原子激光传输的ABCD形式理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光问世以来以其高强度、高单色性和高相干性在科学和技术中获得广泛应用,改变了整个光学的面貌。原子激射器自产生以来,也一直是科学研究的热点。这种在玻色-爱因斯坦凝聚(BEC)的基础上产生的新型激光器,具有和以往的光子激光类似的特征:单色性、相干性和方向性。原子物理学家也在期望着原子激光能像光子激光那样产生一个新的光学革命。但要想把原子激光付诸于应用,首先就要了解原子激光的特性和传输规律。原子激光作为一种新型的光源,目前还没有形成一套能够被大家普遍接受的传输理论。我们试图提供一种研究原子激光传输的一般方法,为进一步的实验和理论预测提供一个理论工具。
     本文主要是利用含时量子系统传输的Schrdinger形式理论初步探讨原子激光的传输问题。本文在含时量子系统传播子的ABCD形式理论的基础上,引入某一方向的束宽、发散角、曲率半径和品质因子等光束传输参数来表征横向势能满足x和y分量相互独立的原子激光的传输。对于某一方向上品质因子守恒的情况,可以通过解析某一方向品质因子守恒的充要方程,找到原子激光的ABCD形式的传播子。如果考虑原子激光内部原子间相互作用的影响,就要引入描述原有品质因子和原子间相互作用综合作用效果的物理量——有效品质因子和有效复数曲率半径,利用Heisenberg图像得到传播子的有效ABCD形式。无论是否考虑原子激光内部原子间的相互作用,传播子表达式和ABCD变换矩阵都仅与所通过的势场有关,可以用以研究各种原子束的传输,而且计算极为简单。
     第一章:本章回顾了原子激光器的理论和实验方面的进展;比较了原子激光和激光之间的差异,为进一步选择适当的方法来研究原子激光的传输奠定了基础;最后,综述了原子激光传输的研究进展并总结了本人的工作。
     第二章:本章介绍了傍轴光束在实数折射率介质和复数折射率介质中传输的Schrdinger形式理论,同时指出由于原子激光的传输满足Schrdinger方程,与含时量子系统的传输方程类似,故利用含时量子系统的Schrdinger形式理论来研究原子激光的传输是可行的。
     第三章:本章在含时量子系统的Schrdinger形式理论的基础上初步讨论原子激光——这种品质因子不守恒的含时量子系统的传输问题。本章讨论在忽略了原子间的相互作用情况下,横向可分原子激光的传输,这个问题实际上仍属于品
    
    质因子守恒系统的范畴。文中还把所得到的结果与Le Coq等人的工作进行了比
    较。
     第四章:由于原子激光内部原子间相互作用的存在,原有的品质因子不再守
    恒,需要引入描述原有品质因子和原子间相互作用综合作用效果有效品质因子来
    讨论原子激光的传输。因此,本章在Schrsdinger形式理论的基础上,引入守恒
    的有效品质因子来讨论有效品质因子守恒的的含时量子系统—原子激光(考虑
    了原子激光内部原子间相互作用)传播子的有效 ABCO形式。
     第五章:本章总结了前几章的内容,并在前文的基础上提出可以进一步深入
    的工作。
The realization of atom lasers opens up the new intriguing perspectives in coherent atom optics. These novel atom sources are based on Bose-Einstein condensates (BEC) from which a coherent matter wave beam is extracted, which have coherence, monochrome and high direction. It is important to characterize the qualities and the propagation of these atom beams. The propagation of an atom laser, which is outcoupled from a Bose-Einstein condensate, is investigated within the framework of quantum mechanics. We discussed the propagation of the atom laser beam which had non-conservation quality factor based on the theory of ABCD formulation of propagation of a time-dependent quantum system. The equation for the quasi-continuous atom laser beam wave-function is given by Schrodinger equation, the beam width, divergence curvature radius and quality factor were introduced to represent the atom laser beam whose transverse potential could be separated. For the conservative quality factor system in some direction, we can ge
    t the propagator of ABCD formulation. We considered the propagation of the atom laser beam during the interacting with BEC, the propagation with the trap on and the free propagation with the trap off which potential can be separated by x and y. Within the frame of the ABCD formulation of propagator of a time-dependent quantum system, the ABCD law is extended to the so-called effective ABCD system which effective beam quality factor is conservative; we discussed the system like the propagation of the atom laser beam. The effective beam quality factor and the effective parameter are introduced to obtain the effective ABCD formulation of propagator by means of Heisenberg picture. The atom-atom interaction in the atom laser beam makes the beam quality factor nonconservative, and the effective beam quality factor describes the beam quality factor and the atom-atom interaction together.
    In chapter 1, a review of the atom lasers and the atom laser beams is given. The compare between the atom laser and the optical laser is also represented, which is the foundation of the propagation of an atom laser beam. At the end of this chapter, we list our works about the propagation of an atom laser beam.
    In chapter 2, a Schrodinger formulation for paraxial light beam propagation of
    
    
    the real and comprehensive refractive indexes is represented. The equation for the atom laser beam wave-function is also given by a Schrodinger equation, which is similar to the equation of the time-dependent system. Therefore, it is possible to investigate the propagation of an atom laser beam.
    In chapter 3, we discussed the propagation of the atom laser beam, with the transverse independent of gravitate direction, which had non-conservation quality factor based on the theory of ABCD formulation of propagation of a time-dependent quantum system. Actually, the atom laser beam with the transverse independent of gravitate direction is included in the conservative system. We also compare our methods and results with Le Coq's.
    In chapter 4, the interaction between atoms within the atom laser beam will be included in the potential energy, which leads to the non-conservation of the quality factor. An effective quality factor representing both the interaction between atoms within the atom laser and the quality factor is introduced to study the propagation of the atom laser beam. We derive the ABCD formulation of the propagation of an atom laser beam with arbitrary beam profile including the interaction between atoms within the atom laser by means of the theory of quantum mechanics.
    In chapter 5, there is a summary of the methods in this thesis, together with the further work.
引文
Agrawal G R Nonlinear Fiber Optics[M]. 2nd. San Diego: Academic Press. 1995, 50-54.
    Anderson B P and Kasevich M A. Macroscopic Quantum Interference from Atomic Tunnel Arrays[J]. Science, 1998, 252: 1686-1689.
    Ballagh R and Savage C M, in Bose-Einstein Condensation: Atomic Physics to Quantum Fluids, Proceedings of the 13th Physics Summer School edited by Savage C M and Das M P (World Scientific, Singapore, 2000).
    Ballagh R J, Burner K and Scott T F, Theory of an output coupler for Bose-Einstein condensed atoms[J], Phys. Rev. Lett., 1997, 78: 1607.
    Bélanger P A. Beam propagation and ABCD ray matrices[J]. Opt. Lett., 1991, 16 (4): 196-198
    Bhongale S, Holland M. Loading a continuous-wave atom laser by optical pumping techniques[J], Phys. Rev. A, 2000, 62 (4): Art. No. 043604.
    Bloeh I, Hansch T W and Esslinger T. Atom lasers and phase coherence of atomic Bose gases[J]. Riken Review: Focused on Coherent Science. 2001, 33: 6-9.
    Bloch I, H nsch T W, Esslinger T, et al. Atom Laser with a Output Coupler[J]. Phys. Rev. Lett., 1999, 82: 3008-3011.
    Bloch I, K hlM, Greiner M, et al. Optics with an Atom Laser beam[J]. Phys. Rev. Lett., 2001, 87: 030401.
    Bouchoule I, Molmer K Interaction-induced phase fluctuations in a guided atom laser[J]. Phys. Rev. A, 2003, 67(1): Art. No. 011603.
    Bradley AS, Hope JJ, Collett MJ. Steady-state quantum statistics of a non-Markovian atom laser[J]. Ⅱ. Phys. Rev. A, 2003, 68 (6): Art. No. 063611.
    Breuer HP, Failer D, Kappler B, Non-Markovian spectral broadening in interacting continuous-wave atom lasers[J]. Europhys. Lett., 2001, 54 (1): 14-20.
    Burger S, Bongs K, Dettmer S et al., Dark Solitons in Bose-Einstein Condensates[J]. Phys. Rev. Lett. 1999, 83: 5198.
    Busch T, K hl M, Esslinger T et al. Transverse mode of an atom laser[J]. Phys. Rev. A., 2002, 65: 043615.
    Carusotto I. Nonlinear atomic Fabyr-Perot interferometer: From the mean-field theory to the atom blockade effect[J]. Phys. Rev. A, 2001, 63 (2): Art. No. 023610.
    Castin Y, Dum R, Mandonnet E et al., Coherence properties of a continuous atom laser[J]. J. Mod. Opt., 2000, 47 (14-15): 2671-2695.
    Cennini G, Ritt G, Geckeler C et al., All-optical realization of an atom laser[J]. Phys. Rev. Lett., 2003, 91 (24): Art. No. 240408.
    Chikkatur AP, Shin Y, Leanhardt AE, Kielpinski D et al., A continuous source of Bose-Einstein condensed atoms[J]. Science, 2002, 296 (5576): 2193-2195.
    Collins S A J. Lens-system diffraction integral written in terms of matrix optics[J]. J. Opt. Soc. Am., 1970, 60(9): 1168-1171.
    Cornish S L, Claussen N R, Roberts J L et al., Stable Rb-85 Bose-Einstein condensates with
    
    widely tunable interactions[J]. Phys. Rev. Lett. 2000, 85: 1795.
    Deng L, Hagley E W, Wenet J al, Four-wave mixing with matter waves[J]. Nature 1998, 398: 218.
    Deng X, Guo H, Cao Q. lnvariant integral and statistical equations of paraxial light beam transmission in free space[J]. Science in China (A), 1997, 40 (5): 546-554.
    Denschlag J, Simsarian J E, Federet D L al, Generating Solitons by Phase Engineering of a Bose-Einstein Condensate[J]. Science, 2000, 287: 97.
    Desaix M, Anderson D and Lisak M. Variational approach to collapse of optical pulses[J], J. Opt. Soc. Am. 1991, BS(10): 2082-2086.
    Eichman G., Quasi-Geometric optics of media with inhomogeneous index of refraction[J]. J Opt Soc Am. 1971, 61(2): 161-168.
    Fioegel F, Santos L, Lewenstein M Continuous optical loading of a Bose-Einstein condensate in the Thomas-Fermi regime[J]. Europhys. Lett., 2003, 63 (6): 812-818.
    Floegel F, Santos L, Lewenstin M, Loading of a Bose-Einstein condensate in the boson accumulation regime[J]. Europhys. Lett., 2001, 54 (3): 279-285.
    Gerbier F, Bouyer P, Aspect A, Quasic ontinuous atom laser in the presence of gravity[J]. Phys. Rev. A, 2001, 86 (21): 4729-4732.
    Gloge D and Marcuse D. Formal quantum theory of light ray[J]. J, Opt Soc. Am., 1969, 59(12): 1629-1631.
    Gómez-Reino C and Liares J. Optical path integrals in gradient-index media[J]. J. Opt. Soc., Am 1987, 8(8): 1337-1341.
    Guo H, Deng X M. Differential geometrical methods in the study of optical transmission (Scalar theory), Ⅰ. Static transmission case, Ⅱ. Time-dependent transmission theory[J]. J. Opt. Soc. Am.. 1995, AI2(3): 600-610.
    Gustavson T L, Chikkatur A P, Leanhardt A E, et al. Transport of Bose-Einstein Condensates with Optical Tweezers[J]. Phys. Rev. Lett., 2002, 88: 020401-020404.
    Guzman A M, Moore M, Meystre P, Theory of a coherent atomic-beam generator[J]. Phys. Rev. A, 1996, 53(2): 977.
    Hagley E W, Deng L, Kozuma M, et al. A Well-Collimated Quasi-Continuous Atom Laser[J]. Science, 1999, 283: 1706-1709.
    Haine S A, Hope J L Robins N P, etal. Stability of Continuous Pumped Atom Lasers[J], Phys. Rev. Lett., 2002, 88: 170403.
    Haine S A, Hope J J. Mode selectivity and stability of continuously pumped atom lasers. Phys. Rev. A, 2003, 68 (2): Art. No. 023607.
    Holland M, Burnett K, Cardiner C et al., Theory of an atom laser[J]. Phys. Rev. A 1996, 54: R1757.
    Hope J J, Moy G M, Collett M J, Savage C M. The linewidth of a non-Markovian atom laser[J]. Opt. Comm, 2000, 179 (1-6): 571-576.
    Hope J J, Moy G M, Collett M J, Steady-state quantum statistics of a non-Markovian atom laser[J]. Phys. Rev. A, 2000, 61 (2): Art. No. 023603.
    Inouye S, Andrews M R, Stenger J et al., Observation of Feshbach resonances in a Bose-Einstein condensate[J]. Nature, 1998, 392: 151.
    Inouye S, Pfau T, Gupta S et al., Phase-coherent amplification of atomic matter waves[J]. Nature, 1999, 402: 641.
    Jing H, Chert JL, Ge NIL, Quantum-dynamical theory for squeezing the output of a Boso-Einstein
    
    condensate[J]. Phys. Rev. A., 2001, 63 (1): Art. No. 015601.
    Jing H, Chen JL, Ge ML. Squeezing effects of an atom laser: Beyond the linear model[J]. Phys. Rev. A. 2002, 65(1): 015601.
    Jing H, Ge ML, Controlling quantum coherence of atom laser by light with strong strength[J]. Science in China(Series A), 2002, 45 (4): 533-537.
    Jing H, Han YA, Chen J L et al., Quantum dynamical theory for squeezed atom laser[J]. Chinese. Phys. Lett., 2000, 17 (12): 862-864.
    Jing H, Miao YX, Han YA, Quantum statistics of an atom laser in the presence of a strong input light[J]. Chinese Phys, 2001, 10 (3): 186-188.
    Jorgensen S, Kosloff R. Two-pulse atomic coherent control spectroscopy of Eley-Rideai reactions: An application of an atom laser[J]. J. Chem. Phys., 2003, 119 (1): 149-160.
    Jorgensen S, Kosloff R. Two-pulse atomic coherent control[J]. Surf. Science, 2003, 528 (1-3): 156-162.
    Karlsson M and Anderson D. Super-Gaussian approximation of the fundamental radial mode in nonlinear parabolic-index optical fibers[J]. J. Opt. Soc. Am., 1992, B 9(9): 1558-1562.
    Ketterle W, When atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Rev. Mod Phys., 2002, 74 (4): 1131-1151.
    Kneer B, Wong T, Vogel K, Schleich WP et al., Generic model of an atom laser[J]. Phys. Rev. A, 1998, 58 (6): 4841-4853.
    Kogeinik H, Li T. Laser beams and resonators[J], Proc. IEEE, 1966, 54 (10): 1312-1329.
    Kogelnik H. Imaging of optical mode2resonators with internal lenses [J]. Bell Syst. Tech. J., 1965, 44 (3): 455-494.
    Kohl M, Hansch T W, Esslinger T, Continuous detection of an atom laser beam[J]. Phys. Rev. A, 2002, 65 (2): Art. No. 021606.
    Kohl M, Hansch T W, Esslinger T, Measuring the temporal coherence of an atom laser beam[J]. Phys. Rev. Lett, 2001, 87 (16): Art. No. 160404.
    Kohl M, Hansch T W, Essllinger T Line width of an atom laser[J]. Appl. Phys. B: Lasers Opt, 2003, 76 (2): 109-112.
    Kozuma M, Suzuki Y, Torii Y, et al., Phase-Coherent Amplification of Matter Waves[J]. Science, 1999, 286: 2309
    Krivolykov S G., Quantum-theoretical formalism for inhomogeneous graded-index waveguides[J]. Berlin. "Akademie Verlag GmbH. 1994.
    Kuratsuji H and Kakigi S. Maxwell-Schroedinger equation for polarized light and evolution of the stokes parameters[J]. Phys. Rev. Lett. 1998, 80(9): 1888-1891.
    Le Coq Y, Thywissen J H, Rangwala S A et al., Atom Laser Divergence[J]. Phys. Rev. Lett., 2001, 87: 170403.
    Leboeuf P, Pavloff N, Sinha S, Solitonic transmission of Bose-Einstein matter waves[J]. Phys. Rev. A., 2003, 68 (6): Art. No. 063608.
    Liu T C Y, Deng D M, Hu W, Guo H, Schrodinger formulation research for light beam propagation in media of complex refactive index[J]. Acta Phys. Sin. 2002, 51: 524.
    Liu T C Y, Guo H, Hu W and Deng X M, Schrodinger formulation research for light beam propagation in media of complex refactive index[J]. Science in China(Series A) 2000, 43: 312.
    Liu T C Y, Hu W, Lu G S, Guo H., Diffraction Integral of Effective ABCD System[J]. Acta Optica.
    
    Sin., 2000, 21: 1280(in Chinese).
    Liu T C Y, Liu J, Yin J L et al, ABCD Formulation of Propagator of A Time-Dependent Quantum System[J]. Acta Phys. Sin. 2002, 51(11): 2431.
    Liu T C Y, Guo H, Hu W and Deng X M. 2000. A Schroedinger Formulation Research for Paraxial Light Beam Propagation and Its Application to the Propagation through Nonlinear Square Law Media[J]. Chinese Phys. Lett. 2000, 17(10): 734-736.
    Liu T C Y, Guo H, Hu W and Deng X M. A Schroedinger Formulation for Laser Beam Propagation[J]. SPIE. 1999, 3862: 75~79.
    Liu T C Y, Guo H, Fu X Q, W Hu and S Yu. Maxweli-Schroedinger Equation for X-Ray Laser Propagation and Interferometry Measurement of Plasma Electron Density[J]. Chinese Phys. Lett., 2001, 18(11): 1490-1492.
    Luneberg R K. Mathematical Theory of Optics[M]. University of California Press, Berkeley, 1964, 216-226.
    Manohar K G, Jagatap B N, Atom laser[J]. Current Scicence, 1999, 76 (11): 1420-1423.
    Martinez-Herrero R, Piquero G and Mejias PM. On the propagation of the kurtosis parameter of general beams[J]. Optics. Comm. 1995, 115: 225-232.
    Mewes M O, Andrews M R, Kurn D M, et al. Output Coupler for Bose-Einstein Condensed Atoms[J]. Phys. Rev. Lett., 1997, 78: 582-585.
    Moy G M, Hope J J, Savage C M, Atom laser based on Raman transitions[J]. Phys. Rev. A, 1997, 55: 3631.
    Nazarathy M and Shamir J. First-order optics——a canonical operator representation: lossless systems[J]. J. Opt. Soc. Am., 1982, 72(3): 356-364,
    Olshanii M, Gastin Y, Dalibarb, Proceedings of 12th International Conference on Laser Spectroscopy[J]. 1995: 7.
    Paré C, Blanger P A. Beam propagation in a linear and nonlinear leus2like medium using ABCD ray matrices: the method of moments[J]. Opt. & Quant. Electron., 1992, 24 (5): S1051-S1070
    Petrosyan KG, Fermionic atom laser[J]. Jept Lett., 1999, 70 (1): 11-16.
    Porras M A, Aida J, Bemabeu E. Complex beam parameter and ABCD law for non2Gaussian and nonsphericai light beams[J]. Appl. Opt., 1992, 31 (30): 6389-6420.
    Porras M A, Aida J, Bernabeu E. Nonlinear propagation and transformation of arbitrary laser beams by means of the generalized ABCD formalism[J]. Appl. Opt., 1993, 32 (30): 5885-5892.
    Porras M A and Medina R. Entropy-based definition of laser beam spot size[J]. App Opt, 1995, 34(36): 8247.
    Porras MA, Aida J and Bernabeu E. Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams[J]. Appl. Opt., 1992, 31(30): 6389-6420.
    Proukakis N P, Coherence of trapped one-dimensional (quasi-) condensates and continuous atom lasers in waveguides[J], Laser Phys., 2003, 13 (4): 527-536.
    Santos L, Floegel F, Pfau T et al., Continuous optical loading of a Bose-Einstein condensate[J]. Phys. Rev. A, 2001, 63 (6): Art. No. 063408.
    Schiff L I. Quantum Mechanics[M]. 3~(rd). ed. USA: McGraw-Hill Book Company. 1968.
    Schneider J, Schenzle A Investigations of a two-mode atom-laser model[J]. Phys. Rev., 4, 2000, 61 (5): Art. No. 053611.
    
    
    Schneider J, Schenzle A, Output from an atom laser: theory vs. experiment[J]. Appl. Phys. B: Lasers Opt, 1999, 69 (5-6): 353-356.
    Siegman AE. Defining the effective radius of curvature for a nonideal beam[J]. IEEE J. Quant. Electron., 1991, QE-27(5): 1146~1148.
    Siegman AE. Lasers[M]. Oxford U. Press, Mill Valley, Calif., 1986.
    Siegman A E. New development in laser resonators[J]. Proc. SPIE, Optical Resonators, 1990, 1224: 2~20.
    Spreeuw R J C, Pfau T, Janicke U et al., Laser-like scheme for atomic-matter waves[J]. Europhys. Lett., 1995, 32(6): 469.
    Srinivasan R, Bose condensation and the atom laser[J]. Current Scicence, 1997, 73 (2): 105-107.
    Steck H, Naraschewski M and Wallis H, Output of a pulsed atom laser[J]. Phys. Rev. Lett. 1998, 80: 1.
    Strecker K E, Partridge G B, Truscott A G et al., Formation and propagation of matter-wave soliton trains[J]. Nature, 2002, 417: 150.
    Subbarao D, Uma R, Singh H. Paraxial theory of self-focusing of cylindrical laser beams. Ⅰ. ABCD laws[J]. Phys. Plasmas., 1998, 5 (9): 3440-3450.
    TachéJ P. Derivation of the ABCD law for Laguerre Gaussian beams[J]. Appl. Opt., 1987, 26 (14): 2698-2700.
    Tovar A A, Casperson L W. Generalized beam matrices : Gaussian beam propagation in misaligned complex opticalsystems[J]. J. Opt. Soc. Am. (A), 1995, 12 (7): 1522-1533.
    Trippenbach M, Band YB, Edwards Met al., Coherence properties of an atom laser[J]. J. Phys. B-Atomic Molecular and Opt. Phys., 2000, 33 (1): 47-54.
    Tsurumi T, Wadati M, Free fall of atomic laser beam with weak inter-atomic interaction[J]. J. Phys. Soc. Jpn, 2001, 70 (1): 60-68.
    Vogels J M, Xu K and Ketterle W et al., Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas[J]. Phys. Rev. Lett. 2002, 89: 020401.
    Wiseman H M, Collett M J, An atom laser-based on dark-state cooling[J]. Phys. Rev. A, 1995, 202(4): 246.
    Wiseman H M. Defining the (atom) laser[J]. Phys. Rev. A., 1997, 56: 2068-2084.
    Wiseman H W and Thomsen L K. Reducing the Linewidth of an Atom Laser by Feedback[J]. Phys. Rev. Lett., 2001, 86: 1143-1147.
    Wiseman H, Martins A, Walls D, An atom laser based on evaporative cooling[J]. Quantum Semicl. Opt., 1996, 8(3): 737.
    Wright E M and Garrison J G. Path-integral derivation of the complex ABCD Huygens integral[J]. J. Opt. Soc. Am, A. 1987, 4(9): 1751~1755.
    Zhang W P, Search C P, Pu H, Feshbach-resonance-induced atomic filamentation and quantum pair correlation in atom-laser-beam propagation[J]. Phys. Rev. Lett, 2003, 90 (14): Art. No. 140401.
    Zhou X J, Wang YQ, Yang D H, A scheme for realizing the continuous wave atom laser[J]. Chinese. Phys. Lett., 2000, 17 (11): 784-786.
    邓锡铭,丁丽明,叶陈春.ABCD定律的推广[J].中国激光 1990,17(4):259-264.
    郭弘,刘承宜,胡巍等.多阶强度非线性条件下的光束传输研究[J].中国科学(A辑),1999,29(3):276-282.
    何向阳,刘勃.原子激射器[J].现代物理知识,2002,14(2):25-26.
    
    
    李师群,周义东,黄湖.原子激射器——相干原子束发生器[J].物理1998,27(1):11-17.
    刘承宜 郭弘 胡巍 邓锡铭.光束传输的Schroedinger形式理论研究[J].中国科学.A.2000,30(1):54-62.
    刘承宜,郭弘,胡巍,邓冬梅.复数折射率介质中光束传输的Schrodinger形式理论[J].中国科学 A.2002b,32(4):355.
    刘承宜,郭弘,刘勇.稳态等离子体电子密度的X光激光干涉测量方法研究[J].强激光与粒子束.1999,11(5):601-604.
    田野,刘承宦,郭旗,胡巍.用信息熵描述非线性光传输的研究[J].光学学报.2002,22(7):813.
    王裕民.原子激光[J].缴光与光电子进展,2000,416(8):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700