高速光纤通信系统中交叉相位调制效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信系统正在向宽带、大容量的方向发展。密集波分复用技术作为目前干线光纤通信应用的最广泛的方式,也得到了长足的发展。入纤功率的增加和信道间隔的减小都导致了以前通常被忽略的非线性效应凸现出来,并成为光纤通信容量进一步增长的限制。本文主要研究密集波分复用系统中的一种重要的非线性效应——交叉相位调制对系统性能的影响及减小其影响的方法,并研究基于光纤中交叉相位调制的波长转换器。
    本文首先介绍了光纤通信系统的仿真算法――分步傅立叶方法及其改进形式,并介绍了本文中主要使用的仿真平台:VPI公司的VPITransmissionmaker(原名PTDS,Photonic Transmission Design Suite)。在第二章研究了单信道40Gbps光纤通信系统的优化设计方案及色散补偿方案对系统性能的影响。
    交叉相位调制是高速多信道光纤通信系统中考虑的一种主要的非线性效应。它与色散共同作用,会导致接收端光脉冲的变形(强度起伏)、光脉冲的时间抖动以及信道的频谱扩展,这些后果都会限制系统的性能。第三章针对交叉相位调制效应进行了研究。首先讨论了在不同色散管理方案下平均场方法的应用,该方法在不降低仿真精度的情况下大大缩减了所需运算量。其次从理论上推导了在色散管理系统中由于交叉相位调制与色散互作用引起的脉冲强度起伏的滤波器模型,根据此模型得到了系统的优化色散补偿方案。通过仿真也研究了波分复用系统中由于交叉相位调制效应引起的幅度抖动从而导致系统性能的恶化;交叉相位调制引起的时间抖动对系统性能也有较大影响,利用拉格朗日变分方法和统计分析的方法,第三章讨论了强色散管理归零码系统中交叉相位调制引起的时间抖动。
    尽管交叉相位调制对系统性能有较大影响,由于其非线性效应的瞬态响应特性,在高速率全光信号处理方面它却有其独特的用处。本文第四章研究了基于色散位移光纤中交叉相位调制效应的波长转换器,得到了这种波长转换器的一些关键参数及这些参数对波长转换器性能的影响。
The fiber-optic systems are developing into wide-band fiber-optic communication systems with huge capacity. As the most widely used method in the backbone communication networks, dense wavelength division multiplexing (DWDM) technology has made remarkable progress. With the increase of the input power and the reduction of the channel separation, nonlinear effects, which has been ignored in the low-bit rate linear systems, has distinguished itself and can not be neglected any more. This work mainly studies the influence of cross phase modulation (XPM) on DWDM systems and schemes to suppress the influence. In addition, all-optical wavelength converter based on XPM in optical fiber is studied.
     First the commonly used algorithms-Split-step Fourier Method and its enhancement are introduced, as well as the simulation platform mainly used in this work-VPITransmissionmaker by VPI (With its former name PTDS, Photonic Transmission Design Suite). Then the optimal design of a single 40Gbps system and the influence of the dispersion compensation on systems are given.
    XPM is the mainly considered nonlinear effects in high-speed WDM systems. With dispersion, XPM can induce intensity fluctuations and timing jitter of the pulses in the receiver. It can also cause the spectral spreading of the channel so that crosstalk is introduced. All these effects put a tight limit on the capacity of the systems. In chapter 3, XPM is intensively studied. First, the mean field method is studied in WDM systems with different dispersion maps. By employing this method the computational complexity is greatly reduced without significant sacrifice of the accuracy of the results. Then the filter model is deduced to describe the intensity fluctuation induced by XPM in dispersion managed systems. According to this model, optimal dispersion management schemes are got. The amplitude fluctuation and according system performance degradation induced by XPM is also studied through numerical simulation. The timing jitter caused by XPM can also have great impact on system performance. By employing Lagrangian variational method and statistical method, the timing jitter caused by XPM in strong dispersion managed RZ systems is studied in chapter 3.
    Although XPM can cause system performance degradation, it finds significant applications in all-optical high speed signal processing, since its response time is very
    
    short. A kind of wavelength converter based on XPM in dispersion shifted fiber(DSF) is studied in chapter 4, where the critical parameters and their influence on the performance of the wavelength converter are studied.
引文
1. 纪越峰,光波分复用系统. 北京:北京邮电大学出版社,1999年.
    2. Kotelly G. Worldwide Fiber-Optic Markets to Expand Unabated, IEEE/OSA Journal of Lightwave Technology ,Dec 1996,13:6-8
    3. 顾畹仪,全光通信网. 北京:北京邮电大学出版社,1999年.
    4. Chang G K. Multiwavelength Reconfigurable WDM/ATM/SONET network testbed, IEEE/OSA Journal of Lightwave Technology, 1996,14:1320~1340
    5. Chidgey P. Multi-Wavelength Transport Networks, IEEE Comm.Mag,1994 23:28~35
    6. Sato Kl. Network Performance and Integrity Enhancement with Optical Path Layer Technologies, IEEE JSAC, 1994,12(1): 159~170
    7. ITU-T Rec.G.957, Optical Interfaces for Placement and Systems Relating to the Synchronous Digital Hierarchy, 1996
    8. Daniel J. Blumenthal. Bengt-Erik Olsson, Giammarco Rossi et al. All-Optical Label Swapping Networks and Technologies. Journal of Lightwave Technology, 2000,18(12):2058~2075
    9. N.Le Sauze, Optical packet switched metro networks. ECOC2002.
    10. 王晟,李乐民. WDM网络及其对IP业务的支持.中国通信,1999(8):19~24
    11. http://www.ccidnet.com/html/focus/trend/2000/09/18/73_1029.html
    12. http://www.nec.co.jp/press/en/0103/2201.html
    13. www.c-fol.com
    14. www.pcm30.com
    15. T.Ito. 6.4Tb/s(160×40Gb/s)WDM transmission experiment with 0.8 bit/s/Hz spectral effciency,ECOC'2000,PD1.1.
    16. Farbert et al. 7Tb/s(176×40Gb/s)bidirectional interleaved transmission with 50 GHz channel spacing,ECOC'2000,PD1.3.
    17. www.light-wave.com
    18. Kuriko Miyake.NTT sends 10T down a single fiber, www.nwfusion.com
    
    
    19. Yochay Danziger, Doug Askegard. High-order Mode Fiber: An Innovative Approach to Chromatic Dispersion Management that Enables Optical Networking in Long-haul High-speed Transmission Systems. Optical Network Magazine, 2000,2(1).
    20. A.R.Chraplyvy, Limitations on Lightwave Communications Imposed by Optical-Fiber Nonlinearities. Journal of Lightwave Technology,1990,8(10).
    21. A.Hasegawa, F.F.Tappert. Transmission of stationary non-linear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Applied Physics Letters 1973,23:142~144.
    22. Bengt-Erik Olsson, et al. A simple and Robust 40-Gb/s Wavelength Converter Using Fiber Cross-Phase Modulation and Optical Filtering. Photonics Technology Letters,2000,12(7):846~848
    23. H.K.Lee, All-optical format conversion from NRZ to RZ signals using a walk-off balanced nonlinear fiber loop mirror. Elecronic. Letters, 1997,33:791-792,
    24. 金耀辉.波长路由光联网中的传输损伤研究:[博士学位论文]. 上海:上海交通大学 2000
    25. Senfar Wen, Tsung-Kun Lin, Ultralong Lightwave Systems with Incomplete Dispersion Compensations.Jounrnal of Lightwave Technology,2001,19(4):471~479
    26. Beate Konrad and Klaus Petermann.Optimum Fiber Dispersion in High-Speed TDM systems. IEEE Phonon.Technol.Lett.,2001,13(4):299~301.
    27. Akihide Sano et al.A 40-Gb/s/ch WDM Transmission with SPM/XPM Suppression Through Prechirping and Dispersion Management Journal of Lightwave Technology.,2000,18(11):1519~1527.
    28. G.P.Agrawal, Nonlinear Fiber Optics,2nd ed. New York: Academic,1995
    29. PTDS user manual,Virtual Photnics Incorporation.
    30. T.Ito.6.4Tb/s(160×40Gb/s)WDM transmission experiment with 0.8 bit/s/Hz spectral effciency,ECOC'2000,PD1.1.
    31. Fariborz Mousavi Madani. Design Theory of Long-Distance WDM Dispersion-Managed Transmission System. Journal of Lightwave Thchnology,17(8):1326-1335.
    
    
    32. C.J.Anderson and J.A.Lyle.Technique for Evaluating System Performance Using Q in Numerical Simulations Exhibiting Intersymbol Interference. Electronics Letters, 1994,30(1):71-72.
    33. D.Marcuse. Effect of fiber nonlinearity on Long-distance Transmission. Journal of Lightwave Technology,1991,9(2):121-128.
    34. D.Bruer and K. Petermann.Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems. IEEE PhotonicTechnologyLetters,1997,9(4):398-400.
    35. C.Caspar et al.10Gbit/s NRZ/RZ transmission over 2000 km standard fiber with more than 100 km amplifier spacing. Proc.ECOC'97,1997.
    36. A.R.Chraplyvy,D.Marcuse and P.S.Henry. Carrier-induced phase noise in angle-modulated optical-fiber systems. Journal of Lightwave Technology, 1984,2(1): 6-10.
    37. Jianmin Wang and Klaus Petermann. Small signal Analysis for dispersive optical fiber communication systems. Journal of Lightwave Technology, 1992,10(1):96-100.
    38. T.Yu. A Mean Field Approach for Simulating Wavelength-Division Multiplexed Systems. IEEE Photonics Technology Letters, 2000,12(4):443-445.
    39. D.Marcus, A.R.Chraplyvy,and R.W.Tkach. Dependence of Cross-phase modulation on channel number in fiber WDM systems. Journal of Lightwave Technology, 1994,12(5): 885-890.
    40. R.J.Nuyts. Dispersion equalization of a 10Gb/s repeatered transmission system using dispersion compensating fibers. IEEE Journal of Lightwave Technology, 1997,15(1): 31-42.
    41. S.Bigo ,A. Bertaina. WDM transmission experiments at 32×10Gb/s over nonzero dispersion-shifted fiber and standard single-mode fiber. IEEE Photonics Technology Letters, 1999,11(4):1316-1318.
    42. Senfar Wen and Tsung-Kun Lin. Ultralong Lightwave Systems with Incomplete Dispersion Compensations. Journal of Lightwave Technology, 2001,19(4):471-479.
    43. Ting-Kuang Chiang. Cross-Phase Modulation in Dispersive Fibers: Theoretical and Experimental Investigation of the Impact of Modulation Frequency.IEEE Photonics Technology Letters, 1994,6(6):733-736.
    
    
    44. Rongqing Hui,Kenneth R.Demarest, Christopher T.Allen. Cross-Phase Modulation in Multispan WDM Optical Fiber Systems. Journal of Lightwave Technology. 1999,17(6):1018-1026.
    45. Giovanni Bellotti, Matteo Varani, Cristian Francia et al. Intensity Distortion Induced by Cross-Phase Modulation and Chromatic Dispersion in Optical-Fiber Transmissions with Dispersion Compensation. IEEE Photonics Technology Letters,1998,10(12):1745-1747.
    46. R.I.Killey,H.J.Thiele, V.Mikhailov et al. Prediction of Transmission Penalties due to Cross-Phase Modulation in WDM Systems Using a Simplified Technique. IEEE Phontonics Technology Letters, 2000,12(7):804-806.
    47. H.J.Thiele, R.I.Killey, P.Bayvel.Investigation of XPM Distortion in Transmission over Installed Fiber.IEEE Photonics Technology Letters, 2000,12(6):669-671.
    48. M.Shtaif. Analytical description of cross-phase modulation in dispersive optical fibers. Optics Letters, 1998,23(15):1191-1193,.
    49. V.S.Grigoryan. Efficient approach for modeling collision-induced timing jitter in WDM Return-to-Zero dispersion-managed systems. Journal of Lightwave Technology,2000,18(8):1148-1154.
    50. V.Mikhailov. Limitation to WDM transmission distance due to cross-phase modulation induced spectral broadening in dispersion compensated standard fiber systems. IEEE Photonics Technology Letters,1999,11(8):994-996.
    51. M.Eiselt. Contribution of timing jitter and amplitude distortion to XPM system penalty in WDM systems. IEEE Photonics Technology Letters, 1999,11(7):748-750.
    52. H.J.Thiele, R.I.Killey and P.Bayvel. Influence of fiber dispersion and bit rate on cross-phase modulation induced distortion in amplified fiber links .Electronics Letters, 1998,34(10):2050-2051.
    53. H.sugahara, H.Kato, and Y.Kodama. Maximum reduction of collision induced frequency shift in soliton-WDM systems with dispersion compensation. Electronic Letters, 1997,33(5):065-1066.
    54. T.Hirooka and A.Hasegawa. Chirped soliton interaction in strongly dispersion managed WDM systems. Optics Letters, 1998,23(5):768-770.
    
    
    55. H.Sugahara, T.Inoue, A.Maruta et al., Optima dispersion management for WDM RZ optical pulse transmission. Electronic Letters, 1998,34:902-904.
    56. H.Sugahara, A.Maruta and Y.Kodama, Optmal allocation of amplifier in a dispersion-managed line for a wavelength-division multiplexed systems with strong dispersion management. Optics Letters, 1999,23:1354-1356.
    57. Mark J.Ablowitz, Gino Biondini, Sarbarish Chakravarty et al. On timing jitter in Wavelength-division multiplexed soliton systems. Optics Communications,1998(5):305-318.
    58. S.K.Turitsyn, I. Gabitov and E.W.Laedke et al. Variational approach to optical pulse propagation in dispersion compensated transmission systems. Optics Communications, 1998(5):117-135.
    59. R. Ludwig. 10 GHz all-optical clock recovery using a mode locked semiconductor laser in a 40 Gb/s, 100 km transmission experiment。Proc. OFC'96, Mar. 1996, pp. 131-132.
    60. X.Zhou, Chao Lu, Ping Shum et al. A Performance Analysis of an All-Optical Clock Extraction Circuit Based on Fabry-Perot Filter. Journal of Lightwave Technology, 2001,9(5):603-613.
    61. Awad E S, Cho P S, Richardson C. Optical 3R regeneration with all-optical timing extraction and simultaneous wavelength conversion using a single Electro-Absorption Modulator. 6.3.2, ECOC2002.
    62. Christophe Gosset and Guang-Hua Duan, Extinction Ratio Improvement and Wavelength Conversion Based on Four-Wave Mixing in a Semiconductor Optical Amplifier. Photonics Technology Letters, 2001,13(2):139-141.
    63. 贾东方, 超高速OTDM进展及Tbit/s可行性分析。电子产品世界,2001.9A,pp49-51。
    64. H.J.S.Dorren, G.D.Khoe, D.Lenstra. All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement. Optics Communications, 2002(5):247-252.
    65. J.Yu and P.Jeppesen. Simultaneous all-optical demultiplexing and regeneration of channel from 40Gb/s OTDM signals based on SPM and XPM in dispersion-shifted fibre. IEE Electronics Letters , 2000,36(10):1798-1800.
    
    
    66. M. Heid , S. L. Jansen , S. Sp?lter et al. 160-Gbit/s demultiplexing to base rates of 10 and 40 Gbit/s with a monolithically integrated SOA-Mach-Zehnder interferometer. 8.4.3,ECOC2002.
    67. K. Kikuchi Y. Fukuchi A. Suzuki et al. Ultrafast operation of optical time-division demultiplexer using quasiphase matched LiNbO3 device.8.4.2, ECOC2002.
    68. Peter ?hlén. Wavelength Dependence and Power Requirements of a Wavelength Converter Based on XPM in a Dispersion-Shifted Optical Fiber. IEEE Photonics Technology Letters,2000,12(5):522~524
    69. 张宏斌,邱昆,李中桂。基于SOA-XGM的全光波长转换器研究。光子学报,2002(3)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700