用户名: 密码: 验证码:
高分子RR-P3HT有机场效应晶体管有源层自组织及其性能提升机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭高分子具有机械性能好,热稳定性高,可溶性好,液相成膜简单,制备成本低,适合于制备大面积柔性器件等优点,高分子有机场效应晶体管(OFET)及其应用被认为是未来有机微电子学的发展方向及有机电子商业研究的热点。为了突破高分子OFET场效应迁移率低及载流子传输机制匮乏两个重大难题,本论文深入研究了以高度区域规则的聚(3-己基噻吩)(RR-P3HT)为代表的有机高分子半导体层本身微观自组织理论和机理这一前沿课题,从根本上发掘有机高分子半导体载流子传输机制及利用其来指导高性能高分子OFET的设计及制备。本论文具体研究工作及成果如下:
     首先,工作中采用同步辐射掠入射X射线衍射技术,研究了高分子OFET中以RR-P3HT为半导体层的结晶行为及微观结构组织变化,及其引起的高分子半导体电荷传输机制,并且由此推导高分子自组织机制与迁移率的关联性。
     研究发现,采用自组装单分子层(SAMs)技术进行界面修饰,可以完善绝缘层与RR-P3HT半导体层之间的界面效果。SAMs的形成改善了界面,可以有效地控制上层RR-P3HT半导体层的结晶性及微观结构,使较多的噻吩环面垂直于衬底、得到π-π堆积方向平行于衬底的二维微晶粒薄片结构,这种微观结构有效地形成了二维共轭电荷传输通道,完善了在RR-P3HT工作层生长过程中的自组织机制;热退火改善了RR-P3HT薄膜生长过程中的自组织过程;并且对于RR-P3HT半导体工作层来说,慢速生长过程比快速生长过程更有利于有效的二维共轭微晶粒薄片生长,更能完善RR-P3HT工作层生长过程中的自组织机制。
     其次,利用有效的物理及化学手段进一步调控了RR-P3HT自组织机制,用来提高以RR-P3HT为半导体层的高分子OFET的器件性能,尤其是场效应迁移率。
     (一)利用界面修饰效应完善自组织机制,来提高高分子OFET器件性能的研究。采用六甲基二硅胺烷HMDS修饰了高分子OFET绝缘层与半导体层之间的界面,提高了高分子OFET的器件性能,并对其性能改善机制进行了深入地研究。由于SAMs修饰的化学过程及其引起的表面物理性能的有效变化,促进了RR-P3HT自组织过程中理想微晶粒薄片的形成及较佳分子的取向排列,最终有利于RR-P3HT OFET器件性能的提升。另外,对修饰作用下的高分子OFET中RR-P3HT的薄膜形态与电荷传输性能关系进行了细致地研究。从薄膜表面形貌变化及结晶两个方面充分地证实了不同液相制膜方法及滴膜法制备非均匀性的高分子OFET的电荷传输性能。工作中对快慢速生长的RR-P3HT薄膜的不同形貌及结晶情况进行了比较,验证了慢速生长的滴膜法制备的RR-P3HT薄膜中“纤维状”薄膜形貌较快速生长的旋涂法制备的“蠕虫状”形貌更有利于载流子的传输。
     (二)进行了利用热退火效应与静置作用完善自组织机制,来提高高分子OFET器件性能的研究。研究发现,真空静置及热退火后处理对高分子RR-P3HT工作层的微晶粒结构与分子排列取向,表面形貌及电荷载流子迁移率的影响很大。快慢速生长液相制膜方式得到的实验结果比较一致。研究认为合适的退火处理(150℃热退火)及长时间的真空静置,将有利于高分子自组织过程中理想微晶粒结构的形成,高分子分子的连接及取向,结果导致器件迁移率的提升。
     (三)利用改善低温溶液处理完善自组织机制,来提高高分子OFET器件性能的研究。在低温下完善溶液性质,利用优化浓度与非溶剂掺杂完善自组织机制,来得到质量良好的高分子RR-P3HT半导体薄膜,从而改善高分子OFET器件性能。研究发现,随着RR-P3HT在氯仿溶剂中重量百分比的增加,形成了更多理想结构的微晶粒薄片及更大的纳米岛状物,其高分子RR-P3HT OFET的性能得到了较大地提升。基于表面形貌及电学性能的测试结果,我们认为载流子迁移率与有机工作层的表面形貌及薄膜厚度有着密切的关联性。并且发现一定范围内,高分子(RR-P3HT)与小分子(并五苯)DFET中表面形貌及载流子迁移率的厚度依赖性存在明显区别。另外,用乙醇及乙腈非溶剂进行适量的掺杂,将完善高分子自组织机制,导致高分子OFET电学性能的提升。
Polymer organic field-effect transistors (OFET) are regarded as the most promising technology of microelectronics and organic electronics due toπ-conjugated polymer possessing excellent mechanical property, reasonable thermal stability, easy solution-processability, large coverage area, flexibility of device, and potential cost advantage. However, at present, the low mobility and deficient conduction of polymer OFET limit their applications. In order to improve their properties, the mechanism of microstructure self-organization of organic semiconductor that is regioregular poly(3-hexylthiophene) (RR-P3HT) of polymer OFET is investigated in this thesis. The conduction mechanisms of polymer are revealed, which provides a theoretical guidance to design and prepare polymer OFET with high performance in the future. Detail researches and results are as follows:
     Firstly, the crystallization action, the microstructure change of self-organization and the resulted conduction mechanisms of polymer semiconductor active thin layer in polymer OFET are investigated by synchrotron radiation grazing incident X-ray diffraction (GIXRD) for understanding the relationships between polymer self-organization and charge carrier mobility.
     The results indicate that self-assembled monolayers (SAMs) as the modified layer significantly improve the interface quality between the insulator layer and the organic semiconductor layer that is RR-P3HT. The change of the crystalline microstructure of RR-P3HT clarifies the effect of SAMs for improving the interface between the insulator layer and the organic semiconductor layer. The self-organiztion of RR-P3HT modified by SAMs improves the crystalliztion to pack form the thiophene rings along the perpendicular direction of substrate and results that theπ-πinterchains are stacked to parallel the substrate. The two-dimensional charge transport is improved. In addition, annealing under a suitable temperature can facilitate the process of self-organization of polymer thin film. Furthermore, we find that two-dimensional, conjugated, and self-organized crystalline lamellae are easier gained with slow grown film than with fast grown film.
     Secondly, the self-organization process is controlled by effective physical and chemical means to improve the performance of RR-P3HT OFET, especially the field-effect mobility.
     (1) Self-organization is improved by interface modification to enhance the performance of RR-P3HT OFET and the mechanism is investigated. Hexamethyldisilizane is used as the modification solution. The effective change of chemical processes and surface physical properties by SAMs modification, which favor for self-organized crystalline lamellae and molecule orientation, results in the enhancement of the performance of RR-P3HT OFET. In addition, the relationship between the morphology and charge transport properties of RR-P3HT is investigated in details. Charge transport properties of RR-P3HT deposited by different methods and the homogenization of drop-cast film are proved by measurements of surface morphology and crystallization. It is concluded that well-defined fibrillar morphology of drop-cast slow grown film is favored to charge transport, comparing worm morphology of spin-coat fast grown film.
     (2) Self-organization is improved by thermal annealing to enhance the performance of RR-P3HT OFET. We find that the crystal structure, the molecules interconnection, the surface morphology, and the charge carrier mobility of polymer films are affected by vacuum relaxation and annealing at suitable temperature (150℃) which facilitate the structure of RR-P3HT and result in the enhancement of field-effect mobility.
     (3) Self-organization is improved by low temperature solution-process to enhance the performance of RR-P3HT OFET. At low temperature, RR-P3HT solution properties are improved by optimizing concentration and non-solvent addition, and the quality of polymer film and the performance RR-P3HT OFET are improved. The results indicate that the performance of RR-P3HT OFET is improved drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. On the basis of the results of surface morphologies and electrical properties, we presume that the charge carrier mobility depends on the morphology and thickness of organic active layer. Furthermore, we demonstrate that the thickness dependence of surface morphology and charge carrier mobility in polymer (RR-P3HT) OFET and small molecule (pentacene) OFET are different. In addition, an appropriate non-solvent addition (acetonitrile and ethanol) can improve the self-organization of polymer semiconductor layer, resulting in performance enhancement of polymer OFET.
引文
[1]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, J. Chem. Soc. Chem. Commun,1977,578-580.
    [2]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science,1995,270,1789-1791.
    [3]C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, Printing Highly Efficient Organic Solar Cells, Nano Letters,2008,8,2806.
    [4]C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic solar cells, Adv. Funct. Mater.,2001,11,15-26.
    [5]K, M. Coakley, and M. D. McGehee, Conjugated polymer photovoltaic cells, Chem. Mater.,16,4533-4542,2004.
    [6]F. R. Zhu, et al, Toward novel flexible display-top-emitting OLEDs on Al-laminated PET substrates, Proc. IEEE,2005,93,1440-1446.
    [7]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature,1990,347,539-541.
    [8]D. Braga, and G. Horowitz, High-Performance Organic Field-Effect Transistors, Adv. Mater.,2009,21,1-14.
    [9]H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, and K. Mullen, The Influence of Morphology on High-Performance Polymer Field-Effect Transistors, Adv. Mater,2009,21,209.
    [10]F. Garnier, et al, All-Polymer Field-Effect Transistor Realized by Printing Techniques, Science,1994,265,1684-1686.
    [11]A. C. Arias, et al, All jet-printed polymer thin-film transistor active-matrix backplanes, Appl. Phys. Lett.,2004,85,3304-3306.
    [12]G. H. Gelinck, et al, Flexible active-matrix displays and shift registers based on solution processed organic transistors, Nat. Mater.,2004,3,106-110.
    [13]J. M. Shaw, and P. F. Seidler, Organic electronics:Introduction, IBM J. Res. Dev., 2001,45,3-9.
    [14]F. Gutman, and L. E. Lyons, Organic semiconductors, John Wiley, New York,1967.
    [15]D. A. Neamen, Semiconductor Physics and Devices Baisc Principles, Third Edition, Publishing hose of eletronics industry,2005,2.
    [16]B. L. Anderson, and R. L. Anderson, Semiconductor Devices Baisc Principles, First Edition, Publishing hose of Qinghua University,2008,3.
    [17]Z. Bao, J. A. Rogers, and H. E. Katz, Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem.,1999,9,1895-1904.
    [18]C. J. Drury, et al, Low-cost all-polymer integrated circuits, Appl. Phys. Lett.,1998,73, 108-110.
    [19]T. Kawase, et al, Inkjet printing of polymer thin film transistors, Thin Solid Films,
    2003,438,279-287.
    [20]H. Sirringhaus, et al, High-resolution inkjet printing of all-polymer transistor circuits, Science,2000,290,2123.
    [21]T. Kawase, et al, Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits, Adv. Mater.,2001,13,1601.
    [22]A. Dodabalapur, et al, Complementary circuits with organic transistors, Appl. Phys. Lett.,,1996,69,4227-4229.
    [23]B. K. Crone, et al, Design and fabrication of organic complementary circuits, J. Appl. Phys.,2001,89,5125-5132.
    [24]P. F. Baude, et al, Pentacene-based radio-frequency identification circuitry, Appl. Phys.Lett.,2003,82,3964-3966.
    [25]S. Steudel, K. Myny, and V. Arkhipov, et al.50MHz rectifier based on an organic diode. Nature Materials,2005,8,597-600.
    [26]J. G. David, Low power, high impact, Nature Materials New& Views,2007,6, 173-174.
    [27]T. N. Jackson, Organic semiconductors beyond Moore's law, Nature Materials,2005, 4,581-582.
    [28]M. L. Chabinyc, and A. Salleo, Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays, Chem. Mater.,2004,16, 4509-4521.
    [29]R. Wisnieff, Display technology-Printing screens, Nature,1998,394,225.
    [30]B. Comiskey, et al, An electrophoretic ink for all-printed reflective electronic displays, Nature,1998,394,253-255.
    [31]M. T. Bernius, et al, Progress with light-emitting polymers, Adv. Mater.,2000,12, 1737-1750.
    [32]R. H. Friend, et al, Electroluminescence in conjugated polymers, Nature,1999,397, 121-128.
    [33]D. Knipp, R. A. Street, and A. R. Volkel, Morphology and electronic transport of polycrystalline pentacene thin-film transistors, Appl. Phys. Lett.,2003,82,3907.
    [34]G. Z. Wang, Y. Luo, and P. H. Beton, High-mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film, Appl. Phys. Lett.,2003, 83,3108.
    [35]R. Ruiz, A. C.Mayer, G. G. Malliaras, B. Nickel, G. Scoles, A. Kazimirov, H. Kim, and R. L. Headrick, Structure of pentacene thin films, Appl. Phys. Lett.,2004,85, 4926.
    [36]H. Sirringhaus, et al, High-resolution inkjet printing of all-polymer transistor circuits, Science,2000,290,2123.
    [37]J. Z. Wang, et al, Polymer field effect transistors fabricated by dewetting, Synth. Met., 2004,146,287-290.
    [38]Z. Bao, A. Dodabalapur, and A. J. Lovinger, Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility, Appl. Phys. Lett.,1996,69,4108-4110.
    [39]B. S. Ong, et al, High-performance semiconducting polythiophenes for organic thin film transistors, J. Am. Chem. Soc.,2004,126,3378-3379.
    [40]http://www.cmwin.com/cbpresource/stagehtmlpage/a243/a243200822702523593.htm (2009-10-18)
    [41]F. Ebisawa, T. Kurokawa, and S. Nara. Electrical properties of polyacety-lene/polysiloxane interface, Journal of Applied Physics,1983,54, 3255-3259.
    [42]A. Tsumura, H. Koezuka, and T. Ando. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Applied Physics Letters,1986, 49,1210-1212.
    [43]T. W. Kelley, D.V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, High Performance Organic Thin Film Transistors, Organic and Polymeric Materials and Devices (as held at the 2003 MRS Spring Meeting), San Francisco, CA; USA; 22-25 Apr.2003.pp.169-179.
    [44]O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Effect of impurities on the mobility of single crystal pentacene, Applied Physics Letters,2004,84,3061-3063.
    [45]C. D. Dimitrakopoulos, and D. J.Mascaro, Organic thin-film transistors:A review of recent advances, IBM J. Res.& Dev.,2001,45,11.
    [46]H. Koezuka, A. Tsumura, and T. Ando, Field-effet transistor with polythiophene thin film, Synth. Met.,1987,18,699-704.
    [47]C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellee, Field-Eeffet Trnasistor With Diphthaloeyanine Thin Film, Electron. Lett.,1988,24,674.
    [48]A. Assadi, C. Svensson, M. Willnader, and O. Inganas, Field-Eeffet Mobility of Poly(3-hexylthiophene), Appl. Phys. Lett.,1988,53,195.
    [49]J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, Proceedings of NATO ASI, Spetses, Greece, R. M. Mertzge, Ed., Plenum Press, New York,1989.
    [50]G. Horowitz, D. Fiehou, X. Z. Peng, Z. G. Xu, and F. Gamier, A Field-Eeffet Trnasistor Based On Conjugated Alpha-Sexithienyl, Solid State Commun.,1989,72, 381.
    [51]G. Horowitz, X. Peng, D. Fichou, and F. Gamier, Role of the semiconductor insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors, Synth. Met.,1992,51,419-424.
    [52]F. Garnrier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Delorffre, B. Servet, S. Ries, and P. Alnot, Engineering of Organic Semiconduetors:Design of Self-Assembly Properties in Conjugated Thiophene Oligomers, J. Am. Chem. Soc.,1993,115,8716.
    [53]H. Fuchigami, A. Tsumura, and H. Koezuka, Polythienylenevinylene Thin-Film Transistor with High Carrier Mobility, Appl. Phys. Lett.,1993,63,1372.
    [54]A. Dodabalpaur, L. Torsi, and H. E. Katz, Transistors:Two-Dimensional Transport and Improved Electrical Characteristies, Science,1995,268,270.
    [55]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications, J. Appl. Phys., 1996,80,2501.
    [56]Z. Bao, A. J. Lovinger, and A. Dodabalapur, Highly Ordered Vacuum-Deposited Thin Films of Metallophthalocynaines and Their Application In Field-Effect Transistor, Adv. Mater.,1997,9,42.
    [57]Z. Bao, A. J. Lovinger, and A. Dodabalapur, Organic Field-Effect Transistors with High Mobility Based On Copper Phthalocyanine, Appl. Phys. Lett.,1996,69, 3066-3068.
    [58]Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, High Performance Pentacene Organic Thin-Film Transistors,54th Annual Device Research Conference Digest,1996,80.
    [59]Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics, IEEE Elcetron Device Lett.,1997,18,606.
    [60]H. Sirringhaus, R. H. Friend, X. C. Li, S. C. Moratti, A. B. Holmes, and N. Feeder, Bis(dithienothiophene) Organic Field Eeffct Transistors with High ON/OFF Ratio, Appl. Phys. Lett.,1997,71,3871.
    [61]H. Sirringhaus, N. Tessler, R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science,1998,280,1741.
    [62]H. E. Katz, A. J. Lovinger, and J. G. Laquindanum, a-co-Dihexylquaterthiophene:A Second Thin Film Single-Crystal Organic Semiconductor, Chem. Mater.,1998,10, 475.
    [63]J. G. Laquindanum, H. E. Katz, and A. J. Lovinger, Synthesis, Morphology, and Field-Effect Mobility of Anthradithiophenes, J. Amer. Chem. Soc.,1998,120,664.
    [64]Z. Bao, A. J. Lovinger, and J. Brown, New Air-Stable n-Channel Organic Thin Film transistors,J. Am. Chem. Soc.,1998,120,207-208.
    [65]A. Faccheti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, and R. H. Friend, Angew. Chem., Int. Ed.,2000,39,4547.
    [66]H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, and A. Dodabalpur, Soluble and Air-Stable Organic Semiconductor with High Electron Mobility, Nature,2000,404,478.
    [67]P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, N-type organic thin-film transistor with high field-effect mobility based on a N, N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivate, Appl. Phys. Lett.,2002,80,2517-2519.
    [68]T. Kelley, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite, and T. P. Smith, High-performance OTFT susing surface-modified alumina dielectrics, J. Phys. Chem. B,2003,107,5877-5881.
    [69]V. Podzrov, S. E. Sysoev, E. loginova, V. M. Pudalov, and M. E. Gershenson, Single-crystal organic field effect transistors with the hole mobility-8 cm2/V s, Appl. Phys. Lett.,2003,83,3504-3506.
    [70]S. Kobayashi, T. Takenobu, and S. Mori, Fabrication and characterization of C6o thin film transistors with high field-effect mobility, Appl. Phys. Lett.2003,82,4581-4583.
    [71]G. Wang, J. Swensen, D. Moses, and A. J. Heeger, Increased mobility from regiorregular poly(3-hexylthiophene) field effect transistors, J. Appl. Phys.2003,93,
    6137-6141.
    [72]V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals, Science,2004,303,1644-1646.
    [73]D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo and C. Y. Ryu, Ehangcement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors, Adv. Funct. Mater.2005,15,77.
    [74]S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin and R. Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films,J. Appl. Phys.,2006,100,114503.
    [75]Cherie R.Kagan and Paul Andry编,廖燕平,王军译,薄膜晶体管(TFT)及其在平板显示中的应用,北京,电子工业出版社,2008,3.
    [76]廖燕平,王军,有机薄膜晶体管及其集成电路,现代显示,2007,78,7-14.
    [77]申霖,刘倩,张贺丰,张彩霞,邓家春,杨利营,华玉林,印寿根,有机薄膜晶体管(OTFT)的研究进展,材料导报网刊,2006,4,8-12.
    [78]A. S. Sedra, K. C, Smith著,周玲玲,蒋乐天,应忍冬等译,微电子电路,电子工业出版社,2006,206.
    [79]M. Berggren. Organic materials for printed electronics, Nature materials commentary, 2007,6,3-5.
    [80]游战清,李苏剑,无线射频识别技术(RFID)理论与应用.北京,电子工业出版社,2005:8-31.
    [81]H. H. Lee, J. J. Brondjik, and N. G. Tassi, Direct printing of organic transistors with 2 μm channel resolution, Appl. Phys.Lett.,2007,90,233509.
    [82]L. Sydanheimo, L. Ukkonen, Effects of size and shape of metallic objects on performance of passive radio frequency identification. The International Journal of Advanced Manufacturing Technology,2006,30,897-905.
    [83]S. D. Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Low voltage complementary organic inverters, Appl. Phys. Lett.,2006,88,162116.
    [84]S. Steudel, Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags, J. Appl. Phys.,2006,99, 114519.
    [85]H. Klauk, High-performance low voltage organic thin-film transistors and circuits, Nature,2007,445,745-748.
    [86]P. F. Baude, D. A. Ender, T. W. Kelley, M. A. Haase, D. V. Muyres, and S. D. Theiss, Organic semiconductor transponders, IEDM,2003,191-193.
    [87]http://news.rfidworld.com.cn/2006929106104789.html
    [88]P. Mach, S. J. Rodriguez, R. Nortrup, J. A. Rogers, Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors, Appl. Phys. Lett.2001,78,3592.
    [89]H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, and D. M. de Leeuw, Plastic transistors in active-matrix displays, Nature,2001,414,599.
    [90]A. Facchetti, Semiconductors for organic transistors, Materials Today,2007,10 (3), 28-37.
    [91]袁广才,Pentacene基有机薄膜晶体管性能改善机制的研究,博士学位论文,2009,15-17.
    [92]袁剑峰,酞菁铜有机场效应晶体管器件性能的研究,中国科学院博士学位研究生学位论文,2005,120-124.
    [93]M. Pope, C. E. Swenberg, Electronic Processes in Organic crysatals and Polymers, 2nd ed. New York:Oxford University Press,1999, pp337-340.
    [94]S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackon, Temperature-independence transport in high-mobility pentacene transistors, Appl. Phys. Lett.,1997,71: 2091-2093.
    [95]E. A. Silinish, V. Capek, Organic Molecular Crystal:Interaction Localization and Transport Phenomena. Chapter 7. New York:American Institute of Physics Press, 1994.
    [96]W. Wara, R. Stehle, N. Karl. Ultrapure, high-mobility organic photoconductors, Appl. Phys. A.,1985,36,163-170.
    [97]N. Karl. Organic Semiconductors, by O. Madelung, ed., Landolt-Bornstein, Group III, Semiconductors. Vol.17. Berlin:Springer,1985, pp 106-218.
    [98]N. F. Mott, E. A. Davis, Electronic Process in Non-Cyrstalline Materials, Clarendon Press, Oxford,1971.
    [99]E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 1970,22,903.
    [100]N. F. Mott, Conduction in Non-cryrstalline Materials III Localized States in a Pseudogap and Near Extremities of Conduction and Valence Bands, Philos. Mag., 1969,19,835.
    [101]T. Holstain, Studies of polaron motion, Ann. Phys. (NY),1959,8,343.
    [102]D. Emin, Aspects of the Thoery of Small Polaron in Disordered Materials, in Electronic and Structural Properties of Amorphous Semiconductors, ed. By P. G. Comber, J. Mort (Aeademic Perss, New York),1973, P 261.
    [103]G. Horowitz, Organic thin film transistors:From theory to real devices, J. Mater. Res.,2004,19,1946.
    [104]P. G. Lecomber, Electronic Transport In Amoprhous Silicon Films, W. E. Spear, Phys. Rev. Lett.,1970,25,509.
    [105]G. Horowitz, Organic field effect transistor, Adv. Mater.,1998,10,365-377.
    [106]C. D. Dimitrakopulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw, Low-voltage organic transitors on plastic comprising high-dielectric-constant gate insulators, Science,1999,283,822-824.
    [107]C. D. Dimitrakopulos, J. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz. Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric-constant insulators, Adv. Mater.,1999,11, 1372-1375.
    [108]G. Horowitz, R. Hajlaoui, P. Delannoy, Temperature dependence of the field-effect mobility of secithiophene. Determination of the density of traps, J. Phys. Ⅲ France, 1995,5,355-371.
    [109]G. Horowitz, M. E. Hajaoui. Mobility in polycrystalline oligothiophene field-effect transistors dependence on grain size, Adv. Mater.2000,12,1046-1050.
    [110]S. Sun, and L. Dalton, ed., Introduction to Organic Electronic and Optoelectronic Materials and Devices, CRC Press:Boca Raton, Florida,2008 (ISBN-10: 0849392845; ISBN-13:978-0849392849).
    [111]F. Gamier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, S. Ries, and P. Alnot, Molecular engineering of organic semiconductors. Design of self-assembly properties in conjugated thiophene oligomers, J. Am. Chem. Soc,1993,115,8716-8721.
    [112]Y. Loo, Solution-Processable Organic Semiconductors for Thin-Film Transistors: Opportunities for Chemical Engineers, AIChE Journal,2007,53,1066-1074.
    [113]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Two-dimensioanl charge transport in self-organized, high-mobility conjugated polymers, Nature (London),1999,401,685-688.
    [114]S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Marks, Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications, Adv. Mater.,2009,21,1407-1433.
    [115]Y. K. Lan, and C. Huang, A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State, J. Phys. Chem. B,2008,112,14857-14862.
    [116]刘玉荣,李渊文,刘汉华,聚合物薄膜场效应晶体管研究进展,现代显示,2006,65.60-64.
    [117]闫东航,王海波,杜宝勋,有机半导体异质结导论,科学出版社(北京),2008,136.
    [118]H. Sirringhaus, Materials and Applications for Solution-Processed Organic Field-Effect Transistors, Proceedings of the IEEE,2009,97(9),1570-1579.
    [119]I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sprarrowe, R. Wagnger, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, and M. F. Toney, Liquid-crystalline semiconducting polymers with high charge-carrier mobility, Nature Materials,2006,5,328.
    [120]R. Zhang, et al., Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors, J. Am. Chem. Soc.,2006,.28, 3480-3481.
    [121]M. Daraktchiev, A.von Muhlenen, F.Nuesch, et al., Ultrathin organic transistors on oxide surfaces, New Journal of Physics,2005,7,133.
    [122]J. M. Verilhac, G. L. Blevennec, D. Djurado, et al., Effect of macromolecular parameters and processing conditions on supramolecular organization, morphology and electrical transport properties in thin layers of regipregular poly(3-hexylthiophene), Synth. Met.,2006,156,815-823.
    [123]姜晓明,贾全杰,郑文莉等,同步辐射X射线掠入射衍射实验技术及应用,高能物理与核物理,2002,24(12),424-429.
    [124]P. Croce, and L. Nevot,, Etude de couches minces et des surfaces par reflexion rasante speculaireou diffuse de rayons X, Rev. Phys. Appl.,1976,11,113.
    [125]R. A. Cowley, and T. W. Ryan, X-ray scattering studies of thin films and surfaces: Thermal oxides on silicon, J. Phys. D:Appl. Phys.,1987,20,61.
    [126]J. M. Gay, P. Stocker, and F. Rhemore,, X-ray scattering studies of FeSi2 films epitaxially grown on Si(111), J. Appl. Phys.,1993,73,816.
    [127]R. W. James, The optical principles of the diffraction of x-rays, Ox Bow Press, Woodbrige, CT,1982, chap.4.
    [128]W. C., Marra, Eisenberger, P., and Cho, A.Y., X-ray total-external-reflection-Bragg diffraction:A structural study of the GaAs-Al interface, J. Appl. Phys.,1979,50,6927.
    [129]P. H. Fuoss, K. S. Liang, and P. Eisenberger, In Synchrotron radiation research: Advances in surface science, ed. Bachrach,R. Z., Plenum, New York,1989.
    [130]G. H. Vineyard, Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces, Phys. Rev. B,1882,26,4146.
    [131]张吉东,莫志深,利用掠入射X射线技术表征高分子薄膜,大学化学,2009,24(2),1-9.
    [132]J. D. Halley and A. David, Consistent concepts of self-organization and self-assembly, John Wiley& Sons, Inc. New York, NY, USA,2008,10-17.
    [133]H. V. Poerster, G. P. Zopf, J. Eds, Principles of Self-Organization, Pergamon Press, Oxford,1962.; G. N. Savidis, Self-Organizing Control of Stochastic Systems, Marcel Dekker Inc., New York,1977.
    [134]刘海林,马晓燕,袁莉,黄韵,分子自组装研究进展,材料科学与工程学报,2004,22(2),308-311.
    [135]S. K. Possanner, K. Zojer, P. Pacher, E. Zojer and F. Schu¨rrer, Threshold Voltage Shifts in Organic Thin-Film Transistors Due to Self-Assembled Monolayers at the Dielectric Surface, Adv. Func. Mater.,2009,19,958-967.
    [136]姜晓明,贾全杰,郑文莉等,同步辐射X射线掠入射衍射实验技术及应用,高能物理与核物理,2000,24(12),424-429.
    [137]孙柏,康朝阳,李锐鹏,刘忠良,唐军,徐彭寿,潘国强,ZnO/a-Al2O3界面结构的掠入射X射线衍射研究,核技术,2009,32(7),492-496
    [138]北京中科院高能物理研究所内部教程及中科院高能物理研究所,http://www.ihep.cas.cn/dkxzz/bsrf/
    [139]A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, R. P. Rabe, U. Scherf, D. Neher, Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors, Adv. Funct. Mater.,2004,14,757-764.
    [140]S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs), Angew. Chem. Int. Ed.,2008,47,4070-4098.
    [141]R. J. Kline, M. D. Mcgehee, and M. F. Toney, Highly oriented crystals at the buried interface in polythiophene thin-film transistors, Nature (London),2006,5,222.
    [142]J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, and H. Sirringhaus, Chem. Mater., Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents, 2004,16,4772.
    [143]H. Yang, S. W. LeFevre, C. Y. Ryu, Z. Bao, Solubility-driven thin film structures of regioregular poly(3-hexylthiophene) using volatile solvents, Appl. Phys. Lett., 2007,90,172116.
    [144]X. T. Hao, T. Hosokai, N. Mistuo, S. Kera, K. K. Okudaira, K. Mase, and N. Ueno, Control of the Interchain π-π Interaction and Electron Density Distribution at the Surface of Conjugated Poly(3-hexylthiophene) Thin Films J. Phys. Chem. B,2007, 111,10365.
    [145]D. Y. Park, D. H. Kim, J. A. Lim, J. H. Cho, Y. Jang, W. H. Lee, J. H. Park, and K. Cho, Enhancement of Field-Effect Mobility and Stability of Poly(3-hexylthiophene) Field-Effect Transistors by Conformational Change, J. Phys. Chem. C,2008,112, 1750.
    [146]G. Wang, T. Hirasa, D. Moses, and A. J. Heeger, Fabrication of regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating, Synth. Met.,2004,146, 127.
    [147]G. Scavia, W. Porzio, S. Destri, L. Barba, G. Arrighetti, S. Milita, L. Fumagalli, D. Natali, and M. Sampietro, Effect of the silanization and annealing on the morphology of thin poly(3-hexylthiophene) (P3HT) layer on silicon oxide, Surf. Sci.,2008, 602,3106.
    [148]李荣金,李洪祥,周欣然,胡文平,聚合物场效应晶体管材料及其器件,化学进展,2007,19,316.
    [149]夏钟福,邱勋林,朱伽倩,张冶文,SiO2和Si3N4/SiO2薄膜表面驻极态的改善,压电与声光,2002,24,208.
    [150]C. J. Van Oss, M. K. Chaudhury, R. J. Good, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems, J. Chem. Rev.,1988,88,927.
    [151]C. J. Van Oss, R. F. Giese Jr., R. J. Good, Reevaluation of the surface tension components and parameters of polyacetylene from contact angles of liquids, Langmuir,1990,6,1711.
    [152]C. J. Van Oss, Hydrophobicity of biosurfaces-Origin, quantitative determination and interaction energies, Colloid Interface Sci.,1995,5,91.
    [153]B. Boualia, F. Ganachaudb, J. P. Chapelc, C. Pichotb, and P. Lanteria, Acid-Base Approach to Latex Particles Containing Specific Groups Based on Wettability Measurements, Colloid Interface Sci.,1998,208,81.
    [154]H. Malandrinia, F. Claussb, S. Partykac and J. M. Douillard, Interactions between Talc Particles and Water and Organic Solvents, Colloid Interface Sci.,1997,194,183.
    [155]M. Surin, P. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, and S. Cho and K. Lee, Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors, J. Appl. Phys.,2006,100,033712.
    [156]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, and E. W. Meijer, Microstructure-mobility correlation in self-organised, conjugated polymer field-effect transistors, Synth. Met.,2000,111,129.
    [157]S. A. Arnautov, E. M. Nechvolodova, A. A. Bakulin, S. G. Elizarov, A. N. Khodarev, D. S. Martyanov, and D. Y. Paraschuk, Properties of MEH-PPV films prepared by slow solvent evaporation, Synth. Met.,2004,147,287.
    [158]H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexylthiophene) in Thin-Film Transistors, Adv. Funct. Mater.,2005,15,671.
    [159]S. J. Kang, M. Noh, D. S. Park, H. J. Kim, and C.N. Wang, Influence of postannealing on polycrystalline pentacene thin film transistor, J. Appl. Phys.,2004, 95,2293.
    [160]X. Y. Tian, Z. Xu, S. L. Zhao, F. J. Zhang, X. R. Xu, G. C. Yuan, J. Li, Q. J. Sun, and Y. Wang, Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly(3-hexylthiophene) field-effect transistors, Chin. Phys. B,2009,18, 5078.
    [161]H. Z. Yu, and J. B. Peng, Annealed Treatment Effect in Poly(3-hexylthiophene): Methanofullerene Solar Cells, Chin. Phys B.,2008,17,3143.
    [162]Y. D. Park, H. S. Lee, Y. J. Choi, D. Kwak, J. H. Cho, S. Lee, and K. Cho, Solubility-Induced Ordered Polythiophene Precursors for High-Performance Organic Thin-Film Transistors, Adv. Funct. Mater.2009,19,1.
    [163]L. B. Lucht, W. B. Euler and O. J. Gregory, INVESTIGATI ON OF THE THERMOCHROMIC PROPERTIES OF POLYTHIOPHENES DISPERSED IN HOST POLYMERS, Polym. Prepr.2002,43,59.
    [164]X. Y. Tian, Z. Xu, S. L. Zhao, F. J. Zhang, G. C. Yuan, X. R. Xu, Effects of concentration and annealing on the performance of regioregular poly(3-hexylthiophene) field-effect transistors, Chin. Phys. B,2009,18,3568.
    [165]X. Y. Tian, Z. Xu, S. L. Zhao, F. J. Zhang, X. R. Xu, G. C. Yuan, J. Li, Q. J. Sun, and Y. Wang, X. R. Xu, Thickness dependence of surface morphology and charge carrier mobility in organic field-effect transistors, Chin. Phys. B,2010,19,018103.
    [166]A. J. Moule, K. Meerholz, Controlling Morphology in Polymer-Fullerene Mixtures, Adv. Mater.,2008,20,240.
    [167]X. Yang, G. Lu, L. Li, Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution, J. Mater., Chem.,2008,18,1984.
    [168]N. Kiriy, E. Jahne, H. J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, M. Stamm, One-Dimensional Aggregation of Regioregular Polyalkylthiophenes, Nano Lett.,2003,3,707.
    [169]S. Berson, R. D. Bettignies, S. Bailly, S. Guillerez, Poly(3-hexylthiophene) Fibers for Photovoltaic Applications, Adv. Funct. Mater.,2007,17,1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700