糯小麦辛烯基琥珀酸淀粉酯的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以糯小麦淀粉为原料,对辛烯基琥珀酸淀粉酯的湿法制备工艺进行了研究。同时以糯小麦淀粉为对照,比较研究了该淀粉酯的基本性质,即淀粉糊的性质,包括粘度、透明度、凝沉性、冻融稳定性和乳化性能。并研究了该淀粉酯对速冻饺子皮冻裂率的影响。
     首先研究了淀粉乳浓度、pH值、反应时间和反应温度四个因素对该淀粉酯取代度的影响。在单因素试验基础上采用Design-Expert软件作响应面分析,得出湿法制备糯小麦辛烯基琥珀酸淀粉酯最佳工艺条件为:淀粉乳浓度31.3%,pH值8.6,反应时间3h,反应温度30.6℃。在最佳工艺条件下制得的产品取代度为0.0144。
     然后研究了该淀粉酯的结构特性。红外光谱图证明原淀粉和辛烯基琥珀酸酐发生了酯化反应,淀粉分子上存在酯羰基。X-射线衍射分析表明淀粉的酯化反应主要发生在分子的无定形区,并未使其晶型发生改变,仍保持为糯小麦原淀粉的A型。DSC分析证明改性之后淀粉颗粒虽然保持原有的晶体结构,但是颗粒有所膨胀,结晶结构的致密程度有所下降,结果使SSOS更易于发生糊化。同步辐射X光束线分析得出,糯小麦辛烯基琥珀酸淀粉酯在反应中主要晶格排列不改变,由于淀粉链的柔性,聚集结构对化学反应具有响应性。
     之后又对该淀粉酯的性质进行了研究。研究表明:经过OSA改性之后,辛烯基琥珀酸淀粉酯的峰值粘度、低谷粘度和冷胶粘度均比原淀粉的高。并且随着取代度(DS)的增加,该淀粉酯糊的峰值粘度,低谷粘度和冷胶粘度也不断增加,而峰值时间却在减少;淀粉酯糊的透明度、凝沉性和冻融稳定性也得到很大的提高,并且随着取代度的增加,淀粉酯糊的透明度、凝沉性也随之增强;蔗糖与SSOS相互作用,使淀粉糊的透明度和凝沉性增加,抗老化稳定性增强;NaCl使淀粉糊的透光率降低,凝沉性下降,淀粉糊不稳定,易于老化;糯小麦SSOS随着取代度的提高,乳化能力提高。
     最后研究了该淀粉酯对速冻饺子皮冻裂率的影响。糯小麦辛烯基琥珀酸淀粉酯的取代度逐渐增加时,速冻饺子皮的冻裂率随之降低;并且在同一取代度下,添加量增加时,速冻饺子皮的冻裂率也随之降低。
This thesis studied preparation of Octenyl succinic anhydride (OSA) modified starches from raw material waxy wheat starch in aqueous slurry system. Some properties of the OSA starch were also investigated in this thesis, including the viscosity, clarity, retrogradation, freeze-thawing stability of the starch paste, and emulsification property of the OSA starch. Then the effect of the OSA starch on the cracking rate of deep-frozen dumpling peel was investigated in this thesis.
     At first, study the effect of different reaction conditions on the degree of substitution (DS) of the OSA starch, such as the concentration of starch slurry, pH range, reaction temperature, reaction time. On the base of single factor analysis result, response surface analysis was done with design expert software and the optimistic condition of synthesizing was obtained. The optimistic condition of synthesizing was that: the concentration of starch slurry 31.3%, pH 8.6, reaction time 3h, reaction temperature 30.6℃. At this condition, the degree of substitution (DS) is 0.0144.
     Secondly, research the structure of the OSA starch. FT-IR spectroscopy verified that native starch reacted with OSA and the ester carbonyl is in the OSA starch. X-ray analysis showed that the OSA starch occurred mainly in amorphous molecular areas and still maintained the same crystalline pattern as native starch. DSC analysis revealed that though the OSA starch maintained the same crystalline pattern as native starch, the starch granule swelled at a certain extent and the compact degree of crystalline pattern descended, so SSOS gelatinize more easily. Synchrotron radiation X-ray diffraction analysis showed that the main crystal-lattice tactic of SSOS didn’t change in reaction and this aggregate structure had responsiveness to chemical reaction.
     After, investigate the properties of the OSA starch. The results showed that the OSA starch paste had higher peak viscosities, HPV and CPV than native waxy wheat starch. Moreover, the degree of substitution(DS) is increased, the PV, HPV and CPV of OSA starch paste increased, but the peak time decreased; Comparing with native waxy wheat starch, the paste clarity, retrogradation and freeze-thaw stability of OSA starch had enhanced, and more, as the DS was getting higher, the paste clarity, retrogradation and freeze-thaw stability of OSA starch was better; The paste clarity and retrogradation of OSA starch greatly decreased by the presence of sodium chloride, but only increased slightly in the presence of sucrose; Emulsification property of the OSA starch increased with DS increasing.
     At last, work over the effect of the OSA starch on the cracking rate of deep-frozen dumpling peel. When the degree of substitution of the OSA starch increased, the cracking rate of deep-frozen dumpling peel decreased. Moreover, the cracking rate of deep-frozen dumpling peel decreased with the addition of the same DS starch increasing.
引文
[1] Press J. Biology and molecular biology of starch synthesis and its regulation [A]. Miflin B J. Oxford surveys of plant molecular and cell biology[C]. Oxford University Press, 1992, 59-71.
    [2] Yamamori M, Nakamura T, Endo, et al. Waxy protein deficiency and chromosomal location of coding genes in common wheat [J]. Theoretical and Applied Genetics, 1994, 89: 179-184.
    [3] Ball S, Guan H P, James M, et al. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule [J]. Cell, 1996, 86: 349-352.
    [4] Clark J R, Robertson M, Ainsworth C C. Nucleotide sequence of a wheat (Triticum aestivum L) cDNA clone encoding the waxy protein [J]. Plant Molecular Biology, 1991, 16: 1099-1101.
    [5] Nakamura T, Yasmamori M, Hirano H, et al. Identification of three Wx proteins in wheat (Triticum aestivum L) [J]. Biochemistry Genetics, 1993, 111(31): 75-86.
    [6] Nakamura T, Yasmamori M, Hirano H, et al. Decrease of waxy (Wx) protein in two common wheat cultivars with low amylose content [J]. Plant Breeding, 1993, 111(2): 99-105.
    [7] Nakamura T, Yamamori M, Hirano H, et al. Production of waxy (amylose-free) wheats [J]. Molecular and General Genetics, 1995, 24: 253-259.
    [8] Yasui T, Sasaki T, Matsuki J, et al Waxy endosperm mutants of bread wheat (Triticum aestivum L.) and their starch properties [J]. Breeding Science, 1997, 47: 161-163.
    [9] Kiribuchi-Otobe C, Nagamine T, Yanagisawa T, et al. Production of hexaploid wheats with waxy endosperm character [J]. Cereal Chemistry, 1997, 74: 72-74.
    [10]李继刚,梁荣奇,张义荣,等.糯性普通小麦的产生及其淀粉特性研究[J].麦类作物学报, 2001, 21(2): 10-13.
    [11]张风琴,郑海泽,张红芳,等.优质冬性糯小麦转育研究[J].山西农业科学, 2008, 36(3): 19-20.
    [12]游新勇,张国权,李琼.糯小麦淀粉品质特性研究[J].粮食与饲料工业, 2008, 4: 8-10.
    [13]刘鹏,王静,刘钟栋,等.糯质小麦淀粉理化特性研究[J].粮油加工, 2006, 11: 72-75.
    [14]高新楼,刘钟栋,秦中庆等.糯小麦淀粉品质特性的研究[J].粮食与饲料工业, 2007, 10: 15-16.
    [15]欧巧明,倪建福,叶春雷.糯性小麦及Wx基因研究进展[J].河南农业科学, 2006(1): 23-28.
    [16]王凤平,张佳佳,陈美龄,等.辛烯基琥珀酸淀粉酯的合成与应用[J].粮食工程, 2008, 2: 102-104.
    [17]邓林伟,徐雪芬,袁长贵,等.辛烯基琥珀酸淀粉酯(纯胶)的研制和应用研究[J].食品科技, 2002, 11: 39-41.
    [18]胡飞.辛烯基琥珀酸淀粉酯理化性质的研究[J].粮食与饲料工业, 2005, 1: 25-27.
    [19]胡飞.辛烯基琥珀酸淀粉酯的表面性质[J].食品与生物技术学报, 2005, 24(2): 27-29.
    [20]刘兆丽,曹亚峰,谢威扬,等.辛烯基琥珀酸淀粉酯的应用性能[J].化工进展, 2009, 28(7): 1252-1256.
    [21]邹应龙,袁长贵,康钰.纯胶的乳化特性及其应用[J].食品科技, 2006, 31(9): 167-170.
    [22]赵旻昊,张燕萍.不同原料制备的辛烯基琥珀酸淀粉酯的性质研究与应用[J].食品工业科技, 2009, 3: 136-139.
    [23]袁长贵,邓林伟,杨艳,等.辛烯基琥珀酸淀粉酯作为微胶囊壁材的应用研究[J].中国食品添加剂, 2008, 1: 91-95.
    [24]王恺,陈燕,史宣明.酶解辛烯基琥珀酸淀粉酯制备粉末油脂工艺[J].中国油脂, 2008, 1:14-16
    [25] Caldwell C G, Wubrzurg O B. Polysaccharide derivatives of substituted dicarboxylic acids[M]. UD. Pat. 1953: 2661.
    [26] Arvind Viswanathan. Effect of degree of substitution of octenyl succinate starch on enzymatic degradation [J]. Journal of Environmental Polymer Degradation, 1999, 7(4): 185-190.
    [27] Sunae Park, Man-Gon Chung, Byoungseung Yoo. Effect of octenyl succinylation on rheological properties of corn starchpastes[J]. Starch/St?rke, 2004, 56:399-406.
    [28] Ruan Hui, Chen Qi-he, Fu Ming-liang, et al. Preparation and properties of octenyl succinic anhydride modified potato starch [J]. Food Chemistry, 2009, 114(1): 81-86.
    [29] Bao JinSong, Xing lie, Phillips D. L, et al. Properties of octenyl succinic anhydride modified rice, wheat, and potato starches [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 2283-2287.
    [30] Jung-Ah Han, James N, BeMiller. Preparation and physical characteristics of slowlydigesting modified food starches [J].Carbohydrate Polymer, 2006, 25(7): 1-9.
    [31] Rajesh Bhosale, Rekha Singhal. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches [J]. Carbohydrate Polymer, 2006, 66: 521-527.
    [32] Rajesh Bhosale, Rekha Singhal. Effect of octenyl succinylation on physicochemical and functional properties of waxy maize and amaranth starches [J]. Carbohydrate Polymer, 2007(68): 447-456.
    [33] Jinhua He, Jie Liu, Genyi Zhang. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: glycemic response and mechanism [J]. Biomacromolecules, 2008, 9(1): 175-184.
    [34] Qiang Huang, Xiong Fu, Xiao-wei He, et. al. The effect of enzymatic pretreatments on subsequent octenyl succinic anhydride modifications of cornstarch [J]. Food Hydrocolloids, 2010, 1(24): 60-65.
    [35]陈均志,银鹏.辛烯基琥珀酸淀粉酯的制备研究[J].食品工业科技, 2003, 24(10): 128-130.
    [36]陈均志,银鹏.微波有机相法制备辛烯基琥珀酸淀粉的研究[J].粮油食品科技, 2004, 12(01): 16-18.
    [37]张艳萍,郑茂强.辛烯基琥珀酸木薯淀粉酯在乳化桔子香精中的应用[J].无锡轻工大学学报, 2004, 23(5): 74-77.
    [38]张燕萍,龚臣.低粘度辛烯基琥珀酸淀粉酯作微胶囊壁材的研究[J].食品科学, 2006, 27(1): 148-152.
    [39]王骏涛,刘亚伟,邹建,等.基于响应面法辛烯基琥珀酸淀粉酯制备的优化研究[J].粮油加工与食品机械, 2006, 2: 83-89.
    [40]许琼,何国庆,宋晓燕.马铃薯辛烯基琥珀酸淀粉酯的制备研究[J].中国食品学报, 2006, 6(6): 19-24.
    [41]邬应龙,曾珍,陆杨.低粘度辛烯基琥珀酸马铃薯淀粉酯的性质研究[J].中国粮油学报, 2008, 2(23): 68-69.
    [42]任伟豪,刘亚伟,徐仰丽.基于响应面法氧化辛烯基琥珀酸糯玉米淀粉酯制备的优化研究[J].粮食与饲料工业, 2009, 3: 32-34.
    [43]曹兰淼,郝长欣,李晓玲,等.蜡质玉米辛烯基琥珀酸淀粉酯理化性质的研究[J].中国食品添加剂, 2009, 6: 105-109.
    [44]宋晓燕.早籼米辛烯基琥珀酸淀粉酯的制备及其理化性质研究:浙江大学博士学位论文[D].杭州:浙江大学, 2007.
    [45]张哲,李生勇,滕启杰.一种改进的结构可靠度分析中响应面法[J].大连理工大学学报, 2007, 47(1): 57-60.
    [46] Ashima V, Nathalie G. Statistical optimization of the medium components by response surface methodology to enhance phytase production by pichia anomala [J]. Process Biochemistry, 2002(37): 999-1004.
    [47] Heng-Hua Lin, Cheng-yi Li, and Yung-Ho Chang. Change of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloricacid [J]. Carbohydrate Polymer, 2005, 59: 507-515.
    [48]薛奇.高分子结构中的光谱分析法[M].第一版.北京:高等教育出版社, 1995.
    [49] Fang J. M., Fowler P. A., Sayersand C. et al. The chemical modification of a range of starches [J].Carbohydrate Polymer, 2004, 55: 283-289.
    [50] Xiaoyan song, Guoqing He, Hui Ruan. Preparation and properties of octenyl succinic anhydride modification early indica rice starch[J]. Starch, 2006, 58(2): 109-117.
    [51]宋晓燕,朱伟,周翔.小麦辛烯基琥珀酸淀粉酯制备工艺的优化[J].农产品加工学刊, 2009, 3(166): 21-25.
    [52]刘延奇,于九皋.微晶淀粉[J].高分子通报, 2002, (6): 24- 32
    [53]黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展[J].高分子材料学与工程, 2004, 20(5): 19-23
    [54]张燕萍.变性淀粉制造与应用[M].化学工业出版社, 2001: 62.
    [55]张燕萍.变性淀粉制造与应用[M].化学工业出版社, 2001: 323.
    [56] Margaritondo G. Introduction to synchrotron radiation [M]. Oxford: Oxford University Press, 1998.
    [57]石荣彦.新一代人工光源—上海光源.职教论坛, 2009, 1: 14-19.
    [58] Winik H, Xian D C, Ye M H, et al. Application of synchrotron radiation [M]. Horgkong: Hongkong Press, 1988.
    [59]黄胜,何建华.同步辐射方法在生命科学中的应用.生命科学, 2009, 21(1): 28-34.
    [60] Collado L S, Mabesa R C, Corke H, Genetic variation in the physical properties of sweet potato starch [J]. Journal of Agriculture and Food Chemistry, 1999, 47(10): 4195-4201.
    [61] Noda T K, Suda L. Effect of soil temperature on starch properties of sweet potatoes [J]. Carbohydrate Polymer, 2001, 44: 239-246.
    [62]张燕萍.变性淀粉制造与应用[M].化学工业出版社, 2001: 268.
    [63]杨留枝,刘延奇,李昌文,等.氧化淀粉对速冻水饺品质的影响[J].农产品加工学刊, 2006, 10: 88-89.
    [64]黄化宏.甘薯淀粉理化特性研究:浙江大学硕士学位论文[D].杭州:浙江大学, 2004年.
    [65] Bao J S, Xing J, Phillips D, et al. Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches [J]. Food Chemistry, 2003, 51: 2283-2287.
    [66]杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究[J].农业工程学报, 2002, 18(1): 129-131.
    [67]张燕萍.变性淀粉制造与应用[M].北京.化学工业出版社.60-61.
    [68] Lawal O S. Succinyl and acetyl starch derivatives of hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry [J]. Carbohydrate. 2004, 339: 2673-2682.
    [69]李妙莲.含淀粉质食品的冻融稳定性[J].食品工业科技, 2004, 25(7): 141-143.
    [70] Craig S A, Maningat C C, Seib P A, et al. Starch paste clarity[J]. Cereal Chemistry,1989,66(3):173~182.
    [71]李昌文,岳青,张文叶,等.影响速冻水饺品质的因素[J].粮油加工与食品机械, 2005(8): 79-81.
    [72]李昌文,刘延奇,王章存.添加剂对速冻水饺品质的影响[J].冷饮与速冻食品工业, 2006(6): 30-32.
    [73]娄爱华,杨泌泉.添加剂对速冻水饺品质的影响[J].食品工业科技, 2004(3): 73-74.
    [74]刘延奇,刘亚恒,李昌文,等.磷酸淀粉对速冻水饺冻裂率与食用品质的影响[J].粮食与饲料工业, 2008, 12: 22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700