频带熵方法及其在滚动轴承故障诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的日益进步与现代工业的飞速发展,机械设备不断向大型、复杂、高速、高效及重载的方向发展;与此同时,其工作和运行环境也更加复杂和苛刻。这些设备一旦突然发生故障,不仅会增加企业的维护成本,降低企业的生产效率,还可能造成巨大的经济损失,甚至导致严重的人员伤亡,产生不良的社会影响。因此,如何对设备进行有效的状态监测和故障诊断,是当前亟需解决的问题。
     如何有效提取反映设备运行状态的特征,以及准确判断故障类别,一直是故障诊断领域的研究热点,新方法和新理论的研究也层出不穷,对丰富和完善机械故障诊断技术起到了重要作用。本文以滚动轴承为研究对象,提出频带熵方法,并对其在故障诊断中的应用进行了研究,旨在为滚动轴承状态监测提供一个新指标,为故障诊断信号预处理提供一种新方法,论文主要包括以下几个方面的内容:
     (1)从理论分析与工程应用的角度出发,阐述了论文的选题背景和研究意义。分析了机械设备故障诊断方法、滚动轴承故障诊断、时频分析与信息熵理论等方面的国内外研究现状,确立了本文的研究内容。
     (2)介绍了作为本文理论基础的几种时频分析方法及信息熵理论,借鉴峭度方法提出频带熵概念,定义频带熵为某一频率上(频带内)信号的复杂度,或者说不确定性,给出了频带熵的基本算法,最后从滤波的角度对频带熵概念进行了扩展。
     (3)介绍了滚动轴承的振动机理和故障特征。讨论了频带熵指标用于滚动轴承状态监测的可能性,对其鲁棒性进行了研究,证明其对奇异点的不敏感性。基于频带熵的上述特性,将其应用于滚动轴承全寿命周期数据分析,探讨了频带熵指标在性能退化各阶段的表现。介绍了为上述理论提供数据支撑的滚动轴承故障试验和加速疲劳寿命试验,通过对试验数据的分析,表明频带熵可作为状态监测指标的有效补充。
     (4)针对共振解调带通滤波中心频率难以确定的问题,提出了频带熵确定中心频率的方法。对基于STFT的频带熵,讨论了频率离散点数、时频分析窗长、窗函数类型等参数对频带熵的影响;对基于小波包变换的频带熵,讨论了小波包分解层数和小波包函数的选择对频带熵的影响。最后将两种方法应用于仿真和实际的滚动轴承故障诊断。分析结果证明,频带熵能够准确确定信号的共振频带,提升带通滤波和包络解调后的诊断效果。
     (5)提出频带熵与遗传算法相结合的方法,用于共振解调带通滤波器的优化设计。以频带熵最小为遗传算法的优化目标,通过选择、交叉、变异等操作,在取值范围内寻找最优的中心频率和带宽组合,设计优化滤波器。通过对仿真信号和不同信噪比实验数据的分析,证明此方法能够有效确定滤波中心频率和带宽,从而提高信号的信噪比,实现对轴承故障的诊断。
With the rapid development of technology and industry, mechanical equipment has become more and more huge, complex, high-speed, effective, and heavy-load while they must face more and more harsh running conditions. Once they fail unexpectedly, the unexpected failure can increase maintenance cost, reduce production efficiency, and sometimes cause significant economic losses, or even catastrophic accidents. Therefore, it is necessary and important to realize effectively equipment condition monitoring and fault diagnosis
     How to effectively extract features of the equipment running status and accurately determine the fault type has been a hot research field of fault diagnosis, and new methods and theory come out one after another to enrich and improve the mechanical fault diagnosis technology. Taking the rolling element bearing as the research object, this paper has proposed frequency band entropy(FBE) method and its application in fault diagnosis has been studied. The writer is aiming at providing a new indicator for the rolling bearing condition monitoring, and a new method for fault diagnosis signal preprocessing, the paper mainly including the following aspects:
     (1) From the viewpoint of theoretical analysis and engineering application, this paper’s research background and significance of present study are elucidated. A state of the art review is thoroughly completed, which consists of fault diagnosis of machinery and equipment, the rolling bearing fault diagnosis, time-frequency analysis and information entropy theory. The issues to be resolved are summarized and the research content of this paper are established .
     (2) Several time-frequency analysis methods and information entropy theory which the whole theory is based on are described, then the spectral kurtosis method is introduced to propose the frequency band entropy. Frequency band entropy is defined as the complexity (or uncertainty)of the signal on a particular frequency (or within a particular frequency band), the FBE algorithm is given. At the last the FBE concept is extended from the viewpoint of filtering.
     (3) The vibration principle and failure characteristics of rolling bearings are described. The possibility of rolling bearing condition monitoring for FBE is discussed as well as its robustness and insensitivity to singular points. Then it’s applied to the whole life data of rolling element bearing, and its performance in various stages of degradation is studied. Rolling element bearing fault test and accelerated fatigue life test are presented to support the above theory, and the analysis of experimental data indicates that FBE can be used as an effective complement of the existed condition monitoring indicators.
     (4) The determination of band-pass filter center frequency of resonance demodulation is a difficult problem. Time-frequency based FBE is used to solve this problem. For STFT-based FBE, parameters such as the discrete frequency points, analysis window length, window function are discussed; for wavelet packet transform-based FBE, the wavelet packet decomposition level and wavelet packet functions are discussed. Finally, the two methods are used in the simulation and test rolling element bearing fault diagnosis. The analysis results show that the FBE based on time-frequency analysis is able to accurately determine the resonance of the signal and enhance the effect of band-pass filter and envelope demodulation.
     (5) The method of combining FBE and genetic algorithm is proposed for the optimization of the resonance demodulation band-pass filter design. Minimum FBE as the genetic algorithm optimization goal, by selecting, crossover and mutation operations, genetic algorithm searches the optimal combination of center frequency and bandwidth within the range, then optimal filter is designed. It is proved by the analysis of the simulated signals and different signal to noise ratio experimental data that this method can effectively determine the filter center frequency and bandwidth, thereby improving the signal to noise ratio and the diagnosis of bearing faults.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社, 1999.
    [2]徐敏.设备故障诊断手册[J]. 1998,
    [3]黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[J]. 1996,
    [4] LEE J. Intelligent maintenance systems (IMS) technologies [M]. http://wwwimscenternet/.
    [5] DYER D, STEWART R M. Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis [J]. ASME Journal of Mechanical Design, 1978, 100(2): 22935.
    [6] HONARVAR F, MARTIN H R. New statistical moments for diagnostics of rolling element bearings [J]. Journal of Manufacturing Science and Engineering, 1997, 119(3): 425-32.
    [7] MARTIN H R, HONARVAR F. Application of statistical moments to bearing failure detection [J]. Applied Acoustics, 1995, 44(1): 67-77.
    [8] MCFADDEN P D, SMITH J D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A review [J]. Tribology International, 1984, 17(1): 3-10.
    [9] MCFADDEN P D, TOOZHY M M. Application of synchronous averaging to vibration monitoring of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2000, 14(6): 891-906.
    [10]何正嘉,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社, 2001.
    [11]李伟红,龚卫国,陈伟民, et al.基于小波分析与KPCA的人脸识别方法[J].计算机应用, 2005, 25(10): 2339-41.
    [12]徐金梧,徐科.小波变换在滚动轴承故障诊断中的应用[J].机械工程学报, 1997, 33(4): 50-5.
    [13]王志刚,李友荣,吕勇, et al.基于谐波小波变换的低速滚动轴承故障诊断[J].轴承, 2004, 10): 3.
    [14] DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis [J]. Information Theory, IEEE Transactions on, 1990, 36(5): 961-1005.
    [15]申弢,黄树红,韩宋木, et al.旋转机械振动信号的信息熵特征[J].机械工程学报, 2001, 37(6): 94-8.
    [16]潘明清,周晓军,杨辰龙, et al.基于信息熵的支持向量机机械状态识别[J].传感技术学报, 2005, 18(2): 4.
    [17]卢晓莉,罗键.信息融合熵在机械故障诊断中的应用[J].厦门大学学报(自然科学版), 2006, 45(1): 39-43.
    [18]胡军辉,邵忍平,曾泽君.基于熵的齿轮故障诊断方法研究[J].机械传动, 2007, 31(5): 4.
    [19] ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
    [20] ANTONI J, RANDALL R. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 308-31.
    [21]虞和济,陈长征,张省.基于神经网络的智能诊断[J].振动工程学报, 2000, 13(2): 8.
    [22]于德介,雷慧.用BP神经网络诊断结构破损[J].工程力学, 2001, 18(1): 6.
    [23]张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报, 2002, 36(12): 4.
    [24]王长林,林玮,陈鸿宝, et al.基于支持向量机的机械多故障智能分类方法研究[J].煤矿机械, 2009, 30(10): 3.
    [25]李凌均,张周锁,何正嘉.支持向量机在机械故障诊断中的应用研究[J].计算机工程与应用, 2002, 38(19): 3.
    [26]何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版), 2005, 36(1): 5.
    [27]肖文斌,陈进,周宇, et al.小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J].振动与冲击, 2011, 30(8): 32-5.
    [28]冯长建. HMM动态模式识别理论,方法以及在旋转机械故障诊断中的应用[D].杭州;浙江大学, 2002.
    [29]马伦,康建设,赵强.基于HMM的设备剩余寿命预测框架及其实现[J].计算机仿真, 2010, 27(5): 88-91.
    [30] GE M, DU R, XU Y. Hidden Markov model based fault diagnosis for stamping processes [J]. Mechanical Systems and Signal Processing, 2004, 18(2): 391-408.
    [31] LI X, PARIZEAU M, PLAMONDON R. Training hidden Markov models with multiple observations—A combinatorial method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(4): 371-7.
    [32] OCAK H, LOPARO K A. HMM-based fault detection and diagnosis scheme for rolling element bearings [J]. Journal of Vibration and Acoustics, 2005, 127(4): 299-306.
    [33]刘进明,应怀樵. Fft连续细化分析的富里叶变换法[J].振动工程学报, 1995, 8(2): 162-6.
    [34]伍星,罗德扬.快速频率细化zoom软件的开发研究[J].昆明理工大学学报:理工版, 1997, 22(2): 72-7.
    [35]丁康,谢明,等.基于复解析带通滤波器的复调制细化分析原理和方法[J].振动工程学报, 2001, 14(1): 29-35.
    [36]张文苑,刘国众,周湛学.滚动轴承故障的倒频分析[J].振动.测试与诊断, 2000, 111-6.
    [37]张家凡.振动信号的包络解调分析方法研究及应用[D].武汉;武汉理工大学, 2008.
    [38]邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报, 2000, 28(9): 7.
    [39] RICHARDS M A. HELIUM SPEECH ENHANCEMENT USING THE SHORT-TIME FOURIER TRANSFORM [D]. United States -- Georgia; Georgia Institute of Technology, 1982.
    [40] CHIKKERUR S, CARTWRIGHT A N, GOVINDARAJU V. Fingerprint enhancement using STFT analysis [J]. Pattern Recognition, 2007, 40(1): 198-211.
    [41]朱冰莲,杨磊.心音信号的短时傅立叶变换分析[J].重庆大学学报:自然科学版, 2004, 27(8): 83-5.
    [42]赵凤展,杨仁刚.基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报, 2007, 27(10): 8.
    [43]胡延平,李纲,王展, et al.一种基于DSTFT解调2FSK信号的新方法[J].通信学报, 2000, 21(6): 6.
    [44] BARBAROSSA S, FARINA A. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution [J]. IEE Proceedings, Part F: Radar and Signal Processing, 1992, 139(1): 89-97.
    [45] BOASHASH B, O'SHEA P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra [J]. IEEE Transactions on Signal Processing, 1994, 42(1): 216-20.
    [46] MARTIN W, FLANDRIN P. WIGNER-VILLE SPECTRAL ANALYSIS OF NONSTATIONARY PROCESSES [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, ASSP-33(6): 1461-70.
    [47] BOASHASH B, BLACK P J. EFFICIENT REAL-TIME IMPLEMENTATION OF THE WIGNER-VILLE DISTRIBUTION [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, ASSP-35(11): 1611-8.
    [48]邹红星,戴琼海,李衍达, et al.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性[J].中国科学E辑, 2001, 31(4): 7.
    [49]程发斌,汤宝平,刘文艺.一种抑制维格纳分布交叉项的方法及在故障诊断中应用[J].中国机械工程, 2008, 19(14): 5.
    [50]李雨青,水鹏朗,林英.基于多叠加阈值的抑制WVD交叉项的新方法[J].电子与信息学报, 2006, 28(8): 4.
    [51]孟庆海,孙本大,王红萍.基于非线性滤波的WVD交叉项抑制新方法[M]. 2008年国防科技工业与数学学术研讨会论文集. 2008.
    [52]刘文彬,郭瑜,李之雄.基于Gabor展开的Wigner-Ville分布的交叉项消除[J].振动与冲击, 2008, 27(10): 4.
    [53]何正嘉,孟庆丰.非平衡机械动态信号的时频分析[J].动态分析与测试技术, 1993, 11(3): 5-11.
    [54] LIN J, QU L S. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis [J]. Journal of Sound and Vibration, 2000, 234(1): 135-48.
    [55] TSE P W, PENG Y H, YAM R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—Their effectiveness and flexibilities [J]. Journal of Vibration and Acoustics, 2001, 123(3): 303-10.
    [56] SUN Q, TANG Y. Singularity analysis using continuous wavelet transform for bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2002, 16(6): 1025-41.
    [57] HUANG N E, WU Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies [J]. Reviews of Geophysics, 2008, 46(2):
    [58] PHILLIPS S C, GLEDHILL R J, ESSEX J W, et al. Application of the Hilbert-Huang transform to the analysis of molecular dynamics simulations [J]. Journal of Physical Chemistry A, 2003, 107(24): 4869-76.
    [59] PINES D, SALVINO L. Structural health monitoring using empirical mode decomposition and the Hilbert phase [J]. Journal of Sound and Vibration, 2006, 294(1-2): 97-124.
    [60] HUI L, YUPING Z, HAIQI Z. Wear detection in gear system using Hilbert-Huang transform [J]. Journal of Mechanical Science and Technology, 2006, 20(11): 1781-9.
    [61] BATTISTA B M, KNAPP C, MCGEE T, et al. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data [J]. Geophysics, 2007, 72(2): H29-H37.
    [62]查伟.基于HHT的滚动轴承故障诊断的理论与方法研究[D], 2009.
    [63]刘畅,周川,伍星, et al.基于广义形态滤波和相关系数的Hilbert-Huang变换方法[J].机械科学与技术, 2011, 30(1):
    [64] DWYER R F. USE OF THE KURTOSIS STATISTIC IN THE FREQUENCY DOMAIN AS AN AID IN DETECTING RANDOM SIGNALS [J]. IEEE Journal of Oceanic Engineering, 1984, OE-9(2): 85-92.
    [65] DWYER R F. TECHNIQUE FOR IMPROVING DETECTION AND ESTIMATION OF SIGNALS CONTAMINATED BY UNDER ICE NOISE [J]. Journal of the Acoustical Society of America, 1983, 74(1): 124-30.
    [66] DWYER R F. DETECTION OF NON-GAUSSIAN SIGNALS BY FREQUENCY DOMAIN KURTOSIS ESTIMATION, Boston, Mass, USA, F, 1983 [C]. IEEE.
    [67] ANTONI J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-24.
    [68] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-33.
    [69]石林锁.滚动轴承故障检测的改进包络分析法[J].轴承, 2006, 2): 4.
    [70]苏文胜,王奉涛,张志新, et al. EMD降噪和峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击, 2010, 29(3): 4.
    [71]马川.滚动轴承故障特征提取与应用研究[D], 2009.
    [72]石林锁,张亚洲,米文鹏.基于WVD的峭度法在轴承故障诊断中的应用[J].振动、测试与诊断, 2011, 31(1):
    [73] SHANNON C E. A mathematical theory of communication [J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.
    [74]谢平.故障诊断中信息熵特征提取及融合方法研究[D], 2006.
    [75]胥永刚,何正嘉.分形维数和近似熵用于度量信号复杂性的比较研究[J].振动与冲击, 2003, 22(3): 4.
    [76]吕勇,徐金梧,李友荣.递归图和近似熵在设备故障信号复杂度分析中的应用[J].机械强度, 2006, 28(3): 5.
    [77]苏文胜,王奉涛,朱泓, et al.基于小波包样本熵的滚动轴承故障特征提取[J].振动、测试与诊断, 2011, 31(2):
    [78]李宏坤,张志新,马孝江, et al.基于Hilbert熵的柴油机故障诊断方法研究[J].大连理工大学学报, 2008, 48(2): 5.
    [79]于德介,陈淼峰,程军圣, et al.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击, 2006, 25(2): 4.
    [80] YAN R, GAO R X. Approximate Entropy as a diagnostic tool for machine health monitoring [J]. Mechanical Systems and Signal Processing, 2007, 21(2): 824-39.
    [81] XU Z, XUAN J, SHI T, et al. A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique [J]. Expert Systems with Applications, 2009, 36(9): 11801-7.
    [82] LEI Y G, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm [J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-47.
    [83] LEI Y G, HE Z J, ZI Y Y, et al. Fault diagnosis of rotating machinery based onmultiple ANFIS combination with GAS [J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2280-94.
    [84] YANG B S, KIM K J. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 403-20.
    [85] LEI Y G, HE Z J, ZI Y Y, et al. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique [J]. Mechanical Systems and Signal Processing, 2008, 22(2): 419-35.
    [86]史习智,等.信号处理与软计算[M].北京:高等教育出版社, 2003.
    [87]何正嘉,陈进,王太勇, et al.机械故障诊断理论及应用[M].北京:高等教育出版社, 2010.
    [88] YEN G G, LIN K C. Wavelet packet feature extraction for vibration monitoring [J]. IEEE Transactions on Industrial Electronics, 2000, 47(3): 650-67.
    [89] FAN X F, ZUO M J. Gearbox fault detection using Hilbert and wavelet packet transform [J]. Mechanical Systems and Signal Processing, 2006, 20(4): 966-82.
    [90]林京.信号时频熵及其在齿轮裂纹织别中的应用[J].机械传动, 1998, 22(002): 37-9.
    [91] OTTONELLO C, PAGNAN S. Modified frequency domain kurtosis for signal processing [J]. Electronics Letters, 1994, 30(14): 1117-8.
    [92]罗志增,周炜.基于小波能熵的信号消噪方法[J].计量学报, 2010, 31(5):
    [93]杨立龙.基于峭度和EMD的滚动轴承早期故障检测与诊断增强[M].哈尔滨工业大学. 2009.
    [94]桑林琼,邱明国,王莉, et al.基于统计阈值的脑肿瘤MRI图像的分割方法[J].生物医学工程研究, 2010, 29(4):
    [95]官燕燕,刘昕.基于统计阈值法的印品缺陷检测[J].西安理工大学学报, 2007, 23(4): 4.
    [96]王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术[J].航空动力学报, 2005, 20(4): 7.
    [97]刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击, 2007, 26(1): 4.
    [98]唐德尧.共振解调技术在机械故障诊断中的应用和发展(一) [J].设备管理与维修, 1991, 11): 22-4.
    [99]高立新,王大鹏,刘保华, et al.轴承故障诊断中共振解调技术的应用研究[J].北京工业大学学报, 2007, 33(1): 5.
    [100]曾宇清,王卫东,贺启庸.按频带顺序排列的小波包新算法及应用[J].力学学报, 1998, 30(2): 186-92.
    [101]雷英杰,张善文,李续武. MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社, 2005.
    [102] H.HOLLAND J. Adaptation in natural and artificial system [M]. Ann Arbor: University of Michigan Press, 1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700