多工位高速锻造工艺智能集成优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多工位高速锻造是一种先进的近净成形工艺,由于该工艺在技术、经济效益上的优越性,当前在制造业中得到了广泛应用。多工位高速锻造的成形工位多,各工位之间关联密切,对工艺和模具的设计要求也较高。不合理的预成形工位模具设计往往会造成工位载荷分配不合理,成形载荷过大以及折叠、充填不饱满等成形缺陷。长期以来,为了得到合理的设计方案,设计人员往往要反复对设计方案进行试模或者数值模拟,在试模结果的基础上根据经验修改原有的设计方案。这种传统的试错优化模式,主要依靠设计人员的主观经验和直观判断,具有很大的随意性和局限性,很难获得最优的设计方案,造成资源和时间的浪费,无法适应现代生产的要求。随着社会经济的快速发展和企业竞争的日益加剧,对多工位高速锻造的产品开发提出了高效率、高质量和低成本的要求,迫切需要将先进的优化理论与方法引入多工位高速锻造工艺优化过程中,将设计人员从繁重的反复试凑工作中解脱出来。因此,将智能技术、数值模拟技术与最优化技术引入多工位高速锻造工艺与模具的优化中是一个必然的趋势。本文与瑞士哈特贝尔公司(HATEBUR)合作开展了研究工作,并取得了以下研究成果:
     针对多工位高速锻造优化问题所具有的各工位之间关联密切、约束与目标众多、响应值与设计变量无显式关系,并且全过程模拟时间长,复杂零件不能二维简化的特点,提出了基于近似替代模型的组合优化策略。首先采用正交试验设计和方差分析对设计变量进行显著性分析,去除不重要的设计变量,降低优化问题的规模;之后应用拉丁超立方采样方法获取样本点,构建设计变量和响应值(优化目标、约束条件)的近似替代模型;最后,基于近似替代模型,应用惩罚策略构造评价函数,将复杂的多约束非线性工程优化问题转化为求解评价函数的单目标优化问题,应用遗传算法寻找全局最优解。在优化计算过程中,利用近似替代模型快速预测响应值,而无需进行数值模拟,从而显著节省了优化时间。
     对各种试验设计方法和近似模型建模方法进行了研究和比较。针对多工位高速锻造工艺优化,提出采用拉丁超立方采样和Kriging模型的组合建立数值变量型响应的近似模型,采用BP神经网络建立语言变量型响应的近似模型。分别采用正交试验设计和拉丁超立方采样2种试验设计方法以及二次响应面模型、最小二乘响应面模型、BP神经网络模型和Kriging模型4种近似建模方法建立实际案例的设计变量与响应值之间关系的近似替代模型,并对近似模型的预测精度进行了比较。
     以实现“设计改进-响应反馈”过程的智能集成和自动化为目标,研究了CAD/CAE智能集成的关键技术,从而减少繁琐的人机交互操作,为优化提供一个智能化的集成平台。其中包括模具几何模型根据设计变量自动修改,智能建立有限元分析模型以及从数值模拟结果自动提取响应值。提出了基于优化案例模型和型腔参数化模型模板的知识集成模式。通过优化案例模型,实现设计变量自动对应到同一或不同工位的模具几何模型上的形状参数,并将优化信息和几何模型进行集成;基于型腔参数化模板,应用模具几何模型自动获取技术实现设计变量到模具几何模型的自动映射,并保证了模具之间的约束与装配关系。提出了基于有限元分析模板的CAE模型智能建模技术。实现CAE分析模型的智能建模和修改,自动完成多工位高速锻造过程的连续模拟。提出了基于知识的CAE分析结果智能反馈技术。应用知识提取和模型智能重构,对数值模拟结果中的数据进行智能地分析并自动加以转化,实现了模拟结果到响应值(优化目标、约束条件)的自动提取与反馈,从而实现了“设计改进-响应反馈”过程的智能集成和自动化。
     在基于近似替代模型的组合优化策略和CAD/CAE智能集成技术研究的基础上,本文基于UG NX和DEFORM软件平台,利用Visual C++.net及MATLAB、EXCEL等软件开发了多工位高速锻造工艺智能优化系统。将基于近似替代模型的优化流程和相关知识集成到多工位高速锻造工艺智能优化系统中,在优化过程中,系统提供有效的智能支持,引导设计者完成多工位高速锻造工艺优化任务。通过对轴承套圈的多工位高速锻造工艺优化实例分析,验证了该系统的实用性和可靠性。
     基于智能优化系统,应用多工位高速锻造智能集成优化技术分别对二维热锻案例(轴承套圈锻件和齿坯锻件)和三维冷锻案例(小齿轮锻件)进行了优化,优化效果明显。与初始设计方案相比,有效地降低了成形载荷,减少了成形缺陷,从而验证了本文提出的多工位高速锻造工艺智能集成优化技术的有效性和正确性。
The high-speed multi-station forging process is a kind of advanced near net-shape forgingprocess. Due to the advantages of technology and economic benefits, it is widely applied inmanufacturing industry. Because it owns a series of forming stations which have closerelationships, the requirement of process design is very high. Improper design of die shapes ofpreform stations often results in too high forming load, unreasonable distribution of load andforming defects, such as folding and underfill. For a long time, in order to obtain the properdesign, designers often have to test or simulate the process design, and then optimize andredesign by experience iteratively. The trial-and-error optimization method depends on thedesign’s subjective experience and intuitive determination. It is random and inefficient, so it isdifficult to get the optimal design. With the rapid development of society and the increasingcompetition of enterprises, it is required to achieve the goals of process design for highefficiency, high quality and low cost. Thus, the application of advanced theory and method isdesired in the process of optimization to free the designers from the heavy work oftrial-and-error process. As a result, the intelligent technology, the numerical simulationtechnology and the optimization technology are necessary to be applied in the optimization formulti-station forging. In cooperation with HATEBUR, the following research results areobtained in the thesis.
     A combined optimization strategy based on surrogate model is proposed for theoptimization of high-speed multi-station forging process, which has the characteristics of theclose relationship between forming stations, lots of optimization goals and constraints, noexplicit expression between response and variables, long simulation time of the whole processand the complex parts that can not be simplified into2D. The combined optimization strategyapplies the techniques of orthogonal experiment design and analysis of variance (ANOVA) toevaluate the initial variables at first. According to the significance, the unimportant variables areejected to reduce scale of the optimization problem. After that, the latin hypercube sampling(LHS) method is applied to obtain the samples and the surrogate models are constructed toapproximate the relationships between variables and responds (objective functions andconstraints). Based on these surrogate models, an evaluation function is constructed by penaltymethod. In this way, the complex constrained nonlinear optimization problem can be changedinto a single-objective optimization problem of the evaluation function. Finally, the globaloptimization algorithm is applied to search the optimal solution. In the calculation process, theestablished surrogate models are used to predict the response value quickly instead of the numerical simulation. Therefore, it can reduce the optimization time significantly.
     Different DOE methods and surrogate modeling methods for approximate models arestudied and compared. For the optimization of high-speed multi-station forging process, thecombination of LHS and Kriging is proposed for the case of numerical response value, and BPnetwork is used for the case of linguistic response value. Two DOE methods, which includeorthogonal experimental design and LHS, together with four modeling methods, which includeleast square (LS) response surface, moving least square (MLS) response surface, BP neuralnetwork and Kriging model, are applied to establish the approximate relationship modelsbetween variables and response values of an actual case. And the prediction accuracies of thedifferent models are compared.
     In order to automatically obtain the response values corresponding to the modification ofdesign, the CAD/CAE intelligent integration technique is proposed in this thesis. It provides anintelligent integration platform for optimization to reduce the complex interactive operation. Itcontains the processes of the automatic modification of tools’ geometry models according tovariables, the intelligent modeling of CAE analysis model and the automatic acquisition andfeedback of the CAE simulation result. The knowledge integration method based on template ofparameterized geometry model and optimization case model is proposed. Through theoptimization case model, variables are corresponding to the parameters of tools’ geometrymodels in one or different forming stations automatically, and the highly integration ofoptimization information and geometry information is realized. Based on the parameterizedgeometry template of cavity, the automatic acquisition technique is applied to obtain the tools’geometry models according to the values of variables, which ensure the correct constraints andassembly relationships between tools. The knowledge based CAE intelligent modeling techniqueis proposed. It achieves the intelligent establishment and automatic modification of CAEanalysis model, so that the simulation of the forging process is carried out by sequence ofstations automatically. The knowledge based intelligent post simulation feedback technology isproposed. Based on knowledge acquisition and intelligent model reconstruction, the usefulinformation is analyzed and transformed from the CAE simulation result. Therefore, theautomatic mapping process from simulation result to response values (objective functions andconstraints) is implemented. Further more, the intelligent integration and automatic process,feedback of response values according to the modification of variables, is implemented.
     Based on the studies of surrogate model based combined optimization strategy andCAD/CAE intelligent integration technique, an intelligent optimization system for high-speedmulti-station forging process is developed on the platform of UG NX and DEFORM by usingthe software of Visual C++.net, MATLAB and EXCEL. The surrogate model based optimizationmethod and related knowledge is integrated in the intelligent optimization system, which guidesdesigners to complete the optimization task of high-speed multi-forging process. Meanwhile, theintelligent system provides effective intelligent support in the process of optimization. Theoptimization case study of combring produced by high-speed multi-station forging hasdemonstrated the reliability and practicality of the intelligent optimization system.
     Based on the intelligent optimization system, the intelligent integration optimizationtechnology is applied to optimize the2D hot forging cases, which include combring and gearblank, and3D cold forging case of gear. After optimization, the forging process is improvedsignificantly. As compared to the initial design, the maximum forming load is decreased, and theforming quality is improved without defect. The effectivity and rationality of the intelligentintegration optimization technology are proved.
引文
[1]周雄辉,彭颖红.现代模具设计制造理论与技术[M].上海:上海交通大学出版社,2000.
    [2]何芳. HATEBUR的高速精密锻造技术[J].锻压机械,1996,31(3):28-30.
    [3] http://www.hatebur.com.
    [4]中国机械工程学会.锻压手册(锻压车间设备)[M],第3版.北京:机械工业出版社,2008.
    [5]张小萍.锻压生产过程自动控制[M].北京:机械工业出版,1997.
    [6] Heifer K.用于精密锻造的新型热锻机HATEBUR-HOTMATIC HM35[J].锻造与冲压,2007,2:36-38.
    [7]中国机械工程学会.锻压手册(锻造)[M],第3版.北京:机械工业出版社,2008.
    [8] Lee J.H., Kang B.S., Lee J.H. Process design in multi-stage cold forging by the finite-element method [J].Journal of Materials Processing Technology,1996,58:147-183.
    [9] Santos A.D., Duarte J.F., Reis A., etal. The use of finite element simulation for optimization of metalforming and tool design [J]. Journal of Materials Processing Technology,2001,119(1-3):152-157.
    [10] Fang G., Zeng P. Finite element simulation for blanking process of sheet metal [J]. Acta MetallurgicaSinica,2001,37(6):653-657.
    [11]谢晓龙,赵震,虞松,等.齿形零件精冲成形三维有限元模拟与工艺优化[J].上海交通大学学报,2006,40(10):1649-1653.
    [12] Park J.J., Rebelo N., Kobayashi S. New approach to preform design in metal forming with the finiteelement method [J]. International Journal of Machine Tool Design&Research,1983,23(1):71-79.
    [13] Hwang, S.M., Kobayashi, S. Preform Design in Disk Forging [J]. International Journal of Machine ToolDesign&Research,1986,26(3):231-243.
    [14] Shiau, Y.C., Kobayashi, S. Finite element analysis of three-dimensional multistage forming operations [J].AMD,1987,88:193-198.
    [15] Kim, N., Kobayashi, S. Preform design in H-shaped cross sectional axisymmetric forging by the finiteelement method [J]. International Journal of Machine Tools&Manufacture,1990,30(2):243-268.
    [16] Kang, B.S., Kobayashi, S. Preform design in ring rolling processes by the three-dimensional finiteelement method International [J]. International Journal of Machine Tools&Manufacture,1991,31(1):139-151.
    [17] Kang, B.S., Lee, J.H., Kim, S.H. Development of a methodology to form net-shape nosing shells by thebackwards tracing scheme of the rigid-plastic FEM [J]. International Journal of Machine Tools&Manufacture,1997,37(6):737-750.
    [18]赵国群.锻造过程的正反向模拟[D].上海交通大学博士学位论文.1991.
    [19] Badrinarayanan S., Zabaras N. Sensitivity analysis for the optimal design of metal-forming processes [J].Computer Methods in Applied Mechanics and Engineering,1996,129(4):319-348.
    [20] Fourment L., Chenot J.L. Optimal design for non-steady-state metal forming process-I Shapeoptimization method [J]. International Journal for Numerical Methods in Engineering,1996,39(1):33-50.
    [21] Gao Z., Grandhi R.V. Microstructure optimization in design of forging processes [J]. International Journalof Machine Tools and Manufacture,2000,40(5):691-711.
    [22] Zhao, G., Wright, E., Grandhi R.V. Preform die shape design in metal forming using an optimizationmethod[J]. International Journal for Numerical Methods in Engineering,1997,40(7):1213-1230.
    [23]赵国群,马新武,王广春,等.锻造过程最优化预成形设计系统的开发研究[J].锻压机械,1999,34(4):13-16.
    [24]赵国群,贾玉玺,王广春,等.圆盘锻件纯形状锻造模具优化设计[J].机械工程学报,1999,35(4):81-84.
    [25]赵新海,赵国群,王广春,等.锻造预成形多目标优化设计的研究[J].机械工程学报,2002,38(4):62-65.
    [26]赵新海,虞松,赵国群,等.控制形状和变形的锻造预制坯多目标优化设计[J].山东大学学报,2004,34(4):88-90.
    [27] Kusiak J. Technique of tool-shape optimization in large scale problems of metal forming [J]. Journal ofMaterials Processing Technology,1996,57(1-2):79-84.
    [28] Roy S., Ghosh S., Shivpuri R. A new approach to optimal design of multi-stage metal forming processeswith micro genetic algorithms [J]. International Journal of Machine Tools and Manufacture,1997,37(1):29-44.
    [29] Jo H.H., Lee S.K., Ko D.C., etal. A study on the optimal tool shape design in a hot forming process [J].Journal of Materials Processing Technology,2001,111(1-3):127-131.
    [30] Chung J.S., Hwang S.M. Application of a genetic algorithm to process optimal design in non-isothermalmetal forming [J]. Journal of Materials Processing Technology,1998,80-81:136–143.
    [31] Chung, J.S., Hwang, S.M. Process optimal design in forging by genetic algorithm [J]. Journal ofManufacturing Science and Engineering,2002,124(2):397-408.
    [32]罗仁平,姚华,彭颖红,等.预锻模形状设计优化的新方法-微观遗传算法[J].中国机械工程.2002,13(2):202-204.
    [33] Myers R.H., Montgomery D.C. Response surface methodology: process and product optimization usingdesigned experiments [M]. J. Wiley,2002.
    [34] Berti G. A., Monti M. Thermo-mechanical fatigue life assessment of hot forging die steel [J]. Fatigue andFracture of Engineering Materials and Structures,2005,28(11):1025-1034.
    [35] Repalle J., Grandhi R.V. Design of forging process variables under uncertainties [J]. Journal of MaterialsEngineering and Performance,2005,14(1):123-131.
    [36]陈学文,王进,陈军,等.基于最小损伤值的齿轮毛坯锻造成形过程工艺参数优化设计[J].上海交通大学学报,2005,39(7):42-44.
    [37] Altan T. Computer aided design and manufacturing (cad/cam) of hot forging dies [J]. Journal of AppliedMetalworking,1982,2(2):77-85.
    [38] Aziz E. S., Chassapis C. Development of process optimization for an intelligent knowledge-based systemfor spur gear precision forging die design [J]. Proceedings of the ASME Design Engineering TechnicalConference.2004:313-320.
    [39] Teti R., Langella A., D'Addona D. Intelligent computation approach to process planning in multiple-stepcold forging [J]. CIRP Annals-Manufacturing Technology,1999,48(1):175-178.
    [40] Rowe G.W. Intelligent knowledge-based System to Provide Design and Manufacture Data for Forging [J].Computer-Aided Engineering Journal,1987,4(1):56-61.
    [41] Im C.S., Suh S.R., Lee M.C., etal. Computer aided process design in cold-former forging using a forgingsimulator and a commercial CAD software [J]. Journal of Materials Processing Technology,1999,95(1-3):155-163.
    [42] Yang D.Y., Im Y.T., Yoo Y.C., etal. Development of integrated and intelligent design and analysis systemfor forging processes [J]. CIRP Annals-Manufacturing Technology,2000,49(1):177-180.
    [43] Kim M.S., Choi J.C., Kim Y.H., etal. An automated process planning and die design system forquasi-axisymmetric cold forging products [J]. International Journal of Advanced ManufacturingTechnology,2002,20(3):201-213.
    [44] Kim C., Kim B.M., Choi J.C. Development of an integrated computer-aided process planning system forpress working products [J]. Journal of Materials Processing Technology,2001,111(1-3):188-192.
    [45]左旭,卫原平,阮雪榆.基于知识的、集成工具化的汽车锻件模具设计过程的仿真思想[J].计算机工程与设计,1998,19(1):22-26.
    [46] Chen X.W., Zuo S.Y., Chen J., etal. Research of knowledge-based hammer forging design support system[J]. International Journal of Advanced Manufacturing Technology,2005,27(1-2):25-32.
    [1]谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[D].上海交通大学,2007.
    [2]张健.飞机多学科设计优化中的近似方法研究[D].西北工业大学,2006.
    [3]穆雪峰,姚卫星,余雄庆,等.多学科优化中常用代理模型研究[J].计算力学学报,2005,22(5):608-612.
    [4]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1995.
    [5]石磊.试验设计基础[M].重庆:重庆大学出版社,1997.
    [6]袁志发.试验设计与分析[M].高等教育出版社,2000.
    [7]任新见,时党勇,汪剑辉.响应面试验设计的正交方法研究[J].山西建筑,2005,31(2):17-18.
    [8]游海龙,贾新章,张小波,等. Kriging插值与拉丁超立方试验相结合构造电路元模型[J].系统仿真学报,2005,17(11):2753-2755.
    [9] Olsson A., Sandberg G., Dahlblom O. On Latin hypercube sampling for structural reliability analysis [J].Structural Safety,2003,25(1):47-68.
    [10]桂劲松,康海贵.结构可靠度分析的响应面法及其Matlab实现[J].计算力学学报,2004,21(6):683-687.
    [11]陈光,任志良,孙海柱.最小二乘曲线拟合及Matlab实现[J].软件技术,2005,24(3):107-108.
    [12]曾清红,卢德唐.基于移动最小二乘法的曲线曲面拟合[J].工程图学学报,2004,25(1):84-89.
    [13]邵卫云,张雄.水泵水轮机全特性曲线的拟合-移动最小二乘近似[J].水力发电学报,2004,23(5):102-106.
    [14] Krishnamurthy T. Response surface approximation with augmented and compactly supported radial basisfunctions [J]. AIAA2003-1748.
    [15]邢小楠,徐元铭,李烁,等.神经网络响应面逼近在飞机总体优化设计中的应用[J].机械设计与研究,2004,20(1):68-71.
    [16]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [17]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [18] Simpson T.W., Mauery T.M., Korte J.J., etal. Kriging models for global approximation insimulation-based multidisciplinary design optimization [J], AIAA Journal,2001,39(12):2233-2241.
    [19] Simpson T.W., Mauery T.M., Korte J.J., etc. Comparison of response surface and kriging models formultidisciplinary design optimization [J], AIAA1998-4755.
    [20]曹鸿钧,段宝岩.基于Kriging模型的后优化近似研究[J].机械设计与研究,2004,20(5):10-14.
    [21]王晓锋,席光,王尚锦. Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    [1] Joun M.S., Lee S.W., Chung J.H. Finite element analysis of a multi-stage axisymmetric forging process[J]. International Journal of Machine Tool&Manufacture,1998,38(7):843-854.
    [2] Park K.S., VanTyne C.J., Moon Y.H. Process analysis of multistage forging by using finite elementmethod [J]. Journal of Materials Processing Technology,2007,187:586-590.
    [3] Zuo X., Wei Y.P., Chen J., et al.3D FEM simulation of multi-stage forging process using solid modelingof forging tools [J]. Journal of Materials Processing Technology,1999,91:191-195.
    [4] Thiyagarajan N., Grandhi R.V. Multi-level design process for3-D preform shape optimization in metalforming [J]. Journal of Materials Processing Technology,2005,170(1-2):421-429.
    [5] Kim N.H., Kang C.G., Kim B.M. Die design optimization for axisymmetric hot extrusion of metal matrixcomposites [J]. International Journal of Mechanical Sciences,2001,43(6):1507-1520.
    [6] Srikanth A., Zabaras N. Shape optimization and preform design in metal forming processes [J]. ComputerMethods in Applied Mechanics and Engineering,2000,190(13-14):1859-1901.
    [7] Wu C.Y., Hsu Y.C. Optimal shape design of an extrusion-forging die using a polynomial network and agenetic algorithm [J]. International Journal of Advanced Manufacturing Technology,2002,20(2):128-137.
    [8]孙靖民.机械优化设计[M].北京:机械工业出版社,1990.
    [9]张颖,郝新,陈林.有限元模拟技术在改变锻件流线方面的应用[J].热加工工艺,2008,37(7):50-52.
    [10]陈伟.轴承内、外圈裂纹与折叠的产生与判断[J].通用机械,2007,(11):25-26.
    [11]李尚健.锻造工艺及模具设计资料[M].北京:机械工业出版社,1991.
    [12] Kim D.J., Kim B.M. Application of neural network and FEM for metal forming processes [J].International Journal of Machine Tools&Manufacture,2000,40(6):911-925.
    [13] Zhao G.Q., Ma X.W., Zhao X.H., etc. Studies on optimization of metal forming processes using sensitivityanalysis methods [J]. Journal of Materials Processing Technology,2004,147(2):217-228.
    [14]袁志发.试验设计与分析[M].北京:高等教育出版社,2000.
    [15]林忠钦,刘罡,李淑慧,等.应用正交试验设计提高U形件的成形精度[J].机械工程学报,2002,38(3):83-89.
    [16]苏子健,钟毅芳.系统近似建模技术的研究与比较[J].系统工程与电子科技,2005,27(5):834-836.
    [17]游海龙,贾新章,张小波等.试验设计与仿真相结合构造集成电路元模型的方法研究[J],电子学报,2006,34(6):1159-1162.
    [18]王奕首,史彦军,滕宏飞.多学科设计优化研究进展[J].计算机集成制造系统,2005,11(6):751-756.
    [19]陈东芳,薛继伟,张漫.全局最优化算法及其应用[J].大庆石油学院学报,2005,29(1):89-93.
    [20]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [21] Michalewicz Z., Dasgupta D., Rodolphe G.R., etal. Evolutionary algorithms for constrained engineeringproblems [J]. Computers and Industrial Engineering,1996,30(4):851–870.
    [22]刘琼荪,周声华.基于自适应惩罚函数法的混合遗传算法[J].重庆大学学报.2006,29(6):78-81.
    [23]李斌,朱如鹏.基于遗传算法的行星齿轮传动优化及Matlab实现[J].机械设计,2004,21(10):29-31.
    [24]倪金林.遗传算法求解约束非线性规划及Matlab实现[J].大学数学,2005,21(1):91-95.
    [1] Shi X., Chen J., Peng Y., etal. Development of a knowledge-based process planning system for an autopanel [J]. International Journal of Advanced Manufacturing Technology,2002,19(12):898-904.
    [2]王刚,邹昱章,余国华. UG知识熔接技术培训教程[M].北京:清华大学出版社,2002.
    [3]刘云飞,郭明飞,彭伟.基于UG平台的截面特征曲线全局约束优化研究[J].工程图学学报,2006,27(4):94-99.
    [4]张桂侠,朱家诚.基于UG的参数化零件模型库的创建[J].机械工程师,2008,(7):144-146.
    [5]张琴. UG相关参数化设计培训教程[M].北京:清华大学出版社,2002.
    [6]徐蔚,杨素君. UG/NX中的直齿内圆锥齿轮的三维参数化造型[J].工程图学学报,2008,29(5):154-157.
    [7]曹宇芳,詹捷. UG参数化设计在汽车覆盖件模具设计中的应用[J].重庆工学院学报,2008,22(1):28-31.
    [8]张冶. Unigraphics NX参数化设计实例教程[M].北京:清华大学出版社,2003.
    [9]毕凤荣,冷传刚,葛维晶.利用UG二次开发进行参数化设计关键问题的研究[J].小型内燃机与摩托车,2008,37(3):25-26.
    [10]李宏伟,马宇,马永杰.基于Deform的转向节成形参数优化设计[J].郑州轻工业学院学报,2008,23(4):54-58.
    [11]薛永栋,韩静涛.基于DEFORM的金属压力加工数值模拟[J].冶金设备,2007,(4):34-37.
    [1] Roy S., Ghosh S., Shivpuri R. A new approach to optimal design of multi-stage metal forming processeswith micro genetic algorithms [J]. International Journal of Machine Tools&Manufacture,1997,37(1):29-44.
    [2]陈学文,陈军,左四雨,等.基于有限元分析的锻造工艺优化技术研究现状与趋势[J].锻压装备与制造技术,2004,(5):14-18.
    [3]陈学文.热锻成形工艺智能设计与优化技术研究[D].上海交通大学,2006.
    [4] Moss M.A., Jambunathan K., Lai E. A knowledge based database system for engineering correlations [J].Artificial Intelligence in Engineering,1999,13(3):201-210.
    [5]董正卫,田立中,付宜利. UG/open API编程基础[M].北京:清华大学出版社,2002.
    [1]廖春晖. L68149/11轴承套圈套锻挤压成形工艺[J].轴承,2004,(8):18-19.
    [2]林铭.滚动轴承套圈锻造工艺浅析[J].水轮泵,2002,(8):35-36.
    [3]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:机械工业出版社,2003.
    [4] Helfer K. HATEBUR-Coldmatic AKP4-6S最新冷成形机[J].锻造与冲压,2006,(9):46-48.
    [5]赵震,陈军,吴公明.冷温热挤压技术[M].北京:电子工业出版社,2008.
    [6]吴诗惇.挤压理论[M].北京:国防科技出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700