-180.
    Lin WM. Studies on superoxide dismutase from grass shrimp(Penaeus monodon): virus-infected, purification and characterization. Master Thesis. Institute of Mar Biotechnol, National Taiwan Ocean University, Keelung 1998.
    Liu CH, Cheng W, Hsu JP, et al. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquat Org,2004,61:169-174.
    Liu CH, Chen JC. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol,2004,16:321-334.
    Liu X, Yang F. Identification and function of a shrimp white spot syndrome virus (WSSV) gene that encodes a dUTPase. Virus Res,2005,110:21-30.
    Liu WJ, Chang YS, Wang CH, et al. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology,2005,334:327-341.
    Liu Y, Wu J, Song J, et al. Identification of a novel nonstructural protein, VP9, from white spot syndrome virus:its structure reveals a ferredoxin fold with specific metal binding sites. J Virol,2006,80:10419-10427.
    Lo CF, Chang YS, Peng SE, et al. Major viral diseases of Penaeus monodon in Taiwan. Journal of the Fisheries Society of Taiwan 2003,30:1-13.
    Lo CF, Ho CH, Peng SE, et al. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Org,1996, 27:215-225.
    Lo CF, Ho CH, Chen CH, et al. Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis Aquat Org,1997,30:53-72.
    Lo CF, Leu JH, Ho CH, et al. Detection of baculovirus associated with white spot syndrome virus WSSV in penaeid shrimp using polymerase chain reaction. Dis Aquat Org,1996,25:133-141.
    Loker ES, Adema CM, Zhang SM, et al. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 2004,198:10-24.
    Marks H, van Duijse JJA, Zuidema D, et al. Fitness and virulence of an ancestral white spot syndrome virus isolate from shrimp. Virus Res,2005,110:9-20.
    Marks H, Goldbach RW, Vlak JM, et al. Genetic variation among isolates of White spot syndrome virus. Arch Virol,2003,3:248-249.
    Martin GG, Hose JE. Vasculare lements and blood(hemolymph). In:Microscopic Anatomy of Invertebrates, Harrison FW and Humes AG (eds), Wiley, New York. 1992. vol.10, pp.117-146.
    Mayo MA. A summary of taxonomic changes recently approved by ICTV. Arch Virol, 2002,147:1655-1656.
    Mendoza H L, Fayeb I. Physiological aspects of the immunoglobulin superfamily in invertebrates. Dev Comp Immunol,1999,23:359-374.
    Miller VH, Ballback RS, Pauley GB, et al. Apreliminary physicochemical characterization of an agglutinin found in the hemolymph of the crayfish Procamgbarus clarkii. J Invertebr Pathol,1982,19:83-93.
    Mondal SK, Neelima M, Seetha Rama Reddy K. Validation of the inactivant binary ethylenimine for inactivating rabies virus for veterinary rabies vaccine production. Biologicals 2005,33:185-189.
    Munoz M, Vandenbulcke F, Saulnier D, et al. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur J Biochem,2002,269:2678-2689.
    Muzzarelli RAA. Chitin in Nature and Technology. New York and London:Pleum Press,1986.
    Nadala ECB, Tapay LM, Cao S, et al. Detection of yellow head virus and Chinese baculovirus in penaeid shrimp by the Western blot technique. J Virol Methods, 1997,69:39-44.
    Nadala ECB, Loh PC. A comparative study of three different isolates of white spot virus. Dis Aquat Org,1998,33:231-234.
    Nadala ECB, Loh PC. Dot-blot nitrocellulose enzyme immunoassays for the detection of white-spot virus and yellow-head virus of penaeid shrimp. J Virol Methods, 2000,84:175-179.
    Nadala ECB, Tapay LM, Loh PC. Characterization of a non-occluded baculovirus-like agent pathogenic to penaeid shrimp. Dis Aquat Org,1998,33:221-229.
    Namikoshi A, Wu JL, Yamashita T, et al. Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture,2003,229:25-35.
    Natividad KDT, Hagio M, Tanaka M, et al. White spot syndrome virus (WSSV) inactivation in Penaeus japonicus using purified monoclonal antibody targeting viral envelope protein. Aquaculture,2007,269:54-62.
    Nishimura K, Ishihara C, Ukei S, et al. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine,1986,4:151-156.
    Norihisa O, Toh Thye C, Yukio M, et al. Examination for viral inactivation of WSSV (White Spot Syndrome Virus) isolated in Malaysia using black tiger prawn (Penaeus monodon). Jap Agri Res Quart,2006,40:93-97.
    Otta SK, Shubha G, Joseph B, et al. Polymerase chain reaction (PCR) detection of white spot syndrome virus (WSSV) in cultured and wild crustaceans in India. Dis Aquat Org,1999,38:67-70.
    Ourth DD, Renis HE. Antiviral melanization reaction of Heliothis virescens hemolymph against DNA and RNA viruses in vitro. Comp Biochem Physiol, 1993,105:719-723.
    Perazzolo LM, Barracco MA. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev Comp Immunol,1997,21: 385-395.
    Philippe R. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture,1999,172:125-145.
    Poulos BT, Pantoja CR, Bradley Dunlop D, et al. Development and application of monoclonal antibodies for the detection of white spot syndrome virus of penaeid shrimp. Dis Aquat Org,2001,47:13-23.
    Ratcliffe NA, Rowley AF, Fitzgerald SW, et al. Invertebrate immunity:Basic concepts and recent advances. Int Rev Cytol,1985,97:183-350.
    Rajendran KV, Vijayan KK, Santiago TC, et al. Experimental host range and histopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns, crayfish and lobsters from India. J Fish Dis,1999,22:183-191.
    Rameshthangam P, Ramasamy P. Antiviral activity of bis (2-methylheptyl) phthalate isolated from Pongamia pinnata leaves against White Spot Syndrome Virus of Penaeus monodon (Fabricius). Virus Res,2007,126:38-44.
    Ratanapo S, Chulavatnatol M. Monodin, a new sialic acid-specific lectin from black tiger prawn (Penaeus monodon), Comp. Biochem. Physiol B,1990,97:515-520.
    Ravindranath MH, Higa HH, Cooper EL, et al. Purification and characterization of an o-acetylsialic acid-specific lectin from a marine crab, Cancer antennarius. J Biol Chem,1985,260:8850-8856.
    Robalino J, Bartlett TC, Chapman RW, et al. Double-stranded RNA and antiviral immunity in marine shrimp:inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol,2007,31:539-547.
    Robalino J, Bartlett T, Shepard EF, et al. Double-stranded RNA induces sequence-specific antiviral silencing in addition to non-specific immunity in marine shrimp:convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol,2005,79:13561-13571.
    Robalino J, Browdy C L, Prior S, et al. Induction of Antiviral Immunity by Double-Stranded RNA in a Marine Invertebrate. J Virol,2004,78:10442-10448.
    Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture,1999,172:125-145.
    Rout N, Kumar S, Jaganmohan S, et al. DNA Vaccine, encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine,2007,25:2778-2786.
    Roy AD, Jarl B.β-glucans as conductors of immune symphonies. Fish Shellfish Immunol,2008,25:384-396.
    Sahoo PK, Mukherjee SC. Effect of dietary β-1,3 glucan on immune response and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol,2001,11:683-695.
    Sahul Hameed AS, Balasubramanian G, Syed Musthaq S, et al. Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). Dis Aquat Org,2003,57:157-161.
    Sahul Hameed AS, Yoganandhan K, Sathish S, et al. White spot syndrome virus (WSSV) in two species of freshwater crabs (Paratelphusa hydrodomus and P. pulvinata). Aquaculture,2001,201:179-186.
    Sakai M, Kamiya H, Ishii S, et al. The immunostimulating effects of chitin in rainbow trout, Oncorhynchus mykiss. In:Shariff M, Subasighe RP, Arthur JR, editors. Diseases in Asian Aquaculture, I. Manila, Philippines:Fish Health Section, Asian Fisheries Society,1992. p.413-417.
    Sarathi M, Simon MC, Venkatesan C, et al. Oral administration of bacterially expressed VP28 dsRNA to protect shrimp, Penaeus monodon from white spot syndrome virus. Mar Biotechnol,2008,10:242-249.
    Sarathi M, Nazeer Basha A, Ravi M, et al. Clearance of white spot syndrome virus (WSSV) and Immunological changes in experimentally WSSV-injected Macrobrachium rosenbergii. Fish Shellfish Immunol,2008,9:222-230.
    Sahul Hameed AS, Sarathi M, Sudhakaran R, et al. Quantitative assessment of apoptotic hemocytes in white spot syndrome virus (WSSV)-infected penaeid shrimp, Penaeus monodon and Penaeus indicus, by flow cytometric analysis. Aquaculture,2006,256:111-120.
    Schnapp D, Kemp GD, Smith VJ. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem,1996,240: 532-539.
    Schulenburg H, Boehnisch C, Michiels NK. How do invertebrates generate a highly specific innate immune response? Mol Immunol 2007,44:3338-3344.
    Sealey WM, Barrows FT, Hang A, et al. Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim Feed Sci Tech,2008,141:115-128.
    Shai Y. Mode of action of antibacterial peptides. In:Brey PT and Hultmark D, Editors, 1998. Molecular Mechanisms of Immune Responses in Insects, Chapman and Hall, London, pp.111-134.
    Sharon N. and Lis H. Lectins:cell-agglutinating and sugar-specific proteins. Science, 1972,177:949-959.
    Shibata Y, Foster LA, Metzger WJ, et al. Alveolar macrophage printing by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infection Immunity,1997,65:1734-1741.
    Shi Z, Huang C, Zhang J, et al. White spot syndrome virus (WSSV) experimental infection of the freshwater crayfish Cher ax quadricarinatus. J Fish Dis,2000,23: 285-288.
    Shi Z, Wang H, Zhang J, et al. Response of crayfish, Procambarus clarkii, haemocytes infected by white spot syndrome virus. J Fish Dis,2005,28:151-156.
    Shih HH. Neutralization of white spot syndrome virus by monoclonal antibodies against viral envelope proteins. Taiwania,2004,49:159-165.
    Shih HH, Wang CS, Tan LF, et al. Characterization and application of monoclonal antibodies against white spot syndrome virus. J Fish Dis,2001,24:143-150.
    Singh ISB, Manjusha M, Pai SS, et al. Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus. Dis Aquat Org,2005,66:265-270.
    Siwicki AK, Anderson DP, Rumsey GL. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol,1994,41:125-139.
    Smith VJ, Soderhall K. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus adtacus by components of the prophenoloxidase activating system in vit ro. Cell Tissue Res,1983,233:295-303.
    Smith VJ, Soderhall K, Hamilton M. β-1.3-Glucan induced cellular defense reaction in the shore crab, Carcinus maenas. Comp Biochem Phys A,1984,77:636-639.
    Soderhall, K. Prophenoloxidase activating system and melanization-A recognition mechanism of arthropods? A Review. Devel. Comp. Immunol,1982,6:601-611.
    Soderhall K, Hall L. Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochem Biophys Acta,1984, 797:99-104.
    Soderhall K, Smith VJ. Johansson M. Exocystosis and uptake of bacteria by isolated haemocyte populations of two crustaceans:evidence for cellular co568 operation in the defense reactions of arthropods. Cell Tissue Res,1986,243:43-49.
    Soderhall K, Aspan A, Duvic B. The proPO-system and associated proteins; role in cellular communication in arthropods. Res Immunol,1990,141:896-907.
    Soderhall K, Cerenius L, Johansson MW. The prophenoloxidase activating system and its role in invertebrate defence. Annals of the New York Academy of Sciences, 1994,71:155-161.
    Soderhall K, Cerenius L, Johansson MW. The prophenoloxidase activating system in invertebrates. In:Soderhall KS, Iwanaga GR, Vasta GR, editors. New directions in invertebrate immunology. Fair Haven, NJ, USA:SOS Publications,1996. p. 229-253.
    Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol,1998,10:23-28.
    Song YL, Hsieh YT. Immunostimulation of tiger shrimp Penaeus monodon haemocytes for generation of microbicidal substances:analysis of reactive oxygen species. Dev Comp Immunol,1994,18:201-209.
    Su J G, Oanh D T H, Lyons R E, et al. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon:Identification and functional characterisation of Dicer-1. Fish Shellfish Immunol,2008,24:223-233.
    Sung HH, Kou GH, Song SL. Vibrosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathol,1994,29:11-17.
    Syed Musthaq S, Sudhakaran R, Balasubramanian G, et al. Experimental transmission and tissue tropism of white spot syndrome virus (WSSV) in two species of lobsters, Panulirus homarus and Panulirus ornatus. J Invertebr Pathol,2006,193: 75-80.
    Syed Musthaq S, Yoganandhan K, Sudhakaran R, et al. Neutralization of white spot syndrome virus of shrimp by antiserum raised against recombinant VP28. Aquaculture,2006,253:98-104.
    Takahashi Y, Itami T, Maeda M, Kondo M (1998) Bacterial and viral diseases of kuruma shrimp (Penaeus japonicus) in Japan. Fish Pathol,33:357-364.
    Tang X, Wu J, Sivaraman J, Hew CL. Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. J Virol,2007,81:6709-6717.
    Tsai JM, Wang HC, Leu JH, et al. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol,2004,78: 11360-11370.
    Tsing A, Arcier JM, Brehelin M. Haemocytes of penaeids and palaemonid shrimps: morphology, cytochemistry and hemograms. J Inverteb Pathol,1989,53:64-77.
    Tsai JM, Wang HC, Leu JH, et al. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol,2004,78: 11360-11370.
    Tsai JM, Wang HC, Leu JH, et al. Identification of the nucleocapsid, tegument and envelope proteins of the shrimp white spot syndrome virus virion. J Virol,2006, 80:3021-3029.
    van De Braak CBT, Botterblom MHA, Huisman EA, et al. Preliminary study on the haemocyte response to white spot syndrome virus infection in black tiger shrimp Penaeus monodon. Dis Aquat Org,2002,51:149-155.
    van Hulten MCW, Goldbach RW, Vlak JM. Three functionally diverged major structural proteins of white spot syndrome virus evolved by gene duplication. J Gen Virol,2000,81:2525-2529.
    van Hulten MCW, Witteveldt J, Peters S, et al. The white spot syndrome virus DNA genome sequence. Virology,2001a,286:7-22.
    van Hulten MCW, Witteveldt J, Snippe M, et al. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology,2001b, 285:228-233.
    van Hulten MCW, Reijns M, Vermeesch AMG, et al. Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. J Gen Virol,2002,83:257-265.
    Vaseeharan B, Prem Anand T, Murugan T, et al. Shrimp vaccination trials with the VP292 protein of white spot syndrome virus. Lett Appl Microbiol,2006, 43:137-142.
    Venegas CA, Nonaka L, Mushiake K, et al. Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis Aquat Org,2000,42: 83-89.
    Vilmos P, Kurucz E. Insect immunity:evolutionary roots of the mammalian innate immune system. Immunol Lett,1998,62:59-66.
    Vlak JM, Bonami JR, Flegel TW, et al. Nimaviridae. In:Virus Taxonomy Ⅷth Report of the International Committee on Taxonomy of Viruses (ed. by Fauquet CM, Mayo MA, Maniloff J, Desselberger U& Ball LA) Elsevier/Academic Press, London 2005, pp.187-192.
    Vlak JM, Kou GH. Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology,2000,277:92-99.
    Wang CH, Lo CF, Leu JH, et al. Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Org,1995,23:239-242.
    Wang CS, Tsai YJ, Chen SN. Detection of white spot disease virus (WSDV) infection in shrimp using in situ hybridization. J Inverteb Path,1998,172:170-173.
    Wang FI, Chen JC. The immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp damselae under temperature stress. Aquaculture,2006,258:34-41.
    Wang SH, Chen JC. The protective effect of chitin and chitosan against Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol, 2005,19:191-204.
    Wang YC, Lo CF, Chang PS, et al. Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. Aquaculture,1998,164:221-231.
    Wang YG, Hassan MD, Shariff M, et al. Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. Dis Aquat Org,1999,39:1-11.
    Wang YT, Liu W, Seah JN, et al. White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Dis Aquat Org,2002,52: 249-259.
    Wang Q, Poulos BT, Lightner DV. Protein analysis of geographic isolates of shrimp white spot syndrome virus. Arch Virol,2000,145:263-274.
    Westenberg M, Heinhuis B, Zuidema D, et al. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res,2005,114:133-139.
    White JM. Membrane fusion. Science,1992,258:659-662.
    Wilaiwan C, Suprapa T, Kidchakan S, et al. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture,2004,233:23-30.
    Witteveldt J, Cifuentes CC, Vlak JM, et al. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol,2004,78:2057-2061.
    Witteveldt J, van Hulten MC, Vlak JM. Identification and phylogeny of a non-specific endonuclease gene of white spot syndrome virus of shrimp. Virus Genes,2001, 23:331-337.
    Witteveldt J, Vlak JM, Van Hulten MC. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit Vaccine. Fish Shellfish Immunol, 2004,16:571-579.
    Witteveldt J, Vlak JM, Van Hulten MC. Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28. Dis Aquat Org,2006,70:167-170.
    Wongteerasupaya C, Vickers JE, Sriurairatana S, et al. A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon. Dis Aquat Org,1995, 21:69-77.
    Wongteerasupaya C, Wongwisansri S, Boonsaeng V, et al. DNA fragment of Penaeus monodon baculovirus PmNOBII gives positive in situ hybridization with white-spot viral infections in six penaeid shrimp species. Aquaculture,1996,143: 23-32.
    Wu JL, Namikoshi A, Nishizawa T, et al. Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Dis Aquat Org,2001,47:129-135.
    Wu JL, Nishioka T, Mori K, et al. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol,2002,13:391-403.
    Wu W, Wang L, Zhang X. Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology,2005,332:578-583.
    Wu Y, Lu L, Yang L S, et al. Inhibition of white spot syndrome virus in Litopenaeus vannamei shrimp by sequence-specific siRNA. Aquaculture 2007; 271:21-30.
    Xie HH, Li HY, Xu LM, et al. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res,2005,108:63-67.
    Xie X, Yang F. Interaction of white spot syndrome virus VP26 protein with actin. Virology,2005,336:93-99.
    Xie X, Yang F. White spot syndrome virus VP24 interacts with VP28 and is involved in virus infection. J Gen Virol,2006,87:1903-1908.
    Xie X, Xu L, Yang F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol,2006,80:10615-10623.
    Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir Res,2007,73:126-131.
    Xu ZR, Du HH, Xu YX, et al. Crayfish Procambarus clarkii protected against white spot syndrome virus by oral administration of viral proteins expressed in silkworms. Aquaculture,2006,253:179-183.
    Yan DC, Dong SL, Huang J, et al. White spot syndrome virus (WSSV) detected by PCR in rotifers and rotifer resting eggs from shrimp pond sediments. Dis Aquat Org,2004,59:69-73.
    Yan DC, Dong SL, Huang J, et al. White spot syndrome virus (WSSV) transmission from rotifer inoculum to crayfish. J Inverteb Pathol,2007,94:144-148.
    Yang F, He J, Lin X, et al. Complete genome sequence of the shrimp white spot bacilliform virus. J Virol,2001,75:11811-11820.
    Yeaton RW. Invertebrate lectins:Ⅰ. Occurrence. Dev Comp Immunol,1981a,5: 391-402.
    Yeaton RW. Invertebrate lectins:Ⅱ. Diversity of specificity, biological synthesis and function in recognition. Dev Comp Immunol,1981b,5:535-545.
    Yi G, Wang Z, Qi Y, et al. VP28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Mol Biol,2004,37: 726-734.
    Yoganandhan K, Syed Musthaq S, Narayanan RB, et al. Production of polyclonal antiserum against recombinant VP28 protein and its application for the detection of white spot syndrome virus in crustaceans. J Fish Dis,2004,27:517-522.
    You Z, Nadala CEB, Yang J, et al. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus. Dis Aquat Org,2002, 51:77-80.
    Zhang JS, Dong SL, Tian XL, et al. Study on the rotifer (Brachionus urceus Linnaeus,1758) as a vector in white spot syndrome virus (WSSV) transmission. Aquaculture,2006,261:1181-1185.
    Zhang ZF, Shao MY, Kang KH. Changes of enzyme activity and hematopoiesis in Chinese prawn Fenneropenaeus chinensis induced by white spot syndrome virus and zymosan A. Aquacult Res,2005,36:674-681.
    Zhang X, Huang C, Tang X, et al.Indentification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins:Structure, Function and Bioinformatics,2004,55:229-235.
    Zhang YL, Wang SY, Peng XX. Identification of a type of human IgG-like protein in shrimp Penaeus vannamei by mass spectrometry. J Exp Mar Biol Eco,2004,301: 39-54.
    Zhu Y, Xie X, Yang F. Transcription and identification of a novel envelope protein (VP124) gene of shrimp white spot syndrome virus. Virus Res,2005,113: 100-106.
    Zhu YB, Li HY, Yang F. Identification of an envelope protein (VP39) gene from white spot syndrome virus. Arch Virol,2006,151:71-82.
    Zhu Y, Ding Q, Yang F. Characterization of a homologous-region-binding protein from white spot syndrome virus by phage display. Virus Res,2007,125: 145-150.
    邓岳松,许梓荣,夏枚生等.象山地区中国对虾白斑综合征病毒超微结构观察.科技通报,2003,19(4):327-329.
    丁橘,王雷,李光友.中国对虾复合疫苗的初步研究.海洋与湖沼,1999,30(4):355-361.
    高有领.多糖类免疫促进剂在虾类疾病控制上的应用研究进展.浙江万里学院学报,2007,20(5):67-71.
    雷质文,黄捷,杨冰等.感染病毒(WSSV)对虾相关免疫因子的研究.中国水产科学,2001,8:46-51.
    黄健,宋晓玲,于佳等.杆状病毒性的皮下及造血组织坏死—对虾暴发性流行病的病原和病理学.海洋水产研究,1995,16(1):1-10.
    黄捷,于佳,宋晓玲等.对虾皮下及造血组织坏死杆状病毒的精细结构、核酸、多肽及血清学研究.海洋水产研究,1995,16:11-23.
    何建国,周化民,姚伯等.白斑病杆状病毒的感染途径和宿主种类.中山大学报,1999,14(4):358-361.
    胡琳琳,房文红,高露姣等.壳聚糖硫酸酯提高凡纳滨对虾抗白斑综合征病毒感染力的研究.海洋渔业,2008,30(3):250-255.
    金海丽,许梓荣.多糖的抗病毒及免疫调节研究进展.营养与疾病,2002,01: 28-30.
    江晓路,刘树青,张朝晖等.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6(1):66-68.
    刘树青,江晓路,牟海津等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283.
    罗日祥,姜玉香,李光友.中国对虾血细胞中酚氧化酶活力研究.海洋科学,1996,6:1-3.
    王长法,张士璀,王昌留.水生无脊椎动物凝集素研究概述.海洋科学,2005,29(4):63-67.
    罗日祥.中国对虾凝集素活力及弧菌的诱导动力学.海洋学报,1997,19:117-120.
    马明华,易杨华,汤海峰.多糖抗病毒作用研究概况.药学服务与研究,2004,12(4):305-308.
    莫照兰,李会荣,俞勇等.细菌糖蛋白对螯虾免疫因子的影响.中国水产科学,2000,7(3):28-31.
    彭其胜,郭文场,杨振国等.中国对虾血淋巴凝集素的血凝活性与促噬活性.水产学报,2001,25(3):197-202.
    谭北平,周歧存,郑石轩等.β-1,3/1,6-葡聚糖制剂对凡纳对虾生长及免疫力的影响.高技术通讯,2004,14(5):73-77.
    汪小锋,樊廷俊,丛日山等.几种免疫促进剂对中国对虾血细胞数量、形态结构以及酚氧化酶产量和活性的影响,水产学报,2005,29(1):66-73.
    王长云,管华诗.多糖抗病毒作用研究进展J.多糖抗病毒作用.生物工程进展,2000,20:17-20.
    徐健,金鑫荣.天然高分子甲壳素、壳聚糖在生物和医学方面的应用.化学通报,1999,(8):22-25.
    张宗恩.甲壳质化学的研究与应用进展.上海水产大学学报,1998,(4):32-39.
    张立人,张建红,陈棣华等.东方对虾杆状病毒在宿主细胞内装配.电子显微镜学报,1994,3(5):54.
    王雷,李光友,毛远兴等.口服免疫型药物对养殖中国对虾病害防治作用的研究. 海洋与湖沼,1994,25(5):486-491.
    刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼,1998,29(2):113-116.
    王雷,李光友.甲壳动物的体液免疫研究进展.海洋科学,1992,3:18-19.
    赵本进,潘铙苘,陈晓清等.二乙烯亚胺(BEI)灭活猪细小病毒的试验报告.上海畜牧兽医通讯,2004,6:19.
    夏咸柱,余春,黄耕等.犬冠状病毒BEI灭活苗的制备与免疫试验.中国兽医杂志,2001,37(3):37-38.
    魏静,陆承平,黄倢等.用对虾的致病病毒人工感染克氏原螯虾.南京农业大学学报,1998,21(4):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700