鸭乙型肝炎病毒感染鸭原代肝细胞差异蛋白质组分析及鸭Annexin A2在DHBV感染中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(HBV)引起的乙型肝炎是严重危害人类健康的传染病。HBV属于嗜肝DNA病毒科,具有严格宿主特异性,不能感染非灵长类实验动物。目前仍缺乏理想的HBV自然感染细胞培养系统,乙型肝炎病毒和宿主细胞之间的相互作用,病毒感染对宿主细胞的蛋白表达及功能的影响,HBV感染的早期阶段等分子机制目前仍不是十分清楚。鉴于嗜肝DNA病毒具有相似的病毒结构、基因组结构以及复制特点,因此利用鸭乙型肝炎病毒(DHBV)建立的细胞和动物感染模型,用来研究乙型肝炎病毒感染的机制。在体外细胞培养模型中,DHBV能够自然感染鸭原代肝细胞(Primary Duck Hepatocytes, PDHs)并能进行有效的复制,感染的细胞可释放具有感染性的病毒颗粒,因此该感染系统对于研究嗜肝DNA病毒复制过程具有很高的价值。
     蛋白质组学作为当今生命科学热点与前沿功能基因组学中的重要研究方法,近年来得到了蓬勃的发展,已涉足生命科学中一系列热点领域。蛋白质组学技术的发展推动了病毒学研究的深入,有助于深入了解病毒与宿主相互作用以及引发疾病的机制等。鸡全基因组的测定和蛋白质组学研究技术的发展,为研究DHBV感染对宿主细胞蛋白表达的影响以及寻找与DHBV感染相关的细胞蛋白带来了新的契机。本课题采用鸭原代肝细胞—鸭乙型肝炎病毒(PDHs-DHBV)感染模型,运用蛋白质组学方法分析DHBV感染后鸭肝细胞蛋白表达改变情况,并对病毒感染相关蛋白进行其生物学方面的探讨。
     本论文在采用PDHs-DHBV感染模型的基础上,利用双向凝胶电泳技术(2-DE),比较分析了DHBV感染后24,72以及120小时的鸭原代肝细胞与未感染的鸭原代肝细胞蛋白差异表达谱,结果显示蛋白表达水平差异1.5倍以上蛋白点有51个。对差异蛋白点进行胶内酶解、肽段提取后,借助基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS/MS)鉴定技术,基于NCBInr数据库,成功鉴定了34个蛋白点,有些胶上的多个蛋白质点对应于同一个蛋白,在合并重复蛋白后得到27个非冗余蛋白。采用生物信息学对差异蛋白的功能进行预测与分类,结果显示差异蛋白主要参与新陈代谢和骨架组成;其余蛋白涉及能量转运、分子伴侣、转录调节、细胞增殖等。为了检验蛋白质组研究结果,分别挑选了病毒感染后鸭肝细胞中丰度上升和下降的蛋白进行验证。其中差异蛋白β-actin及Annexin A2 (ANX2)经Western blot硷证,其变化趋势与双向电泳结果一致。另外(?)amin A,热休克蛋白HSP70以及GAPDH,用人或鼠的多克隆抗体作为一抗,Western blot没有检测到相应条带,可能是由于这些抗体不能与鸭相应蛋白反应所致。
     本研究发现ANX2在病毒感染鸭原代肝细胞后其表达显著下降。本实验室前期研究,也发现在DHBV易感性降低的鸭原代肝细胞中ANX2表达量显著降低。Annexin A2是膜连蛋白家族的一员,在细胞内可能具有比以往所描述的以钙离子依赖性方式与酸性磷脂结合更为重要而独特的功能。ANX2的生物学功能多种多样,主要包括:(1)参与形成细胞膜的紧密连接;(2)作为细胞表面受体,是组织纤维蛋白溶解酶的细胞受体;(3)参与胞吞和胞吐、形成离子通道。近年来的研究报道显示,ANX2在病毒感染中具有重要的作用。文献报道,在Ca2+存在的条件下,纯化的ANX2可以介导巨细胞病毒(CMV)与磷脂膜的结合,并能够阻断CMV对细胞的感染。在HIV感染中,HIV表面的一种成分能与ANX2结合并促进病毒感染。关于ANX2在嗜肝DNA病毒感染过程中的作用,目前尚未见报道,ANX2在DHBV感染中可能起着一定的作用,需要通过进一步实验证明。
     为了研究鸭ANX2蛋白在DHBV复制中作用,首先构建了鸭ANX2真核和原核表达质粒,采用鸭ANX2真核表达质粒DNA初步免疫小鼠、原核表达纯化的鸭ANX2蛋白加强免疫的方法,制备了鼠抗鸭ANX2多克隆抗体。利用Western blot验证了对鸭乙型肝炎病毒感染鸭原代肝细胞差异蛋白质组分析发现的差异蛋白ANX2表达的变化,Western blot险测结果显示ANX2蛋白变化趋势与蛋白质组学分析结果一致。
     为了研究ANX2与DHBVpreS/S的相互作用,将pEGFP-DHBVpreS/S与pDsRed-ANX2重组质粒共转染293T细胞,转染后48小时观察。在激光共聚焦显微镜下观察鸭ANX2可以与DHBVpreS/S共定位于胞浆细胞膜附近。结果提示ANX2与DHBVpreS/S可能存在相互作用,与本实验室前期试验结果符合。进而利用DHBVpreS单克隆抗体以及鼠抗鸭ANX2多克隆抗体,进行免疫共沉淀和pull down实验,证实鸭ANX2与DHBV preS/S蛋白存在相互作用。
     为明确鸭ANX2对DHBV复制的影响,设计和筛选鸭ANX2 siRNA干扰片段,发现ANX2 siRNA A2-701可以比较明显抑制鸭ANX2的mRNA的转录和蛋白表达。进而用ANX2 siRNA A2-701处理鸭原代肝细胞4天后(确证ANX2的表达下调),再用DHBV感染PDHs,培养4天后,用Dot blot和Southern blot杂交的方法检测DHBV的复制水平。结果显示,siRNA干扰ANX2后,细胞内和细胞培养上清中DHBV DHBV降低。ANX2siRNA干扰初步研究提示ANX2在DHBV的感染过程发挥一定作用。
     本研究的实验结果丰富了鸭蛋白质数据库,为研究嗜肝DNA病毒的复制、肝炎病毒与宿主细胞相互作用研究奠定了一定的基础。然而,本研究所发现的差异蛋白在嗜肝DNA病毒复制中的作用尚有待于深入研究,随着鸭基因/或基因组和蛋白质数据库的丰富将会推动相关研究。
Hepatitis B virus (HBV), belonging to the genus Orthohepadnavirus of the Hepadnaviridae family, is a major cause of liver infection in human. Lack of an appropriate in vitro HBV infection system, how hepatocytes responsing to hepadnaviruses infection remains incompletely understood. Duck hepatitis B virus is a member of the Hepadnaviridae family, classified to Avihepadnavirus, sharing similar biological features with HBV including genome organization and structural organization, viral replication process and biological characteristics. The primary duck hepatocytes-duck hepatitis B virus (PDHs-DHBV) system is a valuable hepadnaviruses infection model in vitro with two major advantages, the ready availability of ducks which are the natural host of DHBV, and the high sensitivity to DHBV of primary hepatocytes from ducklings.With highly reproducible and efficient infection, PDHs-DHBV made the infection system for studying the cellular and molecular biology of hepadnavirus infection under control.
     The development of proteomic methods revolution has enabled us to assess virus-host interactions and the changes of cellular proteins expression at a global scale, to reveal the connections between virus infection and host cellular functions. How viral infection affects the expression of the cellular proteome has attracted attentions. We intend to utilize a natural PDHs-DHBV infection system to explore hepatocytes response to hepadnaviruses infection. Although Anas platyrhynchos genome has not been sequenced, the decoding of the genome of Gallus gallus (chicken) and the advancement of the genomic techniques bring opportunities to investigate on the interaction of DHBV infection and host protein expression. In the present work, we attempted to analyze primary duck hepatocytes with and without duck hepatitis B virus infection by proteomics and explore the molecular mechanisms of hepadnavirus infections.
     In the present study, we investigated the effect of DHBV infected primary duck hepatocytes by proteomic analysis. A total of 51 differential expressed protein spots were revealed by 2-DE between DHBV infected and uninfected PDHs at 24,72 and 120h postinfection, respectively. Twenty-seven proteins have been identified by MALDI-TOF MS.
     Differentially expressed proteins included alpha-enolase, destrin, elongation factor-2, lamin A, heat shock protein, and annexin A2 (ANX2), etc. Western blot further confirmed the down-regulated expression of and ANX2 during DHBV infection. However, duck heat shock protein 70 and lamin A were not detected by Western blot analysis with the rabbit anti-human or anti-mouse heat shock protein 70 polyclonal antibodies, and rabbit anti-human lamin A polyclonal antibody.
     It was revealed that ANX2 was down-regulated in DHBV infected PDHs comparing with uninfected PDHs. And the proteomics analysis showed that ANX2 expression was down-regulated in PDHs losing their susceptibility to DHBV infection compared to PDHs susceptible to DHBV infection when PDHs cultured in the different stages or culture medium. ANX2, belonging to a family of calcium-dependent, phospholipid binding proteins, is involved in many biological processes such as the Ca2+ dependent exocytosis, calcium transport and cell proliferation. It participates in viral infection, including assisting in the assembly of HIV in monocyte-derived macrophages, as a cellular cofactor supporting HIV-1 infection, enhancing cytomegalovirus binding and membrane fusion. This indicated that ANX2 may be involved in DHBV infection.
     In order to confirm the ANX2 protein change in the proteomics, we prepared polyclone anti ANX2 antibodies. By Western blot we confirmed the result. To explore the role of ANX2 in the DHBV infection, PDHs were treated with ANX2-specific siRNA (A2-701) or with nontargeting control siRNA (N.C.) and infected with DHBV after the treatment four days. Culture medium was collected and cells were lysed at postinfection (p.i.) four days. Supernatant and intracellular DHBV DNA were analyzed by dot blot hybridization and southern blot hybridization. The results have shown that siRNA of ANX2 in PDHs results in decreased DHBV replication.
     Recombinant plasmids which express DsRed fusion protein with duck ANX2 and EGFP fusion protein with DHBpreS/S were co-transfected with EGFP-DHBpreS/S fusion protein recombinant plasmid into 293T cell line.The results showed that duck ANX2 co-localized in cytoplasm with DHBVpreS/S by confocal analysis This indicated that ANX2 may interact with DHBVpreS/S. In order to confirm the interaction between them, co-immunoprecipitate and pull down were used. Anti-ANX2 and anti DHBVpreS Western blot showed that DHBVpreS/S coprecipitates with ANX2 from PDHs. Purified ANX2-His protein precipitated on a nickel matrix after incubation with lysates from DHBV infected PDHs and coprecipitated DHBV preS/S. These results supported that ANX2 interacted with DHBV preS/S in PDHs and cell-free systems.
     In conclusion, this study explored hepatocytes responses to hepadnaviruses infection by cellular proteome analysis, using a natural PDHs-DHBV infection system. The data obtained may lead to better understanding of interactions between hepadnaviruses and hepatocytes and molecular mechanisms of hepadnavirus infection.
引文
[1]Bruss V. Revisiting the cytopathic effect of hepatitis B virus infection. [J]. Hepatology,2002,36(6):1327-1329.
    [2]Lai C L, Ratziu V, Yuen M F, et al. Viral hepatitis B.[J]. Lancet,2003,362(9401) :2089-2094.
    [3]Tiollais P, Pourcel C, Dejean A. The hepatitis B virus.[J]. Nature,1985,317(6037) :489-495.
    [4]Dienstag J L. Hepatitis B virus infection.[J]. N Engl J Med,2008,359(14):1486-1500.
    [5]Kao J H, Chen D S. Global control of hepatitis B virus infection.[J]. Lancet Infect Dis,2002,2(7):395-403.
    [6]Ganem D, Prince A M. Hepatitis B virus infection--natural history and clinical consequences.[J]. N Engl J Med,2004,350(11):1118-1129.
    [7]Block T M, Mehta A S, Fimmel C J, et al. Molecular viral oncology of hepatocellular carcinoma.[J]. Oncogene,2003,22(33):5093-5107.
    [8]Hilleman M R. Critical overview and outlook:pathogenesis, prevention, and treatment of hepatitis and hepatocarcinoma caused by hepatitis B virus.[J]. Vaccine, 2003,21(32):4626-4649.
    [9]Perz J F, Armstrong G L, Farrington L A, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. [J]. J Hepatol,2006,45(4):529-538.
    [10]Mason W S, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus.[J]. J Virol,1980,36(3):829-836.
    [11]Cummings I W, Browne J K, Salser W A, et al. Isolation, characterization, and comparison of recombinant DNAs derived from genomes of human hepatitis B virus and woodchuck hepatitis virus.[J]. Proc Natl Acad Sci U S A,1980,77(4):1842-1846.
    [12]Nassal M, Leifer I, Wingert I, et al. A structural model for duck hepatitis B virus core protein derived by extensive mutagenesis.[J]. J Virol,2007,81(23):13218-13229.
    [13]Pugh J C, Guo J T, Aldrich C, et al. Aberrant expression of a cytokeratin in a subset of hepatocytes during chronic WHV infection.[J]. Virology,1998,249(l):68-79.
    [14]Tuttleman J S, Pugh J C, Summers J W. In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus.[J]. J Virol,1986,58(1) :17-25.
    [15]Olubuyide 10, Judah D J, Riley J, et al. The isolation and culture of DHBV-infected embryo and duckling hepatocytes and the effect of aflatoxin B1 or irradiation on these cells.[J]. Br J Cancer,1991,63(3):378-385.
    [16]Summers J, Mason W S. Replication of the genome of a hepatitis B--like virus by reverse transcription of an RNA intermediate.[J]. Cell,1982,29(2):403-415.
    [17]Tuttleman J S, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells.[J]. Cell,1986,47(3):451-460.
    [18]Wang G H, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis.[J]. Cell,1992,71(4):663-670.
    [19]Ishikawa T, Ganem D. The pre-S domain of the large viral envelope protein determines host range in avian hepatitis B viruses.[J]. Proc Natl Acad Sci U S A, 1995,92(14):6259-6263.
    [20]Misumi S, Fuchigami T, Takamune N, et al. Three isoforms of cyclophilin A associated with human immunodeficiency virus type 1 were found by proteomics by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry.[J]. J Virol,2002,76(19):10000-10008.
    [21]Taylor T J, Knipe D M. Proteomics of herpes simplex virus replication compartments:association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8.[J]. J Virol,2004,78(11):5856-5866.
    [22]You J, Croyle J L, Nishimura A, et al. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes.[J]. Cell, 2004,117(3):349-360.
    [23]Cui F, Wang Y, Wang J, et al. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice.[J].Proteomics,2006,6(2):498-504.
    [24]Zhao C, Fang C Y, Tian X C, et al. Proteomic analysis of hepatitis B surface antigen positive transgenic mouse liver and decrease of cyclophilin A.[J]. J MedVirol, 2007,79(10):1478-1484.
    [25]Takashima M, Kuramitsu Y, Yokoyama Y, et al. Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma.[J]. Proteomics,2003,3(12):2487-2493.
    [26]Tong A, Wu L, Lin Q, et al. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model.[J]. Proteomics,2008,8(10):2012 -2023.
    [27]Narayan R, Gangadharan B, Hantz 0, et al. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. [J]. J Proteome Res,2009, 8(1):118-122.
    [28]Masabanda J S, Burt D W, O'Brien P C, et al. Molecular cytogenetic definition of the chicken genome:the first complete avian karyotype.[J]. Genetics,2004,166(3): 1367-1373.
    [29]Alfonso P, Rivera J, Hernaez B, et al. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics.[J]. Proteomics,2004, 4(7):2037-2046.
    [30]Zheng X, Hong L, Shi L, et al. Proteomics analysis of host cells infected with infectious bursal disease virus.[J]. Mol Cell Proteomics,2008,7(3):612-625.
    [31]Schultz U, Chisari F V. Recombinant duck interferon gamma inhibits duck hepatitis B virus replication in primary hepatocytes.[J]. J Virol,1999,73(4) :3162-3168.
    [32]Long J E, Huang L N, Qin Z Q, et al. IFN-gamma increases efficiency of DNA vaccine in protecting ducks against infection.[J]. World J Gastroenterol,2005,11(32) :4967-4973.
    [33]Condreay L D, Aldrich C E, Coates L, et al. Efficient duck hepatitis B virus production by an avian liver tumor cell line.[J]. J Virol,1990,64(7):3249-3258.
    [34]Nanda S K, Leibowitz J L. Mitochondrial aconitase binds to the 3'untranslated region of the mouse hepatitis virus genome.[J]. J Virol,2001,75(7):3352-3362.
    [35]Ogino T, Yamadera T, Nonaka T, et al. Enolase, a cellular glycolytic enzyme, is required for efficient transcription of Sendai virus genome.[J]. Biochem Biophys Res Commun,2001,285(2):447-455.
    [36]Kuramitsu Y, Nakamura K. Current progress in proteomic study of hepatitis C virus-related human hepatocellular carcinoma.[J]. Expert Rev Proteomics,2005,2(4) :589-601.
    [37]Su H X, Xu D Z, Zhang Y H, et al. Screening cellular proteins binding to the core region of hepatitis C virus RNA genome with digoxin-labeled nucleic acids.[J]. Intervirology,2007,50(4):303-309.
    [38]Takashima M, Kuramitsu Y, Yokoyama Y, et al. Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma:association with tumor progression as determined by proteomic analysis.[J].Proteomics,2005,5(6):1686-1692.
    [39]Duclos-Vallee J C, Capel F, Mabit H, et al. Phosphorylation of the hepatitis B virus core protein by glyceraldehyde-3-phosphate dehydrogenase protein kinase activity.[J]. J Gen Virol,1998,79 (Pt 7):1665-1670.
    [40]Duclos-Vallee J C, Capel F, Mabit H, et al. Protein kinase and NO-stimulated ADP-ribosyltransferase activities associated with glyceraldehyde-3-phosphate dehydrogenase isolated from human liver.[J]. Hepatol Res,2002,22(1):65-73.
    [41]Mou F, Wills E G, Park R, et al. Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane.[J]. J Virol,2008,82(16): 8094-8104.
    [42]Mou F, Forest T, Baines J D. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells.[J]. J Virol,2007,81(12):6459-6470.
    [43]Lee C P, Huang Y H, Lin S F, et al. Epstein-Barr Virus BGLF4 Kinase Induces Disassembly of the Nuclear Lamina to Facilitate Virion Production. [J]. J Virol,2008.
    [44]Milbradt J, Auerochs S, Marschall M. Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C.[J]. J Gen Virol,2007,88(Pt 10):2642-2650.
    [45]Miralles F, Visa N. Actin in transcription and transcription regulation.[J]. Curr Opin Cell Biol,2006,18(3):261-266.
    [46]Cudmore S, Cossart P, Griffiths G, et al. Actin-based motility of vaccinia virus.[J].Nature,1995,378(6557):636-638.
    [47]Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae.[J]. Science,2002,296(5567) :535-539.
    [48]Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments. [J]. Cell,2003,112(4):453-465.
    [49]Ploubidou A, Way M. Viral transport and the cytoskeleton.[J]. Curr Opin Cell Biol,2001,13(1):97-105.
    [50]Li E, Stupack D, Bokoch G M, et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases.[J]. J Virol,1998,72 (11):8806-8812.
    [51]Bukrinskaya A, Brichacek B, Mann A, et al. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton.[J]. J Exp Med,1998,188(11):2113-2125.
    [52]Lehmann M, Milev M P, Abrahamyan L, et al. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on Dynein motor function and late endosome positioning.[J]. J Biol Chem,2009,284(21) :14572-14585.
    [53]Kim S, Kim H Y, Lee S, et al. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule-and Dynein-dependent manners.[J]. J Virol, 2007,81(4):1714-1726.
    [54]Gonzalez D E, Del A R, Salas B J. In vitro interaction of poliovirus with cytoplasmic dynein.[J]. Intervirology,2007,50(3):214-218.
    [55]Havecker E R, Gao X, Voytas D F. The Sireviruses, a plant-specific lineage of the Tyl/copia retrotransposons, interact with a family of proteins related to dynein light chain 8.[J]. Plant Physiol,2005,139(2):857-868.
    [56]Liu Y, Belkina N V, Shaw S. HIV infection of T cells:actin-in and actin-out.[J]. Sci Signal,2009,2(66):23.
    [57]Beck J, Nassal M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein.[J]. J Biol Chem,2003,278(38):36128-36138.
    [58]Prange R, Werr M, Loffler-Mary H. Chaperones involved in hepatitis B virus morphogenesis.[J]. Biol Chem,1999,380(3):305-314.
    [59]Loffler-Mary H, Werr M, Prange R. Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70.[J]. Virology,1997,235(1):144-152.
    [60]Annexin 2 a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages[J].2008.
    [61]Ma G, Greenwell-Wild T, Lei K, et al. Secretory leukocyte protease inhibitor binds to annexin Ⅱ, a cofactor for macrophage HIV-1 infection.[J]. J Exp Med,2004, 200(10):1337-1346.
    [62]Raynor C M, Wright J F, Waisman D M, et al. Annexin II enhances cytomegalovirus binding and fusion to phospholipid membranes.[J]. Biochemistry, 1999,38(16):5089-5095.
    [63]Lebouder F, Morello E, Rimmelzwaan G F, et al. Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin.[J]. J Virol,2008,82(14):6820-6828.
    [64]Choi J, Chang J S, Song M S, et al. Association of hepatitis B virus polymerase with promyelocytic leukemia nuclear bodies mediated by the S100 family protein p11.[J]. Biochem Biophys Res Commun,2003,305(4):1049-1056.
    [65]Lin S M, Cheng J, Lu Y Y, et al. Screening and identification of interacting proteins with hepatitis B virus core protein in leukocytes and cloning of new gene C1.[J]. World J Gastroenterol,2006,12(7):1043-1048.
    [66]Zelivianski S, Liang D, Chen M, et al. Suppressive effect of elongation factor 2 on apoptosis induced by HIV-1 viral protein R.[J]. Apoptosis,2006,11(3):377-388.
    [67]Giansanti F, Giardi M F, Massucci M T, et al. Ovotransferrin expression and release by chicken cell lines infected with Marek's disease virus.[J]. Biochem Cell Biol,2007,85(1):150-155.
    [68]Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus:an invaluable model system for HBV infection.[J]. Adv Virus Res,2004,63:1-70.
    [69]Ventelon-Debout M, Delalande F, Brizard J P, et al. Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and 0. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection.[J]. Proteomics,2004, 4(1):216-225.
    [70]Schlee M, Krug T, Gires O, et al. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis:activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV.[J]. J Virol,2004,78(8):3941-3952.
    [71]Casado-Vela J, Selles S, Martinez R B. Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein.[J]. Proteomics,2006,6 Suppl 1:196-206.
    [72]Bernhard O K, Diefenbach R J, Cunningham A L. New insights into viral structure and virus-cell interactions through proteomics.[J]. Expert Rev Proteomics, 2005,2(4):577-588.
    [73]Maxwell K L, Frappier L. Viral proteomics.[J]. Microbiol Mol Biol Rev,2007,71(2):398-411.
    [74]Serva S, Nagy P D. Proteomics analysis of the tombusvirus replicase:Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication.[J]. J Virol,2006,80(5):2162-2169.
    [75]Yokoyama Y, Kuramitsu Y, Takashima M, et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus.[J]. Proteomics,2004,4(7):2111-2116.
    [76]Emmett S R, Dove B, Mahoney L, et al. The cell cycle and virus infection.[J]. Methods Mol Biol,2005,296:197-218.
    [77]Gilbert S, Galarneau L, Lamontagne A, et al. The hepatitis B virus core promoter is strongly activated by the liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1.[J]. J Virol,2000,74(11):5032-5039.
    [78]Yi M, Schultz D E, Lemon S M. Functional significance of the interaction of hepatitis A virus RNA with glyceraldehyde 3-phosphate dehydrogenase (GAPDH): opposing effects of GAPDH and polypyrimidine tract binding protein on internal ribosome entry site function.[J]. J Virol,2000,74(14):6459-6468.
    [79]Schultz D E, Hardin C C, Lemon S M. Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5'-nontranslated RNA of hepatitis A virus.[J]. J Biol Chem,1996,271(24):14134-14142.
    [80]Dollenmaier G, Weitz M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3'translated and non-translated regions.[J]. J Gen Virol,2003,84(Pt 2):403-414.
    [81]Subramanian A, Miller D M. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene.[J]. J Biol Chem,2000,275(8):5958-5965.
    [82]Mizukami Y, Iwamatsu A, Aki T, et al. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation.[J]. J Biol Chem,2004,279(48):50120-50131.
    [83]Hsu K W, Hsieh R H, Lee Y H W, et al. The Activated Notchl Receptor Cooperates with alpha-Enolase and MBP-1 in Modulating c-myc Activity [J]. Molecular and Cellular Biology,2008,28(15):4829-4842.
    [84]Hartl F U, Hayer-Hartl M. Molecular chaperones in the cytosol:from nascent chain to folded protein.[J]. Science,2002,295(5561):1852-1858.
    [85]Mayer M P, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism.[J]. Cell Mol Life Sci,2005,62(6):670-684.
    [86]Kampmueller K M, Miller D J. The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells.[J]. J Virol,2005, 79(11):6827-6837.
    [87]Reyes-Del V J, Chavez-Salinas S, Medina F, et al. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells.[J]. J Virol,2005,79(8):4557-4567.
    [88]Loffler-Mary H, Werr M, Prange R. Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70.[J]. Virology,1997,235(1):144-152.
    [89]Pugh J C, Di Q, Mason W S, et al. Susceptibility to duck hepatitis B virus infection is associated with the presence of cell surface receptor sites that efficiently bind viral particles[J]. J Virol,1995,69(8):4814-4822.
    [90]Rescher U, Gerke V. Annexins--unique membrane binding proteins with diverse functions.[J]. J Cell Sci,2004,117(Pt 13):2631-2639.
    [91]Gerke V, Moss S E. Annexins:from structure to function.[J]. Physiol Rev,2002, 82(2):331-371.
    [92]Burger A, Berendes R, Liemann S, et al. The crystal structure and ion channel activity of human annexin Ⅱ, a peripheral membrane protein. [J]. J Mol Biol,1996, 257(4):839-847.
    [93]Liemann S, Lewit-Bentley A. Annexins:a novel family of calcium- and membrane-binding proteins in search of a function.[J]. Structure,1995,3(3):233-237.
    [94]Brooks N D, Grundy J E, Lavigne N, et al. Ca2+-dependent and phospholipid-independent binding of annexin 2 and annexin 5.[J]. Biochem J,2002,367(Pt 3):895-900.
    [95]Lee D B, Jamgotchian N, Allen S G, et al. Annexin A2 heterotetramer:role in tight junction assembly.[J]. Am J Physiol Renal Physiol,2004,287(3):481-491.
    [96]Macleod T J, Kwon M, Filipenko N R, et al. Phospholipid-associated annexin A2-S100A10 heterotetramer and its subunits:characterization of the interaction with tissue plasminogen activator, plasminogen, and plasmin.[J]. J Biol Chem,2003,278 (28):25577-25584.
    [97]Okuse K, Malik-Hall M, Baker M D, et al. Annexin Ⅱ light chain regulates sensory neuron-specific sodium channel expression.[J]. Nature,2002,417(6889) :653-656.
    [98]Gerke V, Moss S E. Annexins and membrane dynamics.[J]. Biochim Biophys Acta,1997,1357(2):129-154.
    [99]Harder T, Kellner R, Parton R G, et al. Specific release of membrane-bound annexin Ⅱ and cortical cytoskeletal elements by sequestration of membrane cholesterol.[J]. Mol Biol Cell,1997,8(3):533-545.
    [100]Morel E, Gruenberg J. Annexin A2 binding to endosomes and functions in endosomal transport are regulated by tyrosine 23 phosphorylation.[J]. J Biol Chem,2009,284(3):1604-1611.
    [101]Gruenberg J, Emans N. Annexins in membrane traffic.[J]. Trends Cell Biol, 1993,3(7):224-227.
    [102]Fan X, Krahling S, Smith D, et al. Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes.[J]. Mol Biol Cell,2004,15(6): 2863-2872.
    [103]Mayran N, Parton R G, Gruenberg J. Annexin Ⅱ regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. [J]. EMBO J,2003, 22(13):3242-3253.
    [104]Brichory F M, Misek D E, Yim A M, et al. An immune response manifested by the common occurrence of annexins Ⅰ and Ⅱ autoantibodies and high circulating levels of IL-6 in lung cancer.[J]. Proc Natl Acad Sci U S A,2001,98(17):9824-9829.
    [105]Emoto K, Yamada Y, Sawada H, et al. Annexin Ⅱ overexpression correlates with stromal tenascin-C overexpression:a prognostic marker in colorectal carcinoma. [J]. Cancer,2001,92(6):1419-1426.
    [106]Huang Y, Jin Y, Yan C H, et al. Involvement of Annexin A2 in p53 induced apoptosis in lung cancer.[J]. Mol Cell Biochem,2008,309(1-2):117-123.
    [107]Wright J F, Kurosky A, Pryzdial E L, et al. Host cellular annexin Ⅱ is associated with cytomegalovirus particles isolated from cultured human fibroblasts.[J]. J Virol,1995,69(8):4784-4791.
    [108]Boyle K A, Compton T. Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B.[J]. J Virol,1998,72(3):1826-1833.
    [109]Ryzhova E V, Vos R M, Albright A V, et al. Annexin 2:a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages.[J]. J Virol,2006,80(6):2694-2704.
    [110]Wang J, Jiang D, Zhang H, et al. Proteome responses to stable hepatitis B virus transfection and following interferon alpha treatment in human liver cell line HepG2. [J]. Proteomics,2009.
    [111]Castanotto D, Rossi J J. The promises and pitfalls of RNA-interference-based therapeutics.[J].Nature,2009,457(7228):426-433.
    [112]Cullen B R. Viral and cellular messenger RNA targets of viral microRNAs.[J]. Nature,2009,457(7228):421-425.
    [113]Wati S, Li P, Burrell C J, et al. Dengue virus (DV) replication in monocyte- derived macrophages is not affected by tumor necrosis factor alpha (TNF-alpha), and DV infection induces altered responsiveness to TNF-alpha stimulation[J]. J Virol,2007,81(18):10161-10171.
    [114]Lu C C, Huang H T, Wang J T, et al. Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication[J]. J Virol,2007,81(3):1195-1208.
    [115]Xie J, Chiang L, Contreras J, et al. Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini[J]. J Virol,2006,80(23):11833-11851.
    [116]Hamamoto S, Nishitsuji H, Amagasa T, et al. Identification of a novel human immunodeficiency virus type 1 integrase interactor, Gemin2, that facilitates efficient viral cDNA synthesis in vivo[J]. J Virol,2006,80(12):5670-5677.
    [117]Fu J, Tang Z M, Gao X, et al. Optimal design and validation of antiviral siRNA for targeting hepatitis B virus.[J]. Acta Pharmacol Sin,2008,29(12):1522-1528.
    [118]Urban S, Gripon P. Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein[J]. J Virol,2002,76(4) :1986-1990.
    [119]Gripon P, Le S J, Rumin S, et al. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity.[J]. Virology,1995,213(2):292-299.
    [120]Neurath A R, Kent S B, Parker K, et al. Antibodies to a synthetic peptide from the preS 120-145 region of the hepatitis B virus envelope are virus neutralizing.[J]. Vaccine,1986,4(1):35-37.
    [121]Ishikawa T, Ganem D. The pre-S domain of the large viral envelope protein determines host range in avian hepatitis B viruses. [J]. Proc Natl Acad Sci U S A, 1995,92(14):6259-6263.
    [122]Kuroki K, Cheung R, Marion P L, et al. A cell surface protein that binds avian hepatitis B virus particles.[J]. J Virol,1994,68(4):2091-2096.
    [123]Li J S, Tong S P, Wands J R. Characterization of a 120-Kilodalton pre-S-binding protein as a candidate duck hepatitis B virus receptor.[J]. J Virol,1996, 70(9):6029-6035.
    [124]Li J, Tong S P, Lee H B, et al. Glycine decarboxylase mediates a postbinding step in duck hepatitis B virus infection[J]. JOURNAL OF VIROLOGY,2004,78(4) :1873-1881.
    [125]Breiner K M, Schaller H. Cellular receptor traffic is essential for productive duck hepatitis B virus infection.[J]. J Virol,2000,74(5):2203-2209.
    [126]Cho E W, Park J H, Yoo 0 J, et al. Translocation and accumulation of exogeneous hepatitis B virus preS surface proteins in the cell nucleus.[J]. J Cell Sci,2001,114(Pt 6):1115-1123.
    [1]Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., et al., Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995,16,1090-1094.
    [2]Goodlett, D. R., Bruce, J. E., Anderson, G. A., Rist, B., et al., Proteinidentification with a single accurate mass of a cysteine-containing peptide and constrained database searching. Anal Chem 2000,72,1112-1118.
    [3]Frenz, J., Hancock, W. S., High performance capillary electrophoresis. Trends Biotechnol 1991,9,243-250.
    [4]Zhu, X. D., Zhang, W. H., Li, C. L., Xu, Y., et al., New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J Gastroenterol 2004,10,2327-2329.
    [5]Gagnon, A., Shi, Q., Ye, B., Surface-enhanced laser desorption/ionization mass spectrometry for protein and Peptide profiling of body fluids. Methods Mol Biol 2008, 441,41-56.
    [6]Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999,17,1030-1032.
    [7]Yoder, J. D., Chen, T. S., Gagnier, C. R., Vemulapalli, S., et al., Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 2006,3,10.
    [8]Zhang, X., Huang, C., Tang, X., Zhuang, Y., Hew, C. L., Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 2004,55,229-235.
    [9]Zachertowska, A., Brewer, D., Evans, D. H., Characterization of the major capsid proteins of myxoma virus particles using MALDI-TOF mass spectrometry. J Virol Methods 2006,132,1-12.
    [10]Chelius, D., Huhmer, A. F., Shieh, C. H., Lehmberg, E., et al., Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. J Proteome Res 2002,1,501-513.
    [11]Zeng, R., Ruan, H. Q., Jiang, X. S., Zhou, H., et al., Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res 2004,3, 549-555.
    [12]Kattenhorn, L. M., Mills, R., Wagner, M., Lomsadze, A., et al., Identification of proteins associated with murine cytomegalovirus virions. J Virol 2004,78, 11187-11197.
    [13]Varnum, S. M., Streblow, D. N., Monroe, M. E., Smith, P., et al., Identification of proteins in human cytomegalovirus (HCMV) particles:the HCMV proteome. J Virol 2004,78,10960-10966.
    [14]Saphire, A. C., Gallay, P. A., Bark, S. J., Proteomic analysis of human imm unodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res 2006,5, 530-538.
    [15]Chertova, E., Chertov, O., Coren, L. V., Roser, J. D., et al., Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 2006,80,9039-9052.
    [16]Fields, S., Song, O., A novel genetic system to detect protein-protein interactions. Nature 1989,340,245-246.
    [17]Edwards, A. M., Kus, B., Jansen, R., Greenbaum, D., et al., Bridging structural biology and genomics:assessing protein interaction data with known complexes. Trends Genet 2002,18,529-536.
    [18]Zeghouf, M., Li, J., Butland, G., Borkowska, A., et al., Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 2004,3,463-468.
    [19]Mayer, D., Baginsky, S., Schwemmle, M., Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification. Proteomics 2005,5, 4483-4487.
    [20]Taylor, T. J., Knipe, D. M., Proteomics of herpes simplex virus replication compartments:association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 2004,78,5856-5866.
    [21]Vittone, V., Diefenbach, E., Triffett, D., Douglas, M. W., et al., Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 2005, 79,9566-9571.
    [22]Lake, C. M., Hutt-Fletcher, L. M., The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 2004, 320,99-106.
    [23]Szajner, P., Jaffe, H., Weisberg, A. S., Moss, B., A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions. Virology 2004,330,447-459.
    [24]Senkevich, T. G., Ojeda, S., Townsley, A., Nelson, G. E., Moss, B., Poxvirus multiprotein entry-fusion complex. Proc Natl Acad Sci U S A 2005,102, 18572-18577.
    [25]Bartel, P. L., Roecklein, J. A., SenGupta, D., Fields, S., A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet 1996,12,72-77.
    [26]Flajolet, M., Rotondo, G., Daviet, L., Bergametti, F., et al., A genomic approach of the hepatitis C virus generates a protein interaction map. Gene 2000,242,369-379.
    [27]Choi, I. R., Stenger, D. C., French, R., Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 2000,267, 185-198.
    [28]Holowaty, M. N., Zeghouf, M., Wu, H., Tellam, J., et al., Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 2003,278,29987-29994.
    [29]Kang, S. M., Shin, M. J., Kim, J. H., Oh, J. W., Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein. Proteomics 2005,5, 2227-2237.
    [30]Misumi, S., Fuchigami, T., Takamune, N., Takahashi, I., et al., Three isoforms of cyclophilin A associated with human immunodeficiency virus type 1 were found by proteomics by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Virol 2002,76, 10000-10008.
    [31]Taylor, T. J., Knipe, D. M., Proteomics of herpes simplex virus replication compartments:association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 2004,78,5856-5866.
    [32]You, J., Croyle, J. L., Nishimura, A., Ozato, K., Howley, P. M., Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 2004,117,349-360.
    [33]Jensen, O. N., Houthaeve, T., Shevchenko, A., Cudmore, S., et al., Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J Virol 1996,70,7485-7497.
    [34]Sedger, L., Ruby, J., Heat shock response to vaccinia virus infection. J Virol 1994,68,4685-4689.
    [35]Jindal, S., Young, R. A., Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 1992,66,5357-5362.
    [36]Saphire, A. C., Gallay, P. A., Bark, S. J., Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res 2006,5, 530-538.
    [37]Fuchigami, T., Misumi, S., Takamune, N., Takahashi, I., et al., Acid-labile formylation of amino terminal proline of human immunodeficiency virus type 1 p24(gag) was found by proteomics using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Biochem Biophys Res Commun 2002,293,1107-1113.
    [38]Misumi, S., Fuchigami, T., Takamune, N., Takahashi, I., et al., Three isoforms of cyclophilin A associated with human immunodeficiency virus type 1 were found by proteomics by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Virol 2002,76, 10000-10008.
    [39]Chertova, E., Chertov, O., Coren, L. V., Roser, J. D., et al., Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 2006,80,9039-9052.
    [40]Ciborowski, P., Kadiu, I., Rozek, W., Smith, L., et al., Investigating the human immunodeficiency virus type 1-infected monocyte-derived macrophage secretome. Virology 2007,363,198-209.
    [41]Tong, A., Wu, L., Lin, Q., Lau, Q. C., et al., Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 2008,8,2012-2023.
    [42]Narayan, R., Gangadharan, B., Hantz, O., Antrobus, R., et al., Proteomic Analysis of HepaRG Cells:A Novel Cell Line That Supports Hepatitis B Virus Infection. J Proteome Res 2008.
    [43]Alfonso, P., Rivera, J., Hernaez, B., Alonso, C., Escribano, J. M., Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 2004,4,2037-2046.
    [44]Zheng, X., Hong, L., Shi, L., Guo, J., et al., Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 2008,7,612-625.
    [45]Reynolds, J. L., Mahajan, S. D., Bindukumar, B., Sykes, D., et al., Proteomic analysis of the effects of cocaine on the enhancement of HIV-1 replication in normal human astrocytes (NHA). Brain Res 2006,1123,226-236.
    [46]Berro, R., de, L. F. C., Klase, Z., Kehn, K., et al., Identifying the membrane proteome of HIV-1 latently infected cells. J Biol Chem 2007,282,8207-8218.
    [47]Yamaoka, K., Imajoh-Ohmi, S., Fukuda, H., Akita, Y., et al., Identification of phosphoproteins associated with maintenance of transformed state in temperature-sensitive Rous sarcoma-virus infected cells by proteomic analysis. Biochem Biophys Res Commun 2006,345,1240-1246.
    [48]Mannova, P., Fang, R., Wang, H., Deng, B., et al., Modification of host lipid raft proteome upon hepatitis C virus replication. Mol Cell Proteomics 2006,5,2319-2325.
    [49]Yan, G., Li, L., Tao, Y., Liu, S., et al., Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology. Proteomics 2006,6,1810-1821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700