铁铁氢化酶活性中心模型配合物的合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中微生物体内的铁铁氢化酶能够可逆催化质子还原产氢,晶体和红外光谱研究表明其活性中心具有双八面体的蝶状几何构型,与早有研究的金属有机配合物[Fe_2(μ-SR)_2(CO)_(6-n)L_n]非常相似。因其简单的结构组成和高催化性能,铁铁氢化酶活性中心的结构和功能模拟引起了生物无机化学家们极大的兴趣。人们力求进一步揭示铁铁氢化酶催化产氢的机理,并最终制得廉价高效的制氢催化剂。本论文主要合成了一系列二铁配合物作为铁铁氢化酶活性中心的结构和功能模型。
     为考察桥连配体中硫原子的替换对模型配合物性质的影响,合成了3个氮杂桥连[2Fe2Se]模型配合物[{(μ-SeCH_2)_2NC_6H_4R}Fe_2(CO)_6](R=4-NO_2,7;R=H,8;R=4-CH_3,9)。X射线单晶衍射表明配合物7-9的分子构型与其对应的[2Fe2S]类似物[{(μ-SCH_2)_2NC_6H_4R}Fe_2(CO)_6](R=4-NO_2,7s;R=H,8s;R=4-CH_3,9s)非常相似。红外光谱和电化学循环伏安曲线表明将桥连配体中硫原子替换成硒原子增大了中心铁原子上的平均电子云密度。选择配合物9考察催化活性时发现,在对甲苯磺酸(HOTs)的存在下,配合物9有着比其[2Fe2S]类似物9s略高的电催化质子还原活性。
     基于光驱动电子转移还原质子产氢的构想,合成了3个连接苯并噻唑类有机光敏体[2Fe2S]模型配合物16-18。为进一步考察光敏体和[2Fe2S]单元的电子相互作用,合成了3个参比化合物16r-18r。利用吸收和发射光谱及闪光光解研究了配合物16-18及参比化合物16r-18r的光物理性质。与16r及16r和等摩尔[(μ-S)_2Fe_2(CO)_6]的混合物相比较,配合物16的荧光光谱产生淬灭,并且配合物16的常温激发态寿命要短于16r。这些结果表明配合物16中光敏体和[2Fe2S]单元之间发生了分子内能量转移。
     通过配体取代将水溶性三吗啉膦(TMP)引入到[2Fe2S]模型配合物中,合成了单取代配合物[(μ-pdt)Fe_2(CO)_5(TMP)](20)和双取代配合物[(μ-pdt)Fe_2(CO)_4(TMP)_2](21)。红外光谱表明TMP配体比其它膦配体(如PMe_3,PTA,PPh_3)具有更强的供电子能力。电化学循环伏安曲线表明:乙酸存在条件下,配合物20和21在乙腈/水混合溶液体系中的催化质子还原活性要高于在纯乙腈中催化活性,并且在乙腈/水(10:1,v/v)中达到最高。
     通过Fe_3(CO)_(12)与2,3-二巯基吡嗪在四氢呋喃中回流反应将刚性共轭桥连结构引入到[2Fe2S]模型配合物中,合成了配合物[μ-SC_4N_2H_2S-μ]Fe_2(CO)_6(24)。在对配合物24进行PMe_3配体取代时,得到了其单取代配合物[μ-SC_4N_2H_2S-μ]Fe_2(CO)_5(PMe_3)(26)和一种意外的单核铁配合物[μ-SC_4N_2H_2S-μ]Fe(CO)_2(PMe_3)_2(25)。分离得到了配合物24和25的质子化产物24H~+、25H~+和25H_2~(2+),并通过X射线单晶衍射表征了3种质子化产物的结构,质子化过程则通过UV/Vis、IR和NMR光谱跟踪。电化学研究表明刚性共轭桥连结构能够降低[2Fe2S]模型配合物的还原电位,配合物24的第一还原电位为-1.19 V(vs.Fc/Fc~+)。
     所有合成的化合物均通过红外光谱、核磁和高分辨质谱的表征。其中配合物7-9、16-18、20、21、24-26、24H~+、25H~+和25H_2~(2+)通过X射线单晶衍射测定了分子结构。
Fe-Fe hydrogenases are enzymes which can reversibly catalyze the proton reduction to hydrogen in microorganisms.Crystallographic and IR spectroscopy studies reveal that the active site of Fe-Fe hydrogenases adopts a square-pyramidal butterfly coordination geometry,which highly resemble the well-known organometallic complexes formulated as [Fe_2(μ-SR)_2(CO)_(6-n)L_n].Owing to the simple structure and the high efficiency,biomimetic models related to the active site of the Fe-Fe hydrogenases are of particular interest to bioinorganic chemists.They try to further understand the catalytic mechanism for proton reduction and eventually find the synthetic competitive catalysts that function with hydrogenase-like capability.In this thesis,a series of diiron complexes were synthesized as the structural and functional models for the Fe-Fe hydrogenases active site.
     Three N-substituted aza diselenide diiron complexes[{(μ-SeCH_2)_2NC_6H_4R}Fe_2(CO)_6] (R=4-NO_2,7;R=H,8;R=4-CH_3,9) were firstly synthesized to investigate the effects of changing the S atoms of the bridging dithiolate ligands on the biomimetic models.X-ray single crystal diffraction reveals the overall molecular structures of 7-9 are analogous to those of their dithiolate analogues[{(μ-SCH_2)_2NC_6H_4R}Fe_2(CO)_6](R=4-NO_2,7s;R=H, 8s;R=4-CH_3,9s).IR spectra and electrochemical studies indicate that changing the S atoms of the bridging ligands to Se atoms enhance the average electron density of the iron cores.As a typical object we chose,complex 9 shows a slightly higher electrocatalytic activity for proton reduction from HOTs than its dithiolate analogue 9s.
     On the basis of the concept of light-induced electron transfer(ET) to drive proton reduction to hydrogen,three novel benzothiazole photosensitizer-[2Fe2S]complexes 16-18 were successfully synthesized and well characterized.In addition,three reference compounds 16r-18r were prepared to further investigate the electronic interaction between the photosensitizer and the[2Fe2S]subunit.The photophysical properties of 16-18 and 16r-18r have been investigated by absorption & emission spectra and flash photolysis.As compared to 16r and the equimolar mixture of 16r and[(μ-S)_2Fe_2(CO)_6],the fluorescent spectra of 16 is quenched.Meanwhile,the emission lifetime is shorter than that of 16r. These results show that the intramolecular energy transfer from the photosensitizer to the [2Fe2S]subunit occurs in complex 16.
     Mono-and disubstituted complexes,[(μ-pdt)Fe_2(CO)_5(TMP)](20) and[(μ-pdt) Fe_2(CO)_4(TMP)_2](21),were synthesized to introduce a water soluble phosphine ligand, tris(morpholino)phosphine(TMP),to the[2Fe2S]model complex.IR spectra indicate that the TMP ligand has better electron-donating ability than that of other phosphine ligands, such as PMe_3,PTA(1,3,5-triaza-7-phosphaadamantane),PPh_3.Electrochemical CVs reveal that both complexes 20 and 21 could electrocatalyze the protons reduction from HOAc in higher activity in CH_3CN/H_2O mixed solutions than in pure CH_3CN solution.And in CH_3CN/H_2O(10:1,v/v),the catalytic activity is highest.
     In order to tune the reduction potential of the[2Fe2S]model,complex [μ-SC_4N_2H_2S-μ]Fe_2(CO)_6(24) with the rigid and conjugated bridge was prepared by the reaction of Fe_3(CO)_(12) and pyrazine-2,3-dithiol in THF at refluxing temperature.The monotrimethylphosphine substituted complex[μ-SC_4N_2H_2S-μ]Fe_2(CO)_5(PMe_3)(26) and an unexpected monometallic complex[μ-SC_4N_2H_2S-μ]Fe(CO)_2(PMe_3)_2(25) were obtained in the PMe_3 ligand replacements.Protonated species of complexes 24 and 25,those 24H~+,25H~+ and 25H_2~(2+) were isolated and characterized by X-ray crystal diffraction.The protonation processes are traced by UV/Vis,IR and NMR spectra in the presence of HOTf. The results of electrochemistry indicate that the rigid and conjugated bridge indeed results in the positive shift of the reduction potential.The first reduction peak of complex 24 appears at -1.19V(vs.Fc/Fc~+).
     All synthesized complexes were characterized by IR,NMR and HR-MS.Structures of complexes 7-9,16-18,20,21,24-26,24H~+,25H~+ and 25H_2~(2+) were determined by X-ray single crystal diffraction.
引文
[1] Peters J W. Structure and mechanism of iron-only hydrogenases. Curr. Opin. Stru. Biol., 1999, 9(6): 670-676.
    
    [2] Adams M W. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta, 1990, 1020: 115-145.
    
    [3] Frey M. Hydrogenases: Hydrogen-Activating Enzymes. ChemBioChem., 2002,3: 153-160.
    
    [4] Adams M W W, Stiefel E I. Biological Hydrogen Production: Not So Elementary. Science, 2001, 287: 1842-1843.
    
    [5] Peters J W, Lanzilotta W N, Lemon B J et al. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science, 1998, 282: 1853-1858.
    
    [6] Nicolet Y, Piras C, Legrand P et al. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure, 1999, 7: 13-23.
    
    [7] Van Der Spek T M, Arendsen A F, Happe R P et al. Similarities in the Architecture of the Active Sites of Ni-hydrogenases and Fe-Hydrogenases Detected by Means of Infrared Spectroscopy. Eur. J. Biochem., 1996,237:629-634.
    
    [8] Pierik A J, Hulstein M, Hagen W R et al. A Llow-spin Iron with CN and CO as Intrinsic Ligands Forms the Core of the Active Site in [Fe]-Hydrogenases. Eur. J. Biochem., 1998,258: 572-578.
    
    [9] Spek T M, Arendsen A F, Happe R P et al. Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur. J. Biochem., 1996, 237: 629-634.
    
    [10] DeLacey A L, Stadler C, Cavazza C et al. FTIR Characterization of the Active Site of the Fe-hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc., 2000, 122: 11232-11233.
    
    [11] Nicolet Y, Lacey A de, Vernède X et al. Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination Upon Reduction of the Active Site of the Fe-Only Hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc., 2001, 123: 1596-1601.
    
    [12] Fan H J, Hall M B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. J. Am. Chem. Soc.,2001,123:3828-3829.
    
    [13] Nicolet Y, Cavazza. C, Fontecilla-Camps J C. Fe-only Hydrogenases: structure, function and evolution. J. Inorg. Biochem., 2002,91:1-8.
    
    [14] Royke C, Vlugt J, Rauchfuss T B et al. Diferrous cyanides as models for the Fe-only hydrogenases. J. Am. Chem. Soc., 2005, 127(31): 11010-11018.
    
    [15] Nicolet Y; Lemon B J; Fontecilla-Camps J C et al. A novel FeS cluster in Fe-only Hydrogenases. Trends Biochem. Sci, 2000,25: 138-143.
    
    [16] Chen Z, Lemon B J, Huang S et al. Infrared Studies of the CO-Inhibited Form of the Fe-Only Hydrogenase from Clostridium pasteurianum I: Examination of Its Light Sensitivity at Cryogenic Temperatures. Biochemistry, 2002, 41: 2036-2043.
    
    [17] Popescu C V, Münck E. Electronic Structure of the H Cluster in [Fe]-Hydrogenases. J. Am. Chem. Soc., 1999, 121:7877-7884.
    [18] Pereira A S, Tavares P, Moura I et al. M(o|¨)ssbauer Characterization of the Iron-Sulfur Clusters in Desulfovibrio vulgaris Hydrogenase. J. Am. Chem. Soc., 2001, 123: 2771-2782.
    
    [19] Darensbourg M Y, Lyon E J, Zhao X et al. Bioinorganic chemistry special feature: The organometallic active site of [Fe]hydrogenase: Models and entatic states. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:-3688.
    
    [20] Reihlen H, Gruhl A, Hessling G V. (U|¨)ber den photochemischen und oxydativen Abbau von Carbonylen. Lebigs Ann. Chem., 1929, 472: 268-287.
    
    [21] Song L-C. Investigations of butterfly Fe/S cluster S-centered anions (μ-S~-)_2Fe_2(CO)_6, (μ-S~-)(μ-RS)Fe_2(CO)_6, and related species. Acc. Chem. Res., 2005, 38: 21-28.
    
    [22] Lyon E J, Georgakaki I P, Reibenspies J H et al. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. In. Ed. Engl., 1999, 38: 3178-3180.
    
    [23] Schmidt M, Contakes S M, Rauchfuss T B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe_2(μ-SR)_2(CO)_4(CN)_2~(2-). J. Am. Chem. Soc., 1999, 121: 9736-9737.
    
    [24] Cloirec A L, Best S P, Borg S et al. A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-cluster of Fe-only hydrogenase. Chem. Commun., 1999, 2285-2286.
    
    [25] Lyon E J, Georgakaki I P, Reibenspies J H et al. Coordination Sphere Flexibility of Active-Site for Fe-only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc., 2001,123:3268-3278.
    
    [26] Georgakaki I P, Thomson L M, Lyon E J et al. Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coord. Chem. Rev., 2003, 238-239: 255-266.
    
    [27] Gloaguen F, Lawrence J D, Schmidt M et al. Synthetic and Structural Studies on [Fe_2(SR)_2(CN)_x(CO)_(6-x)]~(x-) as Active Site Models for Fe-Only Hydrogenases. J. Am. Chem. Soc., 2001, 123: 12518-12527.
    
    [28] Zhao X, Georgakaki I P, Miller M L et al. H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe-H_2ase. J. Am. Chem. Soc., 2001, 123: 9710-9711.
    
    [29] Zhao X, Georgakaki I P, Miller M L et al. Catalysis of H_2/D_2 Scrambling and Other H/D Exchange Processes by [Fe]-Hydrogenase Model Complexes. Inorg. Chem., 2002, 41: 3917-3928.
    
    [30] Vignais P M. H/D exchange reactions and mechanistic aspects of the hydrogenases. Coord. Chem. Rev., 2005, 249: 1677-1690.
    
    [31] Gloaguen F, Lawrence J D, Rauchfuss T B et al. Bimetallic Carbonyl Thiolates as Functional Models for Fe-Only Hydrogenases. Inorg. Chem., 2002,41: 6573-6582.
    
    [32] JusticeA K, Linck R C, Rauchfuss T B et al. Dihydrogen Activation by a Diruthenium Analogue of the Fe-Only Hydrogenase Active Site. J. Am. Chem. Soc. 2004, 126: 13214-13215.
    
    [33] Mejia-Rodriguez R, Chong D, Reibenspies J H et al. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H_2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc., 2004, 126: 12004-12014.
    
    [34] Hou J, Peng X, Zhou Z et al. Tris(N-pyrrolidinyl)phosphine substituted diiron dithiolate related to iron-only hydrogenase active site: Synthesis, characterization and electrochemical properties. J. Organomet. Chem., 2006, 691: 4633-4640.
    [35] Lawrence J D, Rauchfuss T B, Wilson S R. New Class of Diiron Dithiolates Related to the Fe-Only Hydrogenase Active Site: Synthesis and Characterization of [Fe_2(SR)_2(CNMe)_7]~(2+). Inorg. Chem., 2002,41: 6193-6195.
    
    [36] Nehring J L, Heinekey D M. Dinuclear Iron Isonitrile Complexes: Models for the Iron Hydrogenase Active Site . Inorg. Chem., 2003, 42: 4288-4292.
    
    [37] Tye J W, Lee J, Wang H-W et al. Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model. Inorg. Chem., 2005,44: 5550-5552.
    
    [38] Capon J-F, Hassnaoui S, Talarmin J et al. N-heterocyclic carbene ligands as cyanide mimics in diiron models of the all-iron hydrogenase active site. Organometallics, 2005, 24: 2020-2022.
    
    [39] Na Y, Wang M, Jin K et al. An approach to water-soluble hydrogenase active site models: Synthesis and electrochemistry of diiron dithiolate complexes with 3,7-diactyl-1,3,7-triaza-5-phosphabicyclo [3.3.1]nonane ligand(s). J. Organomet. Chem., 2006,691: 5045-5051.
    
    [40] Schwartz L, Ekstr(o|¨)m J, Lomoth R et al. Dynamic ligation at the first amine-coordinated iron hydrogenase active site mimic. Chem. Commun., 2006,4206-4208.
    
    [41] Duan L, Wang M, Li P et al. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Dalton Trans., 2007, 1277-1283.
    
    [42] Gao W, Liu J, (A|°)kermark B et al. Bidentate Phosphine Ligand Based Fe_2S_2-Containing Macromolecules: Synthesis, Characterization, and Catalytic Electrochemical Hydrogen Production. Inorg. Chem., 2006,45: 9169-9171.
    
    [43] Ezzaher S, Capon J-F, Gloaguen F et al. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg. Chem., 2007,46: 3426-3428.
    
    [44] Justice A K, Zampella G, Gioia L D et al. Chelate Control of Diiron(I) Dithiolates Relevant to the [Fe-Fe]-Hydrogenase Active Site. Inorg. Chem., 2007,46: 1655-1664.
    
    [45] Adam F I, Hogarth G, Richards I et al. Models of the iron-only hydrogenase: Structural studies of chelating diphosphine complexes [Fe_2(CO)_4(n-pdt(κ~2P,P'-diphosphine)]. Dalton Trans., 2007,2495-2498.
    
    [46] Morvan D, Capon J-F, Gloaguen F et al. N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites. Organometallics, 2007, 26:2042-2052.
    
    [47] Orain P-Y, Capon J-F, Kervarec N et al. Use of 1, 10-phenanthroline in diiron dithiolate derivatives related to the [Fe-Fe] hydrogenase active site. Dalton Trans., 2007, 3754-3756.
    
    [48] Liu Z P, Hu P. A Density Functional Theory Study on the Active Center of Fe-Only Hydrogenase: Characterization and Electronic Structure of the Redox States. J. Am. Chem. Soc., 2002, 124: 5175-5182.
    
    [49] Bruschi M, Zampella G, Fantucci P et al. DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord. Chem. Rev., 2005,249: 1620-1640.
    
    [50] Liu X M, Ibrahim S K, Tard C et al. Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev., 2005, 249: 1641-1652.
    
    [51] Lawrence J D, Li H, Rauchfuss T B. Beyond Fe-only hydrogenases: N-functionalized 2-aza-1,3-dithiolates Fe2[(SCH2)2NR](CO)x (x = 5, 6). Chem. Commun., 2001, 16: 1482-1483.
    [52] Lawrence J D, Li H, Rauchfuss T B et al. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. Engl., 2001, 40: 1768-1771.
    
    [53] Li H, Rauchfuss T B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc., 2002, 124: 726-727.
    
    [54] Rauchfuss T B. Research on Soluble Metal Sulfides: From Polysulfido Complexes to Functional Models for the Hydrogenases. Inorg. Chem., 2004,43: 14-26.
    
    [55] Dong W B, Wang M, Liu X Y et al. An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases. Chem. Commun., 2006,305-307.
    
    [56] Wang F J, Wang M, Liu X Y et al. Spectroscopic and crystallographic evidence for the N-protonated Fe~IFe~I azadithiolate complex related to the active site of Fe-only hydrogenases. Chem. Commun., 2005, 3221-3223.
    
    [57] Schwartz L, Eilers G, Eriksson L A et al. Iron hydrogenase active site mimic holding a proton and a hydride. Chem. Commun., 2006, 520-522.
    
    [58] Song L-C, Yang Z-Y, Bian H-Z et al. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of [Fe]-Only Hydrogenases. Organometallics, 2004,23, (13): 3082-3084.
    
    [59] Song L-C, Yang Z-Y, Hua Y-J et al. Diiron Thiadithiolates as Active Site Model for the Iron-only Hydrogenases: Synthesis, Structrues, and Catalytic H_2 Production. Organometallics, 2007, 26: 2106-2110.
    
    [60] Razavet M, Davies S C, Hughes D L et al. {2Fe3S} clusters related to the di-iron sub-site of the H-centre of all-iron hydrogenases. Chem. Commun., 2001, 847-848.
    
    [61] George S J, Cui Z, Razavet M et al. The Di-Iron Subsite of All-Iron Hydrogenase: Mechanism of Cyanation of a Synthetic {2Fe3S}-Carbonyl Assembly. Chem.-Eur. J., 2002, 8: 4037-4046.
    
    [62] Zampella G, Bruschi M, Fantucci P et al. Dissecting the Intimate Mechanism of Cyanation of {2Fe3S} Complexes Related to the Active Site of All-Iron Hydrogenases by DFT Analysis of Energetics, Transition States, Intermediates and Products in the Carbonyl Substitution Pathway. Chem.-Eur. J., 2005, 11: 509-520.
    
    [63] Tard C, Liu X M, Ibrahim S K et al. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature, 2005,433: 610-613.
    
    [64] He C, Wang M, Zhang X et al. An Unusual Cyclization in a Bis(Cysteinylthiolate) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angew. Chem. Int. Ed., 2004, 43, 3571-3574.
    
    [65] Song L-C, Ge J-H, Yan J et al. Iron-only Hydrogenase Active Site Models Containing a Cysteiny Group Coordinated through Its Sulfur Atom to One Iron Atom of the Diiron Subsite. Eur. J. Inorg. Chem., 2008, 164-171.
    
    [66] Pierik A J, Hagen W R, Redeker J S et al. Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem., 1992, 209: 63-72.
    
    [67] Pierik A J, Hulstein M, Hagen W R et al. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem., 1998, 258: 572-578.
    
    [68] Boyke C A, Rauchfuss T B, Wilson S R et al. [Fe_2(SR)_2(μ-CO)(CNMe)_6]~(2+) and Analogues: A New Class of Diiron Dithiolates as Structural Models for the H_(ox)~(Air) State of the Fe-Only Hydrogenase. J. Am. Chem. Soc., 2004, 126: 15151-15160.
    [69] Vlugt J I, Rauchfuss T B, Wilson S R. Electron-Rich Diferrous-Phosphane-Thiolates Relevant to Fe-only Hydrogenase: Is Cyanide "Nature's Trimethylphosphane"?. Chem. Eur. J., 2006, 12: 90-98.
    
    [70] Vlugt J I, Rauchfuss T B, Whaley C M et al. Characterization of a Diferrous Terminal Hydride Mechanistically Relevant to the Fe-Only Hydrogenases. J. Am. Chem. Soc., 2005, 127: 16012-16013.
    
    [71] Liu T, Darensbourg M Y. A mixed-Valent, Fe(Ⅱ)Fe(Ⅰ), Diiron Complex Reproduces the Unique Rotated State of the [FeFe]Hydrogenase Active Site. J. Am. Chem. Soc., 2007, 129: 7008-7009.
    
    [72] Justice A K, Rauchfuss T B, Wilson S R. Unsaturated, Mixed-Valence Diiron Dithiolate Model for the H_(ox) State of the [FeFe] Hydrogenase. Angew. Chem. Int. Ed., 2007,46: 6152-6154.
    
    [73] Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc., 2001, 123: 9476-9477.
    
    [74] Izutsu K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, Blackwell Scientific Publications, Oxford, 1990.
    
    [75] Chong D, Georgakaki I P, Mejia-Rodriguez R et al. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans., 2003, 4158-4163.
    
    [76] Ott S, Kritikos M, (A|°)kermark B et al. A Biomimetic Pathway for Hydrogen Evolution from a Model of the Iron Hydrogenase Active Site. Angew. Chem. Int. Ed., 2004, 43: 1006-1009.
    
    [77] Tard C, Liu X M, Hughes D L et al. A novel {Fe~Ⅰ-Fe~Ⅱ-Fe~Ⅱ-Fe~Ⅰ} iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution. Chem. Commun., 2005, 133-135.
    
    [78] Capon J F, Gloaguen F, Schollhammer P et al. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters. J. Electroanal. Chem., 2004,566: 241-247.
    
    [79] Capon J F, Gloaguen F, Schollhammer P et al.Catalysis of the electrochemical H_2 evolution by di-iron sub-site models. Coord. Chem. Rev., 2005, 249: 1664-1676.
    
    [80] Capon J F, Gloaguen F, Schollhammer P et al. Activation of proton by the two-electron reduction of a di-iron organometallic complex. J. Electroanal. Chem., 2006, 595:47-52.
    
    [81] Gloaguen F, Morvan D, Capon J-F et al. Eletrochemical proton reduction at mild potentials by monosubstituted diiron organometallic complexes bearing a benzenedithiolate bridge. J. Electroanal. Chem., 2007,603: 15-20.
    
    [82] Sun L C, (A|°)kermark B, Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev., 2005,249: 1653-1663.
    
    [83] Salyi S, Kritikos M, (?)kermark B et al. Synthesis of an Amino-Functionalized Model of the Fe-Only Hydrogenase Active Site. Chem. Eur. J., 2003, 9: 557-560.
    
    [84] Wolpher H, Borgstr(o|¨)m M , Hammarstr(o|¨)m L et al. Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. commun., 2003, 989-991.
    
    [85] Ott S, Kritikos M, (?)kermark B et al. Synthesis and Structure of a Biomimetic Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer. Angew. Chem. Int. Ed., 2003, 42: 3285-3288.
    
    [86] Ott S, Kritikos M, (?)kermark B et al. Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer: Synthesis and Photophysical Properties. Inorg. Chem., 2004, 43: 4683-4692.
    [87] Ekstr(o|¨)m J, Abrahamssson M, Olson C et al. Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 2006, 4599-4606.
    
    [88] Song L-C, Tang M-Y, Su F-H et al. A Biomimetic Model for the Active Site of Iron-only Hydrogenase Covalently Bonded to a Porphyrin Photosensitizer. Angew. Chem. Int. Ed., 2006, 45: 1130-1133.
    
    [89] Song L-C, Tang M-Y, Mei S-Z et al. The Active Site Model for Iron-Only Hydrogenases Coordinatively Bonded to a Metalloporphyrin Photosensitizer. Organometallics, 2007, 26: 1575-1577.
    
    [90] Na Y, Pan J, Wang M et al. Intermolecular Electron Transfer from Photogenerated Ru(bpy)_3~+ to [2Fe2S] Model Complexes of the Iron-Only Hydrogenase Active Site. Inorg. Chem., 2007,46: 3813-3815.
    
    [91] Na Y, Wang M, Pan J et al. Visble Light -Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes. Inorg. Chem., 2008, 47: 2805-2810.
    
    [92] Li P, Wang M, He C et al. Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of [(μ-S_2C_3H_6)Fe_2(CO)_(6-n)L_n] (L = PMe_2Ph, n = 1, 2; PPh_3, P(OEt)_3, n = 1). Eur. J. Inorg. Chem., 2005, 2506-2513.
    
    [93] Li P, Wang M, He C et al. Phosphine and Phosphite Unsymmetrically Disubstituted Diiron Complexes Related to the Fe-Only Hydrogenase Active Site. Eur. J. Inorg. Chem., 2007, 3718-3727.
    
    [94] Song L C, Yang Z Y, Bian H Z et al. Diiron Oxadithiolate Type Models for the Active Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution Catalyzed by Fe2(μ-SCH_2OCH_2S-μ)(CO)_6. Organometallics, 2005,24: 6126-6135.
    
    [95] Das P, Capon J F, Gloaguen F et al. Di-Iron Aza Aiphophido Complexes: Mimics for the Active Site of Fe-Only Hydrogenase, and the Effects of Changing the Coordinating Atoms of the Bridging Ligand in [Fe_2{μ-(ECH_2)_2NR}(CO)_6]. Inorg. Chem., 2004, 43: 8203-8205.
    
    [96] Cheah M H, Borg S J, Bondin M I et al. Electrocatalytic Proton Reduction by Phosphido-Bridged Diiron Carbonly Compounds: Distant Relations to the H-Cluster? Inorg. Chem., 2004,43: 5635-5644.
    
    [97] Mathur P, Sekar P, Satyanarayana C V V et al. Synthesis and Structural Characterization of the Heterometallic Clusters CpCoFe_2(μ_3-Se)_2(CO)_6 and CpCoFe_2(μ_3-S)(μ_3-Se)(CO)_6. Organometallics, 1995, 14:2115-2118.
    
    [98] Seyferth D, Henderson R S. Selenium-selenium bond reactions of μ-(diselenium)bis(tricarbonyliron), an inorganic mimic of organic diselenides. J. Organomet. Chem., 1981, 204: 333-343.
    
    [99] Liu T B, Wang M, Shi Z et al. Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. Chem. Eur. J., 2004, 10:4474-4479.
    
    [100] Li H, Rauchfuss T B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc., 2002, 124: 726-727.
    
    [101] Hou J, Peng X, Liu J, Gao Y et al. A Binuclear Isocyanide Azadithiolatoiron Complex Relevant to the Active Site of Fe-Only Hydrogenases: Synthesis, Structure and Electrochemical Properties. Eur. J. Inorg. Chem., 2006: 4679-1686.
    
    [102] 陈小明, 蔡继文. 单晶结构分析-原理与实践. 北京: 科学出版社, 2003.
    
    [103] Software packages SMART and SAINT, Siemens Energy & Automation Inc., Madison, Wisconsin, 1996.
    
    [104] Sheldrick G M, SADABS Absorption Correction Program, University of G(o|¨)ttingen, Germany, 1996.
    [105] Sheldrick G M, SHELXTL97 Program for the Refinement of Crystal Structure, University of G(o|¨)ttingen, Germany, 1997.
    
    [106] Si Y, Ma C, Hu M et al. (W-C_nH_(wn-1))-1,3-Azapropanedithiolate (n = 5,6, 7)-bridged diiron complexes as mimics for the active site of [FeFe]-hydrogenases: the influence of the bridge on the diiron complex. New J. Chem., 2007, 31: 1448-1454.
    
    [107] Song L C, Ge J H, Zhang X G et al. Methoxyphenyl-Functionalized Diiron Azadithiolates as Models for the Active Site of Fe-Only Hydrogenases: Synthesis, Structures, and Biomimetic H_2 Evolution. Eur. J. Inorg. Chem., 2006: 3204-3210.
    
    [108] Song L C, Ge J H, Liu X F et al. Synthesis, structures and electrochemical properties of N-substituted diiron azadithiolates as active site of Fe-only hydrogenases. J. Organomet. Chem., 2006, 691: 5701-5709.
    
    [109] Jiang S, Liu J, Shi Y. Fe-S complexes containing five-membered heterocyles: novel models for the active site of hydrogenases with unusal low reduction potential. Dalton Trans., 2007: 896-902.
    
    [110] Bhugun I, Lexa D, Saveant J M. Homogeneous Catalysis of Electrochemical Hydrogen Evolution by Iron(0) Porphyrins. J. Am. Chem. Soc., 1996, 118: 3982-3983.
    
    [111] Bogan L E, Lesch D A, Rauchfuss T B. Synthesis of heterometallic cluster compounds from Fe_3(μ_3-Te)_2(CO)_9 and comparisons with analogous sulfide clusters. J. Organomet. Chem., 1983, 250: 429-438.
    
    [112] Lawrence J D, Li H, Rauchfuss T B. Beyond Fe-only hydrogenases: N-functionalized 2-aza-1,3-dithiolates Fe_2[(SCH_2)_2NR](CO)_x (x = 5, 6). Chem. Commun., 2001, 16: 1482-1483.
    
    [113] Hein D W, Alheim R J, Leavitt J J. The Use of Polyphosphoric Acid in the Synthesis of 2-Aryl- and 2-Alkyl-substituted Benzimidazoles, Benzoxazoles and Benzothiazoles. J. Am. Chem. Soc., 1957, 79(2): 427-429.
    
    [114] Palmer P J, Hall G, Trigg R B et al. Antimicrobials. 1. Benzothiazolylbenzylamines. J. Med. Chem., 1971, 14(12): 1223-1225.
    
    [115] Yoshino K, Kohno T, Uno T et al. Organic Phosphorus Compounds. 1. 4-(Benzothiazol-2-yl)benzylphosphonate as Potent Calcium Antagonistic Vasodilator. J. Med. Chem., 1986, 29(5): 820-825.
    
    [116] Gunnlaugsson T, Davis A P, Hussey G M et al. Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Org. Biomol. Chem., 2004, 2: 1856-1863.
    
    [117] Henary M M, Fahrni C J. Excited State Intramolecular Proton Transfer and Metal Ion Complexation of 2-(2'-Hydroxyphenyl)benzazoles in Aqueous Solution. J. Phys. Chem. A, 2002, 106:5210-5220.
    
    [118] Wang Z, Liu J, He C et al. Diiron azadithiolates with hydrophilic phosphatriazaadamantane ligand as iron-only hydrogenase active site models: Synthesis, structure, and electrochemical study. Inorg. Chim. Acta, 2007, 360: 2411-2419.
    
    [119] Kuhn N, Schumann H. Phosphorus-tellurium compounds. Part3. Cyclopentadienyliron tellurophosphorane complexes: tellurium-bridged iron phosphine compounds. J. Chem. Soc., Dalton Trans., 1987: 541-544.
    
    [120] Wilke G, Herrmann G. Bis(triphenylphosphine)-ethylene-nickel and Analogous Complexes. Angew. Chem. In. Ed. Engl., 1962, 1: 549-550.
    
    [121] Harpp D N, Ash D K, Smith R A. Desulfurization of Organic Trisulfides by Tris(dialkyl amino) phosphines Mechanistic Aspects. J Org. Chem., 1980, 45: 5155-5160.
    [122] Clarke M L, Holliday G L, Slawin A M Z et al. Highly electron rich alkyl- and dialkyl-N-pyrrolidinyl phosphines: an evaluation of their electronic and structural properties. J. Chem. Soc. Dalton Trans., 2002, 1093-1103.
    [123] King K B. Orgamometallic Synthesis. 1965, 1: p95.
    
    [124] Ribas X, Dias J C, Morgado J et al. Novel Cu~Ⅲ Bis-1,2-dichalcogenene Complexes with Tunable 3D Framework through Alkaline Cation Coordination: A Structural and Theoretical Study. Chem. Eur. J., 2004, 10: 1691-1704.
    [125] McKennls J S, Kyba E P. Linked Bis(μ-phosphido) and Realted Ligands for Metallic Clusters, 1. Application to the Hexacarbonyldiiron Moiety. Organometallics, 1983, 2: 1249-1251.
    [126] Cabeza J A, Martínez-García M A, Riera V. Binuclear Iron(I), Ruthenium(I), and Osmium(I) Hexacarbonyl Complexes Containing a Bridging Benzene-1,2-dithiolate Ligand. Synthesis, X-ray Structures, Protonation Reactions, and EHMO Calculations. Organometallics, 1998, 17: 1471-1477.
    [127] Sellmann D, Kleine-Kleffmann U, Zapf L et al. Ubergangsmetall-komplexe mit schwefelliganden: Ⅶ. Synthese und struktur der benzoldithiolato-eisen-komplexe [AsPh_4]_2[Fe(S_2C_6H_4)_2] und [Fe(S_2C_6H_4)(PMe_3)_3]. J. Organomet. Chem., 1984, 263: 321-331.
    
    [128] Dong W, Wang M, Liu T et al. Preparation, structures and electrochemical property of phosphine substituted diiron azadithiolates relevant to the active site of Fe-only hydrogenases. J. Inorg. Biochem., 2007, 101:506-513.
    [129] Li P, Wang M, Pan J et al. [FeFe] Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. J. Inorg. Biochem., 2008, 102: 952-959.
    [130] Felton G A N, Vannucci A K, Chen J et al. Hydrogen Generation from Weak Acid: Electrochemical and Computational Studies of a Diiron Hydrogenase Mimic. J. Am. Chem. Soc., 2007, 129: 12521-12530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700