孕哺期膳食脂肪酸水平对母乳与子代血脂肪酸组成及生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     通过比较孕哺期膳食脂肪酸含量差异,了解膳食脂肪酸水平对于母乳以及子代血浆磷脂中脂肪酸组成的影响;并通过对子代生长与发育情况的监测,进而探讨母乳以及血浆磷脂中脂肪酸水平对于婴幼儿生长发育的影响作用。
     【方法】
     研究选取两种不同膳食模式地区:江苏省常州市,膳食模式为普通中国南方膳食模式;浙江省温州市,膳食模式为海洋食品消费模式。分别在两地对入组孕母进行孕晚期(孕28周以后)7日前瞻实时膳食调查,根据《2002中国食物成分数据》计算膳食脂肪酸含量;随访过程中,在胎儿娩出时采集脐血,5天、42天及1岁时采集婴儿静脉血,并在5天、42天、4月时留取母乳样本,采用高效毛细气相色谱分析技术检测母乳及婴儿血浆磷脂中脂肪酸浓度。在常州地区,在胎儿娩出后的4个月内对哺乳期母亲再次进行7日膳食调查;并在出生、42天、2月、4月、6月、12月及18月时对这些小儿进行体重、身长、头围等生长指标的测量,6月、12月时根据Gesell发育量表进行认知发育评估。
     【结果】
     1.不同膳食模式地区膳食脂肪酸摄入量差异及对母初乳与脐血血浆磷脂中脂肪酸组成的影响
     ①常州与温州两地孕母孕晚期摄入的膳食种类存在差异,温州地区孕母海洋食品摄入远大于常州地区,而植物油摄入则较低(P<0.001)。
     ②常州地区孕母膳食脂肪酸中亚油酸(LA)和α-亚麻酸(ALA)含量均明显高于温州地区(P<0.05);而二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)含量则都明显低于温州地区(P<0.01);而花生四稀酸(AA)含量两地未见显著差异(P>0.05)。
     ③常州地区5天母初乳LA及ALA含量较温州地区高(P<0.001),而DHA含量较低(P<0.05);两地5天母初乳AA及EPA含量差异无统计学意义(P>0.05)。
     ④常州地区脐血血浆磷脂LA、ALA及AA含量较温州地区高(P<0.05),但EPA含量较低(P<0.001);两地脐血血浆磷脂DHA含量无显著差异(P>0.05)。
     2.孕晚期和哺乳期膳食脂肪酸摄入量差异及对母乳与小儿血浆磷脂中脂肪酸组成的影响
     常州地区母亲孕晚期与哺乳期膳食摄入总量无显著差异,哺乳期母亲膳食摄入的海鲜类食品较孕晚期下降而蛋类、禽肉类及河鲜类食品则有增加(P<0.05)。哺乳期膳食脂肪酸中AA含量较孕晚期显著增高(P<0.001),而LA、ALA、EPA以及DHA含量无显著差异(P>0.05)。膳食脂肪酸的这种变化与同一时期的母乳及婴儿血浆磷脂中脂肪酸组成的变化有较大差异。成熟乳与初乳相比,其中的LA、ALA含量明显增高(P<0.05),AA、DHA含量明显下降(P<0.001),而EPA含量无显著差异(P>0.05)。42天血中LA、ALA、DHA含量较5天血增高而AA含量下降(P<0.001),EPA含量无显著差异(P>0.05)。
     3.母乳及脐血血浆磷脂中脂肪酸水平与婴幼儿生长的关系
     ①婴儿出生体重与脐血AA/DHA以及n-6/n-3比例呈负相关(P<0.05)。
     ②脐血血浆磷脂LA及n-6/n-3比例与2、4、6月龄婴儿身长Z分值呈负相关(P<0.05):AA/DHA比例则与42天、2及4月龄婴幼儿身长Z分值呈负相关(P<0.05);而各时点的体重、头围及生长速率未发现与母乳或血浆磷脂中相应脂肪酸水平相关(P>0.05)。
     ③小儿血浆磷脂脂肪酸水平与BMI Z分值:
     ·脐血血浆磷脂DHA及n-3 PUFAs与6、12、1 8月龄婴儿BMI Z分值呈负相关;n-6/n-3比例则与其呈正相关(P<0.05)。
     ·5天血血浆磷脂DHA及n-3 PUFAs与12月龄婴儿BMI Z分值呈负相关,n-6/n-3比例则与其呈正相关(P<0.01)。
     ·42天血浆磷脂DHA及n-3 PUFAs与2、4、6、12、18月龄婴儿BMI Z分值呈负相关;而n-6/n-3比例则与其呈正相关(P<0.01)。
     4.母乳及脐血血浆磷脂中脂肪酸水平与婴儿发育的关系
     母乳以及血浆中的部分脂肪酸与婴儿Gesell DQ值存在相关关系,但这些相关并不具有一致结果。
     【结论】
     1.膳食模式不同的两个地区,孕晚期孕母膳食脂肪酸摄入量存在差异,并且这种差异可以影响母初乳以及脐血血浆磷脂脂肪酸组成,从而对胎儿及婴幼儿的生长发育产生影响。
     2.在同一膳食模式地区,从孕期到哺乳期,母亲膳食中脂肪酸摄入结构仅有较小变化,具有一定稳定性但也有其特殊性。而同期母乳及婴儿血浆磷脂脂肪酸变化与膳食存在较大不一致。这种变化可能更是一种适应性改变。
     3.脐血血浆磷脂LA、AA/DHA及n-6/n-3比例均与4、6月龄婴儿身长Z分值呈负相关;可以认为脐血血浆磷脂中n-6 PUFAs在婴儿早期的某一段时间内可能会对婴儿身长有一定负面影响,但其长期效应仍不能确定。
     4.婴儿早期血浆磷脂n-3 PUFAs水平可能对婴儿晚期生长具有显著影响:早期血浆磷脂中n-3 PUFAs(主要是其中的DHA)水平越高,则其在婴儿晚期可以得到更为理想的体重指数(BMI)。
     5.仅从南方膳食模式地区并未发现母乳及血浆部分脂肪酸与婴儿认知发育的相关关系,尚有待与海洋膳食模式地区数据的比较。
Objective
     To investigate the influence of maternal fatty acid(FA) intake during pregnancy and lactation on FA composition of breast milk and infants' plasma phospholipids;and the relationship between FA concentration of breast milk or infants' blood and infants' growth and development in their first 1.5 years.
     Methods
     Two districts with different dietary patterns were selected for study:one was Changzhou of Jiangshu province,which was an inland city with traditional Chinese southern dietary pattern;the other city was Wenzhou of Zhejiang provice,which was a coastal city with seafood dietary pattern.A 7-day dietary record was completed by women in their last trimester of pregnancy from these two places respectively.The FA composition in maternal diet was calculated using the 2002 Chinese food composition database.Umbilical cord blood samples were obtained when the umbilical cord was cut off at delivery.Blood samples from day 5,day 42 and month 12 of the infants were obtained by venipuncture.Breast milk samples were collected on postnatal day 5, day 42 and month 4.The FA composition of blood and breast milk was analyzed by capillary gas-liquid chromatography.In Changzhou,another 7-day dietary record was conducted by lactation mothers within 4 months after delivery.Anthropometric indices like weight,height and head circumference were measured at birth,day 42 and month 2,4,6,12,18.Cognitive assessment was estimated at 6 months and 1 year of age,using Gesell Developmental Diagnosis.
     Results
     1.The effect of different dietary patterns on maternal fatty acid intake and the fatty acid profile of colostrum and umbilical cord blood plasma phospholipids
     ①.There were significant differences in maternal dietary intake of LCPUFAs in these two areas,largely due to the higher intake of sea food and lower vegetable oil intake in Wenzhou(P<0.001).
     ②.Among mothers in Changzhou,linoleic acid(LA) andα-linolenic acid(ALA) intakes were higher(P<0.05),while docosahexaenoic acid(DHA) and eicosapentaenoic acid(EPA) intakes were lower than mothers in Wenzhou(P<0.01).There were no significant differences of arachidonic acid(AA) in maternal diet between these two areas(P>0.05).
     ③.The LA and ALA contents in colostrum of Changzhou were significantly higher than in that of Wenzhou(P<0.001),while DHA content was significantly lower (P<0.05).No significant differences were observed between sites in milk AA and EPA content(P>0.05).
     ④.The LA,ALA and AA contents in umbilical cord blood plasma phospholipids of Changzhou were significantly higher than in that of Wenzhou(P<0.05),while EPA content was significantly lower(P<0.001).There were no significant differences of DHA content between sites in cord blood plasma phospholipids(P>0.05).
     2.The effect of maternal FA intake between pregnancy and lactation on FA composition of breast milk and infants' plasma phospholipids
     In Changzhou,there were no significant differences of total maternal food intake between pregnancy and lactation.Among lactation mothers,the sea food intake decreased,but the intakes of eggs,white meats and freshwater food increased compared with pregnant women(P<0.05).During lactation,the intake of AA significant increased(P<0.001),but there were no significant differences of LA,ALA, EPA and DHA intakes between these two periods(P>0.05).The changes of maternal dietary FA intake were inconsistent with those of FA composition in breast milk and infants' plasma phospholipids.The LA and ALA contents were higher(P<0.05) while the AA and DHA contents were lower(P<0.001) in breast milk on day 42 than colostrums,but no significant differences were observed between milks in EPA content(P>0.05).The LA,ALA and DHA contents in plasma phospholipids on day 42 were higher(P<0.001),but the AA content was lower(P<0.001) than in day 5 plasma. Meanwhile,there were no significant differences between day 5 and day 42 plasma in EPA content(P>0.05).
     3.The relationship between FA status of breast milk or infants' blood and infants' growth in their first 1.5 years
     ①.The birth weight of infants in Changzhou correlated negatively with the AA/DHA and n-6/n-3 ratio in cord blood plasma phospholipids(P<0.05).
     ②.The LA content and n-6/n-3 ratio in cord blood plasma phospholipids was inversely associated with the infants' length Z scores in 2,4 and 6 months of age(P<0.05).Meanwhile,the AA/DHA ratio in cord blood was inversely associated with the infants' length Z scores in 42 days,4 and 6 months of age(P<0.05).There were no significant correlations between FA status of breast milk or blood and the infants' weight,head circumference or growth rate at any age beyond 1.5 years(P>0.05).
     ③.The relationship between FA status of infants' blood plasma phospholipids and their BMI Z scores
     ●The DHA and n-3 PUFAs contents in cord blood plasma phospholipids were inversely associated with the infants' BMI Z scores in 6,12 and 18 months of age,while the n-6/n-3 ratio was positively associated with them(P<0.05).
     ●The DHA and n-3 PUFAs contents in plasma phospholipids on day 5 were inversely associated with the infants' BMI Z scores in 12 months of age,while the n-6/n-3 ratio was positively associated with them(P<0.01).
     ●The DHA and n-3 PUFAs contents in plasma phospholipids on day 42 were inversely associated with the infants' BMI Z scores in 2,4,6,12 and 18 months of age,while the n-6/n-3 ratio was positively associated with them(P<0.01).
     4.The relationship between FA status of breast milk or infants' blood and infants' cognitive development in their first one year of life
     Some FA contents of breast milk and blood plasma phospholipids were associated with infants' Gesell DQ(P<0.05).But there were no consistent results of the relationship between FA status and infants' cognitive development here.
     Conclusion
     1.There were significant differences in maternal intakes of FA depending on their dietary habits and these dietary differences appear to influence the FA composition of colostrum and umbilical cord blood,which could finally impact the infants' growth and development.
     2.The maternal dietary FA intakes from pregnancy to lactation changed very little in mothers with the same dietary habits.The FA intakes were stable,but also with differences.But the FA composition in breast milk and infants' plasma phospholipids between these two periods was not consistent with the dietary FA intakes.So,the FA composition in breast milk and infants' plasma phospholipids may change with adaptive situations.
     3.The LA content,AA/DHA and n-6/n-3 ratios in cord blood plasma phospholipids were inversely associated with the infants' length Z scores in 4 and 6 months of age. So we think the n-6 PUFAs content in cord blood would have an inverse effect on infants' length during early infancy,but its long term effect cannot be ensured now.
     4.The n-3 PUFAs content in plasma phospholipids during early infancy may have great impact on infants' growth later.Highlight the blood n-3 PUFAs content(especially DHA) in early infancy may help the infants to achieve optimal body mass index (BMI) later.
     5.No exact relationships between FA status in breast milk or infants' blood plasma phospholipids and infants' cognitive development during the first year have been confirmed in the population with traditional Chinese southern dietary pattern. Further results will be made after being compared to the population with seafood dietary pattern.
引文
[1].Lucas A,Fewtrell MS,Cole TJ.Fetal origins of adult disease-the hypothesis revisited[J].BMJ.1999;319(7204):245-9.
    [2].Lucas A.Programming by early nutrition in man[J].Ciba Found Syrup.1991;156:38-50.
    [3].周韫珍.脂类LA].见:葛可佑.中国营养科学全书[M].北京:人民卫生出版社,2004:51-67.
    [4].Lapillonne A,Clarke SD,Heird WC.Plausible mechanisms for effects of long-chain polyunsaturated fatty acids on growth[J].J Pediatr.2003;143(4Suppl):S9-16.
    [5].Uauy R,Hoffman DR,Peirano P,et al.Essential fatty acids in visual and brain development[J].Lipids.2001;36(9):885-95.
    [6].Dutta-Roy AK.Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta[J].Am J Clin Nutr.2000;71(Suppl):315S-22S.
    [7].Salem NJ,Wegher B,Mena P,et al.Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants[J].Proc Natl Acad Sci U S A.1996;93(1):49-54.
    [8].Innis SM.Essential fatty acids in growth and development[J].Prog Lipid Res.1991;30(1):39-103.
    [9].De Vriese SR,Dhont M,Christophe AB.FA composition of cholesteryl esters and phospholipids in maternal plasma during pregnancy and at delivery and in cord plasma at birth[J].Lipids.2003;38(1):1-7.
    [10].Amusquivar E,Herrera E.Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat[J].Biol Neonate.2003;83(2):136-45.
    [11].De Vriese SR,Matthys C,De Henauw S,et al.Maternal and umbilical fatty acid status in relation to maternal diet[J].Prostaglandins Leukot Essent Fatty Acids.2002;67(6):389-96.
    [12].Kurlak LO,Stephenson TJ.Plausible explanations for effects of long chain polyunsaturated fatty acids(LCPUFA) on neonates[J].Arch Dis Child Fetal Neonatal Ed.1999;80(2):F 148-54.
    [13].World Health Organization,United Nations International Children's Emergency Fund.Global Strategy for Infant and Young Child Feeding.2003.
    [14].Boris J,Jensen B,Salvig JD,et al.A randomized controlled trial of the effect of fish oil supplementation in late pregnancy and early lactation on the n-3 fatty acid content in human breast milk[J].Lipids,2004,39(12):1191-1196.
    [15].Sanders TA,Reddy S.The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant[J].J Pediatr.1992;120(4):S71-7.
    [16].Olafsdottir AS,Thorsdottir I,Wagner KH,et al.Polyunsaturated fatty acids in the diet and breast milk of lactating icelandic women with traditional fish and cod liver oil consumption[J].Ann Nutr Metab.2006;50(3):270-6.
    [17].Chen ZY,Kwan KY,Tong KK,et al.Breast milk fatty acid composition:a comparative study between Hong Kong and Chongqing Chinese[J].Lipids,1997,32:(10):1061-1067.
    [18].Xiang M,Harbige LS,Zetterstrom R.Long-chain polyunsaturated fatty acids in Chinese and Swedish mothers:diet,breast milk and infant growth[J].Acta Paediatr.2005;94(11):1543-9.
    [19].Rocquelin G,Tapsoba S,Dop MC,Mbemba F,Traissac P,Martin-Prevel Y.Lipid content and essential fatty acid(EFA) composition of mature Congolese breast milk are influenced by mothers' nutritional status:impact on infants' EFA supply[J].Eur J Clin Nutr.1998 Mar;52(3):164-71.
    [20].Carlson SE,Ford A J,Werkman SH,et al.Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin[J].Pediatr Res.1996;39(5):882-8.
    [21].Hoffman DR,Birch EE,Birch DG,et al.Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development[J].J Pediatr Gastroenterol Nutr.2000;31(5):540-53.
    [22].Auestad N,Halter R,Hall RT,et al.Growth and development in term infants fed long-chain polyunsaturated fatty acids:a double-masked,randomized,parallel,prospective,multivariate study[J].Pediatrics 2001;108:372-81.
    [23].贲晓明,赵卫华,程锐等.配方奶添加长链多聚不饱和脂肪酸对足月儿生长发育的影响[J].中国儿童保健杂志,2004,12(3):197-200.
    [24].Farquharson J,Jamieson EC,Abbasi KA,Patrick W J,Logan RW,Cockburn F.Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex[J].Arch Dis Child.1995;72(3):198-203.
    [25].Makrides M,Neumann MA,Byard RW,et al.Fatty acid composition of brain,retina,and erythrocytes in breast- and formula-fed infants[J].Am J Clin Nutr. 1994;60(2): 189-94.
    [26]. Carlson SE, Werkman SH, Peeples JM, et al. Arachidonic acid status correlates with first year growth in preterm infants[J]. Proc Natl Acad Sci USA. 1993;90(3):1073-7.
    [27]. SanGiovanni JP, Parra-Cabrera S, Colditz GA, et al. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants[J]. Pediatrics. 2000; 105(6): 1292-8.
    [28]. Fleith M, Clandinin MT. Dietary PUFA for preterm and term infants: review of clinical studies[J]. Crit Rev Food Sci Nutr. 2005;45(3):205-29.
    [29]. O'Connor DL, Hall R, Adamkin D, et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial[J]. Pediatrics. 2001;108(2):359-71.
    [30]. Makrides M, Neumann M, Simmer K, et al. Are long-chain polyunsaturated fatty acids essential nutrients in infancy[J]? Lancet. 1995;345(8963): 1463-8.
    [31]. Hoffman DR, Birch EE, Castenade YS, et al: Visual function in breast-fed term infants weaned to formula with or without long-chain polyunsaturates at 4 to 6 months: A randomized clinical trial[J]. J Pediatr 2003; 142:669-677.
    [32]. Birch EE, Castaneda YS, Wheaton DH, et al. Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo[J]. Am J Clin Nutr. 2005;81(4):871-9.
    [33]. Willatts P, Forsyth JS, DiModugno MK, et al: Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age[J]. Lancet 1998;352:688-691.
    [34]. Birch EE, Garfield S, Hoffman DR, et al. A randomized controlled trial of early dietary supply of LCPUFA and mental development in term infants[J]. Dev Med Child Neurol. 2000;42:174-81.
    [35]. Lucas A, Stafford M, Morley R, et al: Efficacy and safety of long-chain poly-unsaturated fatty acid supplementation of infant-formula milk: a randomised trial[J]. Lancet 1999;354:1948-1954.
    [36]. Makrides M, Neumann MA, Simmer K, Gibson RA. A critical appraisal of the role of dietary long-chain polyunsaturated fatty acids on neural indices of term infants: a randomized, controlled trial[J]. Pediatrics 2000; 105:32- 8.
    [37]. Auestad N, Halter R, Hall RT, et al. Growth and development in term infants fed long-chain polyunsaturated fatty acids:a double-masked,randomized,parallel,prospective,multivariate study[J].Pediatrics 2001;108:372-81.
    [38].Auestad N,Scott DT,Janowsky JS,et al:Visual,cognitive and language assessments at 39 months:a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age[J].Pediatrics 2003;112:e177-183.
    [39].Bouwstra H,Dijck-Brouwer DA,Wildeman JA,et al.Long-chain polyunsaturated fatty acids have a positive effect on the quality of general movements of healthy term infants[J].Am J Clin Nutr.2003;78(2):313-8.
    [40].Bouwstra H,Dijck-Brouwer DAJ,Boehm G,et al:Long-chain polyunsaturated fatty acids and neurological developmental outcome at 18 months in healthy term infants[J].Acta Paediatr 2005;94:26-32.
    [41].Birch EE,Garfield S,Castaneda Y,et al.Visual acuity and cognitive outcomes at 4 years of age in a double-blind,randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula[J].Early Hum Dev.2007;83(5):279-84.
    [42].Birch EE,Hoffman DR,Uauy R,et al.Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants[J].Pediatr Res.1998;44(2):201-9.
    [43].Lauritzen L,Hoppe C,Straarup EM,et al.Maternal fish oil supplementation in lactation and growth during the first 2.5 years of life[J].Pediatr Res.2005;58(2):235-42.
    [44].Decsi T,Molnár D,Koletzko B.Long-chain polyunsaturated fatty acids in plasma lipids of obese children[J].Lipids.1996;31(3):305-11.
    [45].Klein-Platat C,Drai J,Oujaa M,et al.Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents[J].Am J Clin Nutr.2005;82(6):1178-84.
    [46].Karlsson M,Marild S,Brandberg J,et al.Serum phospholipid fatty acids,adipose tissue,and metabolic markers in obese adolescents[J].Obesity(Silver Spring).2006;14(11):1931-9.
    [47].Scaglioni S,Verduci E,Salvioni M,et al.Plasma long-chain fatty acids and the degree of obesity in Italian children[J].Acta Paediatr.2006;95(8):964-9.
    [48].Okada T,Sato NF,Kuromori Y,et al.Characteristics of obese children with low content of arachidonic acid in plasma lipids[J].Pediatr Int.2007;49(4):437-42.
    [49].郑东旖,樊超男,朱海燕等.肥胖儿童血浆长链脂肪酸的变化[J].中国儿童保 健杂志.2007,15(3):224-226.
    [50].徐秀,郭志平,王卫平.上海地区0-6岁儿童体块指数的参考值[J].中国儿童保健杂志.2003;11(4):237-239.
    [51].Fidler N,Koletzko B.The fatty acid composition of human colostrums[J].Eur J Nutr.2000;39(1):31-7.
    [52].Demmelmair H,Baumheuer M,Koletzko B,et al.Metabolism of U13C-labeled linoleic acid in lactating women[J].J Lipid Res.1998;39(7):1389-96.
    [53].Prado MD,Villalpando S,Elizondo A,et al.Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet[J].Am J Clin Nutr,2001,74:242-247.
    [54].Villalpando S,Del Prado M,Lance A,et al.[13C]linoleic acid oxidation and transfer into milk in stunted lactating women with contrasting body mass indexes[J].Am J Clin Nutr.2001;74(6):827-32
    [55].Yuhas R,Pramuk K,Lien EL.Human milk fatty acid composition from nine countries varies most in DHA[J].Lipids.2006;41(9):851-8.
    [56].Fidler N,Sauerwald T,Poh1 A,Demmelmair H,Koletzko B.Docosahexaenoic acid transfer into human milk after dietary supplementation:a randomized clinical trial[J].J Lipid Res.2000;41(9):1376-83
    [57].Marin MC,Sanjurjo A,Rodrigo MA,de Alaniz MJ.Long-chain polyunsaturated fatty acids in breast milk in La Plata,Argentina:relationship with maternal nutritional status[J].Prostaglandins Leukot Essent Fatty Acids.2005;73(5):355-60.
    [58].Reddy S,Sanders TA,Obeid O.The influence of maternal vegetarian diet on essential fatty acid status of the newborn[J].Eur J Clin Nutr.1994;48(5):358-68.
    [59].Minda H,Larque E,Koletzko B,et al.Systematic review of fatty acid composition of plasma phospholipids of venous cord blood in full-term infants[J].Eur J Nutr.2002;41(3):125-31.
    [60].Lucas M,Dewailly E,Muckle G,et al.Gestational age and birth weight in relation to n-3 fatty acids among Inuit(Canada)[J].Lipids.2004;39(7):617-26.
    [61].Pankiewicz E,Cretti A,Ronin-Walknowska E,et al.Maternal adipose tissue,maternal and cord blood essential fatty acids and their long-chain polyunsaturated derivatives composition after elective caesarean section[J].Early Hum Dev.2007;83(7):459-64.
    [62].Campbell FM,Gordon MJ,Dutta-Roy AK.Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids[J].Life Sci.1998;63(4):235-40.
    [63].Haggarty P,Ashton J,Joynson M,et al.Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta[J].Biol Neonate.1999;75(6):350-9.
    [64].李远芳,廖东霞,苗丽曼等.广州地区孕中晚期、哺乳期妇女膳食调查分析[J].中国初级卫生保健,2004,18(2):27-28.
    [65].Sala-Vila A,Castellote AI,Rodriguez-Palmero M,et al.Lipid composition in human breast milk from Granada(Spain):changes during lactation.Nutrition.2005;21(4):467-73.
    [66].Genzel-Boroviczény O,Wahle J,Koletzko B.Fatty acid composition of human milk during the 1st month after term and preterm delivery.Eur J Pediatr.1997;156(2):142-7.
    [67].Marangoni F,Agostoni C,Lammardo AM,et al.Polyunsaturated fatty acid concentrations in human hindmilk are stable throughout 12-months of lactation and provide a sustained intake to the infant during exclusive breastfeeding:an Italian study.Br J Nutr.2000;84(1):103-9.
    [68]Koletzko B,Rodriguez-Palmero M,Demmelmair H,et al.Physiological aspects of human milk lipids.Early Hum Dev.2001;65 Suppl:S3-S18.
    [69].Peng YM,Zhang TY,Wang Q,et al.Fatty acid composition in breast milk and serum phospholipids of healthy term Chinese infants during first 6 weeks of life[J].Acta Paediatr.2007;96(11):1640-5.
    [70].Korotkova M,Gabrielsson B,Strandvik B,et al.Leptin levels in rat offspring are modified by the ratio of linoleic to alpha-linolenic acid in the maternal diet[J].J Lipid Res.2002;43(10):1743-9.
    [71].Rump P,Mensink RP,Kester AD,Hornstra G.Essential fatty acid composition of plasma phospholipids and birth weight:a study in term neonates[J].Am J Clin Nutr.2001;73(4):797-806.
    [72].Elias SL,Innis SM.Infant plasma trans,n-6,and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids,length of gestation,and birth weight and length[J].Am J Clin Nutr.2001;73(4):807-14.
    [73].Assisi A,Banzi R,Buonocore C,et al.Polyunsaturated fatty acids and anthropometric indices of children in rural China[J].Eur J Clin Nutr.2006;60(9):1100-7.
    [74]. Xiang M, Lei S, Li T, Zetterstrom R. Composition of long chain polyunsaturated fatty acids in human milk and growth of young infants in rural areas of northern China[J]. Acta Paediatr. 1999;88(2): 126-31.
    [75]. Hoffman D, Ziegler E, Mitmesser SH, et al. Soy-Based Infant Formula Supplemented with DHA and ARA Supports Growth and Increases Circulating Levels of these Fatty Acids in Infants[J]. Lipids. 2008;43(1):29-35.
    [76]. Makrides M, Neumann MA, Jeffrey B, et al. A randomized trial of different ratios of linoleic to alpha-linolenic acid in the diet of term infants: effects on visual function and growth[J]. Am J Clin Nutr. 2000;71(1): 120-9.
    [77]. Jensen CL, Prager TC, Fraley JK, et al. Effect of dietary linoleic/alpha-linolenic acid ratio on growth and visual function of term infants[J]. J Pediatr. 1997;131(2):200-9.
    [78]. Jensen CL, Prager TC, Zou Y, et al. Effects of maternal docosahexaenoic acid supplementation on visual function and growth of breast-fed term infants[J]. Lipids. 1999;34 Suppl:S225.
    [79]. Helland IB, Saugstad OD, Smith L, et al. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women[J]. Pediatrics. 2001;108(5):E82.
    [80]. Dunstan JA, Simmer K, Dixon G, et al. Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomised controlled trial[J]. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F45-50.
    [81]. Kunesova M, Braunerova R, Hlavaty P, et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women[J]. Physiol Res. 2006;55(1):63-72.
    [82]. Judge MP, Harel O, Lammi-Keefe CJ. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo[J]. Am J Clin Nutr. 2007;85(6): 1572-7.
    [83]. Hart SL, Boylan LM, Carroll SR, et al. Brief report: newborn behavior differs with decosahexaenoic acid levels in breast milk[J]. J Pediatr Psychol. 2006;31(2):221-6.
    [84]. Gustafsson PA, Duchen K, Birberg U, et al. Breastfeeding, very long polyunsaturated fatty acids (PUFA) and IQ at 6 1/2 years of age[J]. Acta Paediatr.2004;93( 10): 1280-7.
    [85]. Bouwstra H, Dijck-Brouwer DJ, Decsi T, et al. Relationship between umbilical cord essential fatty acid content and the quality of general movements of healthy term infants at 3 months[J]. Pediatr Res. 2006;59(5):717-22.
    [86]. Bouwstra H, Dijck-Brouwer J, Decsi T, et al. Neurologic condition of healthy term infants at 18 months: positive association with venous umbilical DHA status and negative association with umbilical trans-fatty acids[J]. Pediatr Res. 2006;60(3):334-9.
    [87]. Ghys A, Bakker E, Hornstra G, et al. Red blood cell and plasma Phospholipid arachidonic and docosahexaenoic acid levels at birth and cognitive development at 4 years of age[J]. Early Hum Dev. 2002;69(1-2):83-90.
    [88]. Bakker EC, Ghys AJ, Kester AD, et al. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 y of age[J]. Eur J Clin Nutr. 2003;57(1):89-95.
    [89]. Bakker EC, Hornstra G, Blanco CE,et al. Relationship between long-chain polyunsaturated fatty acids at birth and motor function at 7 years of age[J]. Eur J Clin Nutr. 2007 Dec 19; [Epub ahead of print]
    [90]. Voigt RG, Jensen CL, Fraley JK, et al. Relationship between omega3 long-chain polyunsaturated fatty acid status during early infancy and neurodevelopmental status at 1 year of age[J]. J Hum Nutr Diet. 2002; 15(2): 111-20.
    [1]Wyrwoll CS,Mark PJ,Mori TA,et al.Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids[J].Endocrinology,2006,147:599-606.
    [2]Ruzickova J,Rossmeisl M,Prazak T,et al.Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue[J].Lipids,2004,39:1177-1185.
    [3]Mat suo T,Takeuchi H,Suzuki H,et al.Body fat accumulation is greater in rats fed a beef tallow diet than in rats fed a safflower or soybean oil diet[J].Asia Pac J Clin Nutr,2002,11:302-308.
    [4]Massiera F,Saint-Marc P,Seydoux J,et al.Arachidonic acid and prostacyclin signaling promote adipose tissue development:a human health concern ?[J].J Lipid Res,2003,44:271-279.
    [5]Madsen L,Petersen RK,Kristiansen K.Regulation of adipocyte differentiation and function by polyunsaturated fatty acids[J]. Biochim Biophys Acta, 2005, 1740 :266-286.
    
    [6] Perez MP, Marti A, Martinez JA, et al. Effect s of arachidonic acid on leptin secretion and expression in primary cultured rat adipocytes[J]. J Physiol Biochem, 2003, 59:201-208.
    
    [7] Perez MP, Marti A, Martinez JA, et al. Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes : role of glucose metabolism [J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288:R1682-1688.
    
    [8] Korotkova M, Gabrielsson B, Hanson LA, et al. Maternal dietary intake of essential fatty acids affects adipose tissue growth and leptin mRNA expression in suckling rat pups [J]. Pediatr Res, 2002, 52 :78-84.
    
    [9] Ukropec J, Reseland JE, Gasperikova D, et al. The hypotriglyceridemic effect of dietary n-3 FA is associated wit h increased beta-oxidation and reduced leptin expression[J]. Lipids, 2003, 38:1023-1029.
    
    [10] Takahashi Y, Ide T, Fujita H. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue [J]. Comp Biochem Physiol Biochem Mol Biol, 2000, 127:213-222.
    
    [11] Peyron CE , Taverna M ,Guerre2Millo M ,et al . Dietary ( n-3) polyunsaturated fatty acids upregulate plasma leptin in insulin-resistant rats[J]. J Nut r ,2002 ,132 :2235-2240.
    
    [12] Pieke B, von Eckardstein A, Gulbahce E, et al. Treatment of hypertriglyceridemia by two diets rich either in unsaturated fatty acids or in carbohydrates : effects on lipoprotein subclasses , lipolytic enzymes , lipid transfer proteins , insulin and leptin[J]. Int J Obes Relat Metab Disord, 2000,24 : 1286-1296.
    
    [13] Winnicki M, Somers VK, Accurso V, et al. Fish-rich diet, leptin and body mass[J]. Circulation, 2002, 106:289-291.
    
    [14] Kratz M, von Eckardstein A, Fobker M, et al. The impact of dietary fat composition on serum leptin concent rations in healthy non-obese men and women[J]. J Clin Endocrinol Metab, 2002, 87:5008-5014.
    
    [15] Mori TA, Burke V, Puddey IB, et al. Effect of fish diets and weight loss on serum leptin concent ration in overweight, treated-hypertensive subjects[J]. J Hypertens, 2004, 22:1983-1990.
    
    [16] Korot kova M, Gabriel sson BG, Holmang A, et al. Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/ n-3 fatty acids[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288:R575-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700