分形理论中若干问题的小波解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代分形理论中存在有许多问题尚待解决,尤其关于分维数的计算、分形反问题及奇异性分析等方面的研究为重点。小波在处理非平稳性和局域分析方面有着独特的优越性,可被用来提取有关分形尺度性质的细微信息。本文以小波理论为工具围绕分形中若干问题进行了探讨,主要提出并解决了如下问题:
     1.分析了分形曲线维数的传统计算方法及其缺陷,提出了多分维分形曲线的模式。基于小波阈值去噪方法,给出曲线上点的局部分形维数的计算公式及算法。仿真计算结果及图示均表明该法是有效的。
     2.基于小波变换在零点具有的的保相似形特征,在已知分形插值函数图象情况下,从有限数目个零点出发,给出寻找一组仿射压缩变换使该函数图象成为未知迭代函数系统吸引子的一种构造方法。
     3.提出了分形时变维数的概念,将其引入两类具有局部自相似性的有偏随机过程中。借助小波基固有的尺度特性很适合分析非平稳性和局部自相似性这一特点,给出赫斯特指数的小波估算公式及算法,证明了小波估算值和真实值是相容的,并用仿真结果加以验证,同时对上海股票市场周指数变化进行了实证分析。
     4.借助小波变换对自相似过程所起的白化作用和最小二乘法,建立了无须知道1/f过程中参数分布的参数估计方法。
     5.提出在最优尺度上跟踪小波模极大值线的参数方法,为研究多分形奇异性提供了一种途径。探讨了分形测度小波变换极大值线的拓扑分岔情况,并提出了一种基于小波变换模极大值的多重分形估算方法。
There are many problems to be solved in modern fractal theory, especially focuses on studies of computation on fractal dimension,inverse problem and sigularities. The scale property of wavelet is well suited for analyzing non-stationarity and localization and used to extract microscopic information about the scaling properties of fractals. In this dissertation, based on wavelet theory,the following problems are discussed:
    1. Traditional computional methods and limitation of dimension of fractal curve being analyzed ,A model of fractal curve having multidimension is proposed. Based on noise reduction for wavelet softhresholding, computional formula and algorithm about point-wise local dimension on the curve are given. Results from simulations show the validity of he algorithm.
    2. Given a graph of a fractal interpolation function which is the attractor of an unknown IPS with affine constration maps, the maps are found based on the self-similarity of the zero-crossing points of wavelet transform. The effectiveness of method is shown in an example.
    3. The concept of time-varying dimension are proposed and introduced in two kinds of biased stochastic process with locally self-similarity. The estimation formula and algorithm of Hurst Index are based on Daubechies wavelet analysis of samples dada . Simulation result indicates effectiveness of estimation method and proves that estimation value is a consistent result of true value. Week-index analysis of Shanghai
    stock market is taken as a real example by time-varying dimension.
    4. Based on correlation-decaying charecteristics of discrete wavelet coefficients of
    lf processes and the least-square algorithm estimation for spectral parameter of yf
    processes is presented without knowing the distribution of the parameter.
    5. A parameterization method for tracing wavelet maxima lines at the finest scale continuously is presented, by means of which the sigularity of multifractal spectrum can be analyzed well. Topologic bifurcation situation of maxima lines is also discussed. In the end ,an estimation for multifractal spectrum is proposed in terms of wavelet module maxima lines.
引文
[1]Mandelbrot B.B.,The Fractal Geometry of Nature,San Francisco,W.H.Freeman and Co., 1982
    [2]Falconer K.J.,Fractal Geometry:Mathematical Foundation and Application,Wiley,New York, 1990
    [3]Barnsley,M.F., Fractals Everywhere, Academic Press, Orlando, 1988
    [4]Mandelbrot B.B.,Van Ness J.W.,FractionalBrownian motion,fractional noise and applications,SIAM Review, 1968, 10, 422-437
    [5]Lindstiom T.,Browian motion on nest fractals,Mem.Amer. Math. Soc., 1990, 420
    [6]Hambly B.,Brownian motion on a homogeneous random fractals,Probab. Th. Rel. Fields, 1992, 94, 1-38
    [7]Barnsley M.F.and Demko S.,Iterated function systems and the global construction of fractal,The Proceedings of the Royal Society, London,A399, 1985, ,243-275
    [8]Barnsley M.F.,Fractal function and interpolation,Constructive Approximation, 1986,2,303-329
    [9]Barnsley M.F.,EltonJ.,Hardin,D.Hidden variable fractal interpolation functin,Georgia Institute of Technology,Preprint, July, 1986
    [10]Demko S.,Hodges L. And Naylor B.,Construction of fractal objects with iterated funtion system,Computer Graphics, 1985, 19(3), 271-178
    [11]谢和平等编译,分形几何——数学基础与应用,重庆大学出版社,1991
    [12]李后强,分形理论及其在分子科学中的应用,科学出版社,1993
    [13]文志英,井竹君,分形几何和分维数,数学的实践与认识,第四期,1995
    [14]苏维宜,分形与局部紧群上的调和分析,非线性论文集,1990
    [15]熊金成,符号空间转移字映射混沌集合的Hausdorff维数,中国科学,1994,第25期,第2期
    [17]吴敏,一类递归集的Hausdorff维数及Bouligand维数,数学学报,1995,第38卷,第2期
    [18]吴敏,关于自相似集的一个维数定理,数学学报,1995,第38卷,第3期
    [19]江惠坤,(?)~n上分形集的多重维数,数学年刊,1995,16A,1
    [20]胡迪鹤,随机分形,数学进展,1995,第18卷,第1期,193-214
    
    
    [21]胡晓予,Cantor集随机重排的Hausdorff测度,中国科学(A),1994,第24卷,第8期
    [22]胡晓予,Cantor集随机重排的Packing测度,中国科学(A),1994,第24卷,第9期
    [23]谢和平,分形力学的数学基础,力学进展,1995,第25卷,第2期,193-214
    [24]Falconer K.J.著,分形几何,曾文曲等译,东北工学院出版社,1991,301-307
    [25]段虞荣,高如曾等,用分形理论和小波变换相结合的方法来选择油气田的勘探井位,分形理论及其应用(三),中国科学技术大学出版社,1993,366-372
    [26]李后强,分形研究的若干问题及动向,分形理论及其应用(三),中国科学技术大学出版社,1993,1-4
    [27]汪富泉,李后强,有面积的曲线的性质及高维推广,数学研究与评论,1994,14 (4),579-584
    [28]李后强,方曙,分形的若干进展,自然杂志,1991,14(4),245-252
    [29]汪富泉等,多重分形:热力学类比,相变与子波变化,大自然探索,1991,11 (2),56-59
    [30]Arneodo,A.,Bacry,E.,Muzy,J.F.,Solving the Inverse Fractal Problem from wavelet analysis,Europhysics Letters, 1995, Vol.25, No.7, 484-497
    [31]Forte,B.,Vrscay,E.,Solving the Inverse Problem for Function Approximation using Iterated Function systems,Fractals, 1994, Vol.2, NO.3,325-346
    [32]Fisher, Y., Fractal Image Compression,Theory and Application. Springer-Verlag,New York, 1994
    [33]朱治军,李后强,用小波分析进行分形反演的理论研究,非线性科学的理论、方法和应用,科学出版社,1997,10-20
    [34]Brockwell,P.J.,Time series:Theory and Methods,New York:Springer-Verlag, 1991
    [35]Evertsz C.J.and Berkner K.,Large deviation and self-similarity analysis of curves:DAX Stock Prices, Chaos,Solitons & Fractals, 1995, 6, 1221-1230
    [36]敖力布等,分形学导论,内蒙古人民出版社,1996,476-477
    [37]Daubechies I.,The wavelet transform:Time-Frequency Localization and Signal Analysis,IEEE.Trans. On Information Theory, 1990, 36(5), 132-165
    [38]Stromberg.J.O.A, Modified Franklin system and higher order spline system on as unconditional bases for Hardy spaces. In:Beckner W.Conf in honer of A Zygmud. New York:Academic Press. 1986, 475-493
    
    
    [39]MorletJ.,Wave propagation and samyding theory and complex waves. Geophysics, 1982, 47(2), 222-236
    [40]Meyer. Y., .Wavelet with compact support. In:Beckner W.Conf in honor of A.Zygymund .New York: Academic Press, 1986, 1-8
    [41]Mallat. S.A, theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans on PAMI, 1989, 11(7), 476-693
    [42]Hall,P. And Wood,A.On the performance of box-counting estimatiors of fractal dimension,Biometrika, 1993,80,246-252
    [43]Chui. C.K.Wavelet: A tutorial theory and applications. New York:Academic Press, 1992, 1-453
    [44]Lawton,Necessary and sufficient conditions for constructing orthornormal wavelet bases,J.math. Phys., 1991, 32, 57-61
    [45]王晓军等,一种快速图象识别算法,数据采集与处理,1996,第11卷,第2期,246-248
    [46]埃得加.E.彼得斯,资本市场的混沌与秩序,经济科学出版社,1999,64-83
    [47]Daubechies. I.,Ten lectures on wavelets ,SIAM,Philadephia, 1992
    [48]张济中,分形,北京:清华大学出版社,1995,209-214
    [49]林鸿益,分形论-奇异性探索,北京:北京理工大学出版社,1992
    [50]秦前清,杨宗凯,实用小波分析,西安:西安电子科技大学出版社,1994
    [51]Mallat. S.A, theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans on PAMI, 1989, 11 (7), 476~693
    [52]Meger Y.ondeletles et Operateurs. Paris:Herman Press, 1990, 1~175
    [53]Chui. C.K., On cardinal spline wavelets, Ruskai et al. 1992, 419~438
    [54]Cohen and Daubechies,Othonormal bases of compactly supported wavelets III:Better frequency localization, AT T Bell Laboratories preprint, submitted to SIAMJ.Math. Anal., 1990
    [55]Mallat. S, Zhong. S, Characterization of Signal from Multiscale Edges[J], IEEE Trans. PAMI, 1992, 14(7), 710-732
    [56]Adelheid, Fischer,On wavelets and prewavelets with vanishing moments in higher dimensions .Journal of Approximation Theory, 1997, (90), 46-74
    [57]张颖等,基于分形和小波的自适应混合图象编码,电子学报,1998,26(10) 70-74
    
    
    [58]Chui.C.K.Wavelet: A tutorial theory and applications.New York:Academic Press, 1992,1-453
    [59]Frederique M, Dominique G, Matthias H et al, Wavelet analysis of potential fields, Inverse Problems, 1997, (13), 165-168
    [60]Hong-Tae S, Hans V, On the Gibbs Phenomenon for wavelet expansions,Journal of approximation theory,1996,(84), 74-95
    [61]王建忠,小波理论及其在物理和工程中的应用,数学进展,1992,21(3),289-316
    [62]Zhang Q and Benveniste A.,Wavelet network, IEEE Trans:Neural Network, 1992, Vol. 4, No. 6,213-217
    [63]王玉宁,多尺度B样条小波边沿检测算子,中国科学(A辑),1995,25(4):426—437
    [64]Stephere G M, Zero-crossing of wavelet transform, IEEE Trans IT,1991,37(4):1019-1033
    [65]Mallat A and Huang W L, Sigularity detection and processing with wavelets, IEEE Trans. Information theory, 1992,38(2):617-643
    [67]M. Vetterli, Wavelets and fiter bank:Theory and Design, IEEE Trans. Signal Processing, 40(9),Sep, 1992
    [68]S. Mallat, A theory for multi-resolution signal decomposition:The wavelet representation, IEEE Trans. Patt. Anal. Machine Intel. 1989,11(7):674-693
    [69]Antonini M, Barland M, Mathien P, et al, Image coding using wavelet transform, IEEE Trans Image Proc. Jan ,1992, 1:205-220
    [70]Averbuch A,Lazar D, Israeli M, Image compression using wavelet transform and multiresolution decompesition, IEEE trans Image Proc, Jan, 1996,5:4-15
    [71]Mallat S G, Multisolution approximation and wavelet orthonormal bases of L~2(R),Trans of American Math Sco, Sept, 1989, 315:69-87
    [72]Daubechies I,Orthonormal base of compactly supported wavelets. Comm Pure Appl Math, 1988, 41:909-996
    [73]A Lewis, G Kowles, Image compression using the 2-D wavelet transform, IEEE Trans on Image Processing, Apr, 1992, IP-1, 2:244-250
    
    
    [74]Stephere G. mallat, A theory for multiresohtion signal decomposition: the wavelet represention, IEEE Trans on PAMI, Jul, 1989, PAMI,11(7). 674-693
    [75]侯遵泽、杨文采,小波分析应用研究,物探化探计算技术,1995,17(3)
    [76]M V Wicherhauser, Lectures on wavelet packet algorithms, 1991,15
    [77]杜丽英、吴疗刚、徐国明,紧支集标准正交小波基地震数据的分解和重建,大庆石油地址开发,1995
    [78]赵辉,孙博文,关于分形理论研究中若干问题的思考,非线性论文集,1990,5-7
    [79]何峻湘,WVD用于SAR运动目标检测和成象的参数估计,电子科学学刊,1995,17(6):585—590
    [80]王晓菊、马远良,基于小波收缩去噪方法的信号特征提取,自动化理论、技术与应用(第四卷),杭州:浙江工业出版社,1997,1002-1005
    [81]ResenikoffHL, wavelet and adaptive signal processing ,SPIE, Adaptive Processing 1991,15:370-382
    [82]QianS, Weiss J, wavelet and numberical solution of partial differential equations, J. of computational physics, 1991, 106-199
    [83]Grossmann A, et al ,Reading and understanding continuious wavelet transforms, Wavelets conf, Marseille, 1989, 2-20
    [84]Meyer Y.,Wavelet:Algorithms & Applications, New York:SIAM, 1993,211-340
    [85]Massopust, P.R.,Fractal Functions, Fractal Surfaces, and Wavelets, New York:Academic Press, 1994
    [86]William T, Application of wavelet analysis to inverse scattering:II, Inverse Problems, 1996,12:499-516
    [87]Bernard D and Anatoli J, On the computation of wavelet coefficients,Journal of Approximation theory .1997, 88. 47-79
    [88]Ewald Q and Normann W, Algorithms for spline wavelet packets on an interval. BIT. 1997. 37:1. 76-95
    [90]Li Houqiang,Chen Shuhua and Zhao Huaming,Fractal structure and conformational entropy of protein chain,Int.J.Biol.Macromol, 1990, 12, 374-378
    
    
    [91]李后强,酶及其模型物的研究,四川大学博士学位论文,1991。
    [92]李后强,高分子的分维研究,大自然探索,1988,8(2),35-39
    [93]Ameodo,A.,Argoul,F.,Muzy,J.F.,Fractals, 1993, 1 (3), 629-638
    [94]Struzik,Z.R.From coastline length to inverse fractal problem:The concept of fractal metrology,Wibro Disserta Tie Drukkerij,Helmond, 1996.
    [95]Handy,C.R.and Mantica, G.Inverse problem in fractal constructions moment method solution,Physica D, 1990, 43, 17-36
    [96]吴敏金,分形信息导论,上海科学技术文献出版社,1993
    [97]Kantz,S.G.,Mandelbrot.B.B.数学译林,1992,11(4),337-345
    [98]张永平,谢和平,分形函数与分形维数,MMM-Ⅳ论文集,兰州大学出版社,1991
    [99]Geweke,J., and Porter-Hudak, S.,The estimation and application of long-memory time series models,Journal of time series analysis, 1983, 4, 227-237
    [100]Donoho,D.L.,and Johnstone,I.M.,Ideal spatial adaptation by wavelet shrinkage,Biometrika, 1994,81,425-455
    [101]Flandrin,P.,and Ganclaves,P.,From wavelets to time-scale energy distributions,in Recent advances in wavelet analysis,eds. Schumake and Webb,Boston:Academic Press, 1994, 309-334
    [102]宋国乡等,一种基于小波变换的白噪声消噪方法的改进,西安电子科技大学学报,2000,27(5),619-622
    [103]叶中行,杨利平,上证指数的混沌特征分析,上海交通大学学报,1998,32(3),129-132
    [104]Tricot,C.Curves and Fractal Dimension,New York: Springer-Verlag, 1995
    [105]Rudolf H.Riedi,Vinay J.Ribeiro,A multifractal wavelet model with application to network traffic,IEEE Trans.on Information Theory, 1999, Vol.45,No.3,992-1018
    [106]王东生,曹磊,混沌、分形及其应用,中国科学技术出版社,1995,104—138
    [107]B.Logan,Information in the zero-cross of band pass signals,Bell Syst. Tech. J., 1977, 56, 510-532
    [108]A.E.Cetin, et al.,Signal recovery from wavelet transform maxima, IEEE Trans. SP-42(1), 1994, 194-196
    [109]G.Wornell,Wavelet-based representation for the 1/f family of fractal process, Pro.IEEE, 1992, 11(2), 65-70
    
    
    [110]G.Womell, A Karhunen-Loeve like expansion for 1/f process via wavelet, IEEE Trans., 1990,IT-36(4),859-861
    [111]G.Wornell,Signal Processing with Fractals:A Wavelet Based Approach, Prentice-Hall, 1995
    [112]A.Tewfik,et al,Correlation structure of the discrete wavelet coefficients of fractional Browian motion, IEEE Trans. IT-38(2), 1992, 904-909
    [113]M.Kesner,1/f noise,Proc. IEEE, 1982, 70, 212-218
    [114]Melboume,I.,The recognition problem for equivariant sigularity,Nonlinerarity,1988,1,215-240
    [115]G.Womell,Wavelet based representation for a class of self similar signals with application to fractal modulation, IEEE Tran., IT-38(2), 1992, 785-800
    [116]J.F.Muzy,E.Bacry and A.Ameodo,Int. J.Bif. and Chaos, 1994, 4, 245-253
    [117]侯建荣,宋国乡,高维正交小波基的构造浅析,西安电子科技大学学报,2000,27(1),123-125
    [118]唐云,对称性分岔理论基础,科学出版社,1998,25-58
    [119]焦李成、保铮,子波理论与应用:进展与展望,电子学报,1993,21(7):91-97
    [120]徐科,徐金梧,一种新的基于小波变换的白噪声消除方法,电子科学学刊,1999,21(5),706-709
    [121]G.W.Womell and A.V.Oppenheim,Estimation of fractal signals from noisy measurements using wavelets, IEEE Tran., 1992, Vol.40, 611-623.
    [122]宋国乡等,数值泛函及小波分析初步,河南科学技术出版社,1993
    [123]陈捷,陈克安,孙进才,叠加分数布朗运动的极大似然估计,信号处理,1999,第15卷,第2期,143-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700